Implicit Authentication for Mobile Devices Using Typing Behavior

  • Jonathan GuraryEmail author
  • Ye Zhu
  • Nahed Alnahash
  • Huirong Fu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9750)


An attacker that compromises the unlock mechanism of a mobile device can fundamentally use the device as if it were their own, with access to a large portion of the user’s sensitive data and communications. We propose a secondary implicit authentication scheme which monitors typing behavior to detect unauthorized use and lock down the mobile device. We build a basic implementation of our scheme on the Android operating system. Our user studies on the implementation show that we can achieve an accuracy of up to 97 % identifying one user out of a set of fifteen, with an FAR of \(<3\,\%\) and an FRR of \(<.5\,\%\).


Mobile Device Authentication Scheme Touch Screen False Acceptance Rate False Rejection Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Antal, M., Szabó, L.Z., László, I.: Keystroke dynamics on android platform. Procedia Technol. 19, 820–826 (2015)CrossRefGoogle Scholar
  2. 2.
    Brunelli, R., Falavigna, D.: Person identification using multiple cues. IEEE Trans. Pattern Anal. Mach. Intell. 17(10), 955–966 (1995)CrossRefGoogle Scholar
  3. 3.
    Buchoux, A., Clarke, N.L.: Deployment of keystroke analysis on a smartphone. In: Australian Information Security Management Conference, p. 48 (2008)Google Scholar
  4. 4.
    Campbell Jr., J.P.: Speaker recognition: a tutorial. Proc. IEEE 85(9), 1437–1462 (1997)CrossRefGoogle Scholar
  5. 5.
    Draffin, B., Zhu, J., Zhang, J.: KeySens: passive user authentication through micro-behavior modeling of soft keyboard interaction. In: Memmi, G., Blanke, U. (eds.) MobiCASE 2013. LNICST, vol. 130, pp. 184–201. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  6. 6.
    Feng, T., Liu, Z., Kwon, K.-A., Shi, W., Carbunar, B., Jiang, Y., Nguyen, N.K.: Continuous mobile authentication using touchscreen gestures. In: 2012 IEEE Conference on Technologies for Homeland Security (HST), pp. 451–456. IEEE (2012)Google Scholar
  7. 7.
    Frank, M., Biedert, R., Ma, E.-D., Martinovic, I., Song, D.: Touchalytics: on the applicability of touchscreen input as a behavioral biometric for continuous authentication. IEEE Trans. Inf. Forensics Secur. 8(1), 136–148 (2013)CrossRefGoogle Scholar
  8. 8.
    Gafurov, D., Helkala, K., Søndrol, T.: Biometric gait authentication using accelerometer sensor. J. Comput. 1(7), 51–59 (2006)CrossRefGoogle Scholar
  9. 9.
    Maiorana, E., Campisi, P., González-Carballo, N., Neri, A.: Keystroke dynamics authentication for mobile phones. In: Proceedings of the 2011 ACM Symposium on Applied Computing, pp. 21–26. ACM (2011)Google Scholar
  10. 10.
    Saevanee, H., Bhattarakosol, P.: Authenticating user using keystroke dynamics and finger pressure. In: 2009 6th IEEE Consumer Communications and Networking Conference, CCNC 2009, pp. 1–2. IEEE (2009)Google Scholar
  11. 11.
    Trojahn, M., Ortmeier, F.: Biometric authentication through a virtual keyboard for smartphones. Int. J. Comput. Sci. Inf. Technol. 4(5), 1 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Jonathan Gurary
    • 1
    Email author
  • Ye Zhu
    • 1
  • Nahed Alnahash
    • 2
  • Huirong Fu
    • 2
  1. 1.Cleveland State UniversityClevelandUSA
  2. 2.Oakland UniversityRochesterUSA

Personalised recommendations