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Abstract. An attacker that compromises the unlock mechanism of a
mobile device can fundamentally use the device as if it were their own,
with access to a large portion of the user’s sensitive data and communi-
cations. We propose a secondary implicit authentication scheme which
monitors typing behavior to detect unauthorized use and lock down the
mobile device. We build a basic implementation of our scheme on the
Android operating system. Our user studies on the implementation show
that we can achieve an accuracy of up to 97 % identifying one user out
of a set of fifteen, with an FAR of < 3 % and an FRR of < .5 %.

1 Introduction and Related Work

For most smartphones in use today, the sole defense against intrusion is the
unlock mechanism that allows use of the device. An attacker who breaks the
device’s unlock authentication can gain access to the device. Access to a victim’s
cell phone allows an attacker to read sensitive communications, reset account
passwords, and potentially access sensitive applications like those used for bank-
ing. A second level of real time authentication is desirable- even if an attacker
gains access to the device, they will eventually be detected and locked out while
attempting to use it. In order to remain viable, a real time authentication scheme
must be accurate enough not to lock out legitimate users. In this paper, we pro-
pose an implicit authentication scheme based on soft keyboard typing behaviors
which can identify users with a high degree of accuracy.

We choose to identify users with the touch screen because using the touch
screen is a core behavior of any meaningful smartphone use. Physical biometrics
such as gait [8] can be used as implicit authentication, however the attacker can
merely refrain from walking while the device is powered on. Voice recognition
schemes such as [2,4] can identify implicitly if the owner of the device is speaking
nearby, but cannot help if the attacker stays silent. Interaction with the touch
screen is required to place calls, write text messages, or access secure accounts
and applications. A behavioral biometric that depends on touch behavior is
difficult for the attacker to avoid if they wish to use the device.

Various authors have proposed schemes to authenticate users based on their
touch screen gestures, touch patterns, and readings from on-device sensors dur-
ing a touch [1,3,5–7,9–11]. Unlike previous research such as Feng et al. [6], which
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identifies users based on their touch screen gestures, we focus specifically on iden-
tifying users based on their typing patterns with the soft keyboard. Many users
type small amounts of characters regularly on their smartphones, for example to
send text messages, write emails, or dial phone numbers. An attacker that steals
the device and attempts to use it for any of these tasks may be locked out, or
they may discretely trigger an alert to a location schemes such as Apple’s “Find
my iPhone.” Users may also type passwords on their mobile devices. An attacker
that has compromised a user’s account password1 and attempts to enter that
password into the device may be detected, locking the account.

Previous works such as Draffin et al. [5] have utilized typing behavior to
authenticate users. Unlike previous works, our scheme utilizes all features that
can be collected on modern smartphones, including device acceleration data,
for an increased rate of accuracy. We also present several approaches for imple-
menting touch classification, based on efficient statistical classifiers, and compare
them using the same data. Our results show that by utilizing the large amount
of data available on touch screen devices, we can achieve a 97 % rate of accuracy
identifying users after only 15 touches.

In the next section, we present background and related work on keystroke
dynamics and implicit mobile authentication using the touch screen. We continue
by describing our implementation the data we collect in detail in Sect. 2. We
present our user study and details about our classification approaches in Sect. 3,
and we discuss our planned future work and extensions in Sect. 4. We conclude
the paper in Sect. 5.

2 Scheme

We designed a basic implementation of the soft keyboard on the Android operat-
ing system. The built-in soft keyboard intentionally disallows recording of touch
information to avoid various misuse such as keyloggers, and we found it was eas-
ier to build a basic keyboard than to attempt to override this security feature.
A screenshot of our implementation is presented in Fig. 1. We use the built in
Android class MotionEvent to collect data from touches on the keyboard but-
tons, and the SensorEvent class to collect accelerometer data. With these classes,
we were able to record the following information about each touch:

Duration of Touch and Time Since Last Touch: The use of these values
by themselves is sometimes called keystroke dynamics. We record the duration
of touches and time between touches, in milliseconds. The duration of a touch
is considered the time between the press and release of a button (eventtime-
downtime in the MotionEvent class). The time since the last touch is considered
the time from one press to the next (downtime-previous downtime in the Motion-
Event class). For the first touch in every trace, the time since last touch is set
to zero.

1 We assume that the account utilizes trusted devices, and the attacker cannot simply
enter the account information on another device.
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Fig. 1. A screenshot of our Android keyboard implementation.

Relative x and y Location of Press: The location of the center of the touch
at the time the button was pressed, relative to the button, is recorded in pixel
units. The top left corner of any button is (0,0) and the bottom right corner is
the maximum, which varies by device.

Size of Touch on Press: The size of the touch is recorded on a scale from 0 to
1, where 1 is the maximum touch size the system will recognize, which varies by
device. The system interprets all touches as a circle where size determines the
radius of that circle. Size of a touch roughly correlates with finger size and touch
pressure, which can be used to identify a user. The number of sizes supported
by each device is not infinite; most devices support between 20 and 100 discrete
touch sizes.

Magnitude of Acceleration on Press: The magnitude of acceleration is read
in m/s2 from the accelerometer, a sensor which the vast majority of devices on
the market have today. Different devices update their sensors at different rates.
We take the last known accelerometer reading before the press occurs, which
may be several milliseconds before the touch itself.

Relative x and y Location of Release: The location of the center of the
touch as the the button is let go. By taking the x and y locations of the press
and release, we can determine how far, and in which direction, the user moves
their finger during a touch. We do not use touch distance or direction in this
paper directly because we are seeking to minimize computation requirements,
though an intelligent classifier may utilize these features indirectly.

Size of Touch on Release: The size of the touch as the button is let go. We can
infer pressure from the difference in sizes between press and release. If the press
size is very large, and the release size is much smaller, then it is likely the user
pushed their finger down hard on the device and increased the surface area that
was making contact with the screen. We do not calculate pressure in this paper
directly, though a classifier may indirectly take advantage of this relationship.
Physical properties of the finger may also play into this feature, for example the
amount an individual’s finger yields when making contact with a hard surface.

Magnitude of Acceleration on Release: As with a press, the magnitude
of acceleration on release is the last known accelerometer reading at the time
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the user releases the button. If a touch is short enough and the device’s sensor
is slow to update, this value may be the same as the value for the press. The
difference in acceleration between press and release can be used to infer how
hard the device was touched or how steady the user’s grip is. A large difference
can indicate a hard touch which pushed the device down and and caused it to
recoil back to its starting position. We make no effort to process acceleration in
this paper, however our classifier may make such inferences indirectly.

Maximum, Minimum, and Average Acceleration during the Touch:
We take as many readings as possible from the accelerometer between the press
and release of a touch, recording the max, min, and average of the magnitudes
of acceleration. Depending on the speed of the touch and the rate at which the
accelerometer updates on that particular device, it is possible to obtain zero
readings between the press and release, in which case we set all three values to
some default value.

Although we are able to collect pressure from the MotionEvent class, we
found that on most modern mobile devices pressure is either (1) set a default
value which does not change or (2) scaled linearly with touch size. Capacitive
touch screens like those found in most modern mobile devices are not able to
sense the pressure of a touch directly. Many previous works that utilize the
pressure reading from the MotionEvent class are actually utilizing touch size
indirectly instead, and in works where both touch size and pressure were used,
the use of pressure can be considered double-counting of touch size. Some manu-
facturers such as Apple and Huawei are currently developing phones which have
touch pressure sensors, and some devices such as the Samsung Note feature a
touch pen which can report pressure based on how hard the tip of the pen is
pushed down.

Another feature frequently used in previous works is orientation, defined as
the angle that the pointing device (e.g. a finger) makes with the screen. Orien-
tation is also not reported by the MotionEvent class in many modern devices: it
is either set to a single static value or one of two values depending on whether
the device is held in portrait or landscape mode.

2.1 Future Implementation

We envision a scheme that collects touch data anonymously from a large pool
of users and stores the anonymous data on some server. Periodically, touch data
from random users is sent from the server to each client and the client generates
a classifier for that data by combining it with their own data. Typing behavior
from the user is analyzed by the classifier using one of the approaches described
in Sect. 3. The user will have a high rate of accuracy matching with themselves,
however the attacker will have a much higher chance of matching other users,
with a very low chance to match the actual user several times consecutively. For
example with 15 users, an attacker who has an equal chance to be behaviorally
matched to any of those users has a 1/15 = 7% chance to be authenticated as
the user per attempt. If three consecutive failures cause a lockout, the attacker
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has a 14/53 = 81% chance to be locked out in the first three authentication
attempts. We will also show that 15 touches or less can suffice for an authen-
tication attempt. We will also demonstrate that we can attain high accuracy
using a computationally simple classifier that can run in the background on a
mobile device, with small sets of data that will require only minimal amounts of
network use and device storage.

3 Experiment

3.1 Devices Used

We used a Galaxy Tab 3 tablet and a Google Nexus 4 smartphone for our
experiments in order to ensure our results are consistent across different devices.
The Galaxy Tab 3 has an 8 inch screen with a resolution of 1280 by 800, and the
Nexus 4 has a 4.7 inch screen with a similar resolution of 1280 by 768.

There are several distinctions between the devices. We note that the Nexus 4
appears to report accelerometer readings more quickly, often enough that almost
every touch reports a value for each of the acceleration features described in
Sect. 2. In contrast, the accelerometer on the Tab 3 reports slowly. While it can
collect information quickly enough for slow typists, for our faster typists as little
as 5 % of touches report all the acceleration values described in Sect. 2. The Tab
3 reports the x and y location of touches to a precision of five decimal places,
while the Nexus 4 uses only whole numbers. It is not clear to what digit the Tab
3’s values are significant. Both devices report a large number of discrete touch
sizes. The Tab 3 reports size on a scale from 0 to 1, while typical finger sizes on
the Nexus 4 range from 9 to 11. We conclude that any implementation of our
proposed authentication scheme will need to be device specific.

3.2 Experiment Setup

We recruited 15 volunteer participants to type the phrase “mary had a little
lamb” on our tablet device and an additional 15 participants to type the phrase
“maryhadalittlelamb” on our smartphone device. The space character is omitted
for the second set of volunteers to determine if using the space character has a
detrimental impact on identification accuracy. For example, we hypothesize that
touches consecutive to space will consistently have a low time since last touch,
since space is easy to find and reach on the keyboard, and this may make the
time since last touch data point less useful in classification for those touches.

Participants typed the phrase a minimum of 20 times, though some partici-
pants chose to type the phrase up to 25 times. To ensure consistent acceleration
data, participants were asked to sit in a stationary chair while typing, holding
the device in landscape mode with their non-dominant hand and typing with
their dominant hand. The particular grip participants used and the manner in
which they typed were not specified, but participants could not use the hand
holding the device to type or rest the device against any stationary surface. Par-
ticipants were allowed to choose their stance and adjust it as they typed, for
example they could lean forward or back in the chair.
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3.3 Typographical Correction

We employed some typological correction similar to Draffin’s approach [5]. Typo-
graphical mistakes were treated as follows: (1) if more than three typographical
errors were present, the trace was discarded, (2) if a character was typed incor-
rectly, e.g. “msry had a little lamb,” the incorrect letter was treated as correct
(treating “s” as an “a” in the example), (3) if a character was missing, e.g. “mry
had a little lamb,” the previous character would be duplicated, e.g. “mmry had
a little lamb,” and the typo ignored as in (2) and (4) if an extra character was
typed, e.g. “masry had a little lamb,” the extra character was simply removed.
We hypothesize that some users make the same typographical mistakes con-
sistently, and keeping these mistakes may actually help to identify them. For
example, if the user attempts to press “a” and consistently hits “s,” we expect
the x-coordinate of the mistaken touch on the “s” key, after we correct it to an
“a,” to be more leftwards than for other users. We plan to analyze feasibility of
identifying these mistakes in real time and the impact of keeping these mistakes
in our future work. On average, users made approximately 10 typos in all of
their 20 traces combined, though many of these typos are concentrated on spe-
cific users. Due to typo correction, some participants ended up with fewer than
20 traces, with a minimum of 15.

3.4 Classification and Analysis

We processed our data using computationally efficient classifiers- K nearest
neighbors (KNN), binary decision tree, and naive Bayes. As smartphones have
reached a high level of computational power, our hope is that these classifiers
could run on the device itself in the future. In this paper we present only the
binary decision tree results, as they were the most favorable for our experiments.
We measure the success of our classification with (1) Accuracy: the percentage
of authentication attempts from a user correctly matched to that user, (2) False
Acceptance Rate (FAR): the percentage of authentication attempts matched to
a user that do not belong to that user, and (3) False Rejection Rate (FRR):
the percentage of authentication attempts from a user matched incorrectly to
other users or rejected outright. We will define the meaning of an authentication
attempt for each of our approaches later on.

3.5 Character Independent Classification

For this experiment, touches are grouped together and classified without con-
sidering the character being touched. We split touches evenly into testing and
training sets at random, with approximately 200 touches per user in each set.
All character information is stripped, that is an “a” is treated the same as a “b”
or any other character. Training sets from all users are combined and fed to the
classifier. Note that for participants typing on the Tab 3, this also means that
the “space” character is treated the same as any other character, even though
the space bar is significantly larger than other buttons and thus has a wider
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Fig. 2. Touches vs Accuracy and FAR/FRR for character independent data.

range of position values. We hypothesize including space will reduce accuracy in
the Tab 3’s results.

An authentication attempt is begun by taking n touches for each user from
the testing set at random and applying the classifier to each touch individually.
The identity of the user is determined by taking the plurality of the n chosen
touches. For example, n is equal to five touches and user a’s trace contains two
touches identified as user a, one as user b, one as user c, and one as user d.
The authentication attempt is marked as successful for user a, even though the
majority of the touches were attributed to other users, because the plurality of
touches were identified as user a’s. An authentication attempt using n touches
is taken from users b, c, and d in the same manner. A tie does not authenticate
any user and is automatically considered a false reject. To ensure consistency, we
take 2000 samples from each user for each value of n, and the overall accuracy,
FAR, and FRR are calculated by averaging the results for all users. Figure 2
demonstrates our results from n = 5 to n = 15.

Figure 2 shows we can achieve an acceptance rate of 93 % after 15 touches
with an FAR of 7 % and an FRR of .5% for the Tab 3 and an acceptance rate
of 96 % with an FAR of 4 % and an FRR of .25 % for the Nexus 4. Thus a user
can be authenticated after typing a short text message, using a training set that
can easily be built in as little as two or three text messages. Our hypothesis that
the space character will worsen results has held for this data set, though other
factors such as screen size may also influence the different in metrics.

We theorize this approach could be used to dynamically monitor all typing
on the device. Assuming a generous allowance of three incorrect authentication
attempts before device lockout, a legitimate user will have a near zero chance of
lockout (7%3 = .0343%, 4%3 = .0064%), while an attacker will face a substan-
tial chance of lockout after only 45 touches. Because all characters are treated
identically, classification data from other users utilizing the authentication appli-
cation can easily be anonymously collected and distributed, allowing each user
of the application to be compared against other anonymous users, potentially
against different users for each authentication attempt. This further reduces the
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chance of a legitimate user being mismatched with another user with similar
typing behavior but serves no advantage to an attacker.

3.6 Character Dependent Classification

For this experiment, each character receives its own separate classification. We
classify the characters “a,” “space,” and “l” as these are the most common char-
acters in our typed phrase. We split touches evenly into testing and training sets
at random, with approximately 40 touches for “a” and “space” and 30 touches
for “l” in each set. An authentication attempt for this experiment is defined
the same way as in the previous experiment, with n touches taken at random
from each user and a plurality-wins model for each authentication attempt. Once
again we take 2000 samples from each user for each value of n.

Figures 3, 4, and 5 show our results for each character from n = 5 to n = 15.
We achieve an accuracy of 97 % after 15 touches of the letter “a,” with an FAR
of 2.6 % and an FRR of .2 % for the Tab 3 and an accuracy of 90 %, with an
FAR of 10 % and an FRR of .7 % for the Nexus 4. For the letter “l,” we achieve
an accuracy of 92 % after 15 touches with an FAR of 7 % and an FRR of .4 %
for the Tab 3 and an accuracy of 90 % with an FAR of 11 % and an FRR of
.6 % for the Nexus 4. We note that for both characters, the Nexus 4 results are
confounded by a single user who was consistently misidentified as one other user.
Excluding this user puts the accuracy of the Nexus 4 above that of the Tab 3.
Comparing against different users for each authentication attempt can reduce
the probability of two users with very similar touch behavior getting confused
with each other. Results for the “space” character on the Tab 3 are in line with
other characters, achieving an accuracy of 95 % after 15 touches, with an FAR
of 5 % and an FRR of .3 %.

This approach can be applied to frequent characters like vowels and space for
reliable authentication with reduced overhead. As with the previous approach,
the content and order of an individual’s typed text do not matter, so anonymous
classification data can easily be collected for different users. Comparing to differ-
ent anonymous users for each authentication attempt can reduce the chances of

Fig. 3. Touches vs Accuracy and FAR/FRR for the Character “a”
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Fig. 4. Touches vs Accuracy and FAR/FRR for the Character “l”

Fig. 5. Touches vs Accuracy and FAR/FRR for the Character “Space”

a consistent misidentification such as the one we encountered with the Nexus 4.
While the success metrics for this approach are similar to the previous approach,
applying classification only to popular characters can reduce the processing and
memory overhead of the scheme.

3.7 Order Dependent

In our final approach, we consider how a user’s typing behavior may change
between different characters. In other words, a user may type the character “a”
in a different way if “m” precedes it rather than “h,” and this logic can further
be extended to groups of 3, 4, or more characters. We believe this approach
can be used for additional security on static text such as passwords. We keep
the order of all touches and group them into pairs, threes, fours, and so forth,
where n is the size of the group. The number of available traces depends on
the size of n, for example there are 13 possible ordered letter pairs in our 22
character long phrase, and each user has approximately 20 traces, for a total
of 13 ∗ 20 = 260 traces per user. Although success metrics may be different for
certain letter combinations, e.g. for “ma” the results may be worse than for “ar,”
we combine the results and take their average for the purpose of condensing our
results. We randomly select 60 % of the traces for training and 40 % for testing.
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Fig. 6. Touches vs Accuracy and FAR/FRR for multiple consecutive touches

An authentication attempt is considered a set of n correctly ordered charac-
ters. We merge data from consecutive characters into a single row of data for
purposes of classification. The entire row, containing data for each character in
the sequence, is classified individually, so the authentication attempt is based on
a single decision in this approach. This would be the only practical approach for
a scheme designed to supplement password entry, since the user will generally
enter their password only once per session.

From Fig. 6, it is clear that the increase in acceptance rate is actually quite
minimal by using more consecutive touches. On a password of five of more char-
acters, an accuracy of approximately 65 % is possible. Collecting classification
data for an approach such as this one may be problematic, since other users will
need to type precisely the same text. This approach may be applied to the entry
of phone numbers rather than passwords, since phone numbers are also static.
The number would not need to identical as the authentication can be done in
three parts based on the area code, first set of digits, and final set of digits.
Collecting classification data for phone numbers would be easier as many users
will enter, at least, the same area code.

4 Discussion

There are two significant issues that our scheme faces before it could be applied
to commercial use.

First, a smartphone is not a stationary object, and users frequently use their
smartphone in different places and positions. In our experiment, we placed all
users in a similar stance. Though most participants shifted stances slightly dur-
ing the experiment, they still remained in largely the same positions. Different
stances, e.g. walking, sitting, or lying down, must be identified, each with their
own corresponding classification, because typing behavior will likely be different
for the same user between these stances. Additionally being present in a moving
object, for example a car, will affect acceleration results and potentially disrupt
classification. While the scheme may work for the user most of the time without
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regard to the user’s stance, intelligent stance and acceleration detection will be
required to use the proposed scheme in all situations.

Second, user behavior can change in accordance with mood, injury, time of
day, sleepiness, etc. We collect test and training data in the same session to
simplify our experiment. In our future work, we plan to take several samples of
from users at different times and on different days to verify that our scheme can
maintain accuracy despite day to day behavioral changes.

As gyroscopes have now become more prolific, we plan to include gyroscope
data in our future work. Various other sensors, such as those that detect touch
pressure, may also become more popular and ultimately justify further study.
We also plan to experiment with derived values, such as distance traveled (cal-
culated as vector between the start and end point of the touch), and force of
touch (calculated based on differences in acceleration during touch) to see if a
significant improvement in accuracy can be obtained.

We plan to investigate the performance of our scheme on user generated text
input rather than preassigned text. We believe that some degradation of perfor-
mance may occur because users frequently pause to think about the text they
are writing and thus alter the nature of timing data to measure thinking speed
as opposed to typing speed. The degradation in performance may be counter-
balanced by the differences in text. For the order-independent approaches in
our experiment, having users type different text increases the chance that their
typing behaviors are dissimilar, decreasing the chance that two users will be
confused with each other. We expect that challenges like typo detection will be
significantly more difficult to implement on user generated text.

We note that in the first two approaches, the time since last touch feature may
be considered as noise, since no information about the last touch is known, and
each touch is treated as independent. We attempted our experiments without
the time since last touch and found that the results worsened. We hypothesize
that the time since last touch is proportional to overall typing speed and helps
the classifier to identify users.

The data used in our experiments required about 1.6 MB and 375 kB for the
first and second approaches respectively. Simple fast zip compression can reduce
the file size to 475 kB and 90 kB respectively, so the scheme can have negligible
impact on network use and device storage.

Lastly we plan to develop a method for the automatic anonymizing and
transferring of classification data between users, for the purpose of building
unauthorized classification samples for each user frequently and on the fly.

5 Conclusion

In this paper, we proposed an implicit authentication scheme for mobile devices
that relies on touch behavior. We presented three approaches for classifying
touch behavior on a mobile device: character and order independent, character
dependent and order dependent, and character and order dependent.The first
two approaches yielded an accuracy of up to 97 % with only 15 touches, using
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statistical classifiers that are computationally cheap enough for implementation
directly on the mobile device. Our third approach can be used as additional
security for password entry, with an accuracy of approximately 65 % at five or
more consecutive characters.
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