Advertisement

Apocarotenoids: A New Carotenoid-Derived Pathway

  • Juan Camilo Moreno Beltran
  • Claudia StangeEmail author
Part of the Subcellular Biochemistry book series (SCBI, volume 79)

Abstract

Carotenoids are precursors of carotenoid derived molecules termed apocarotenoids, which include isoprenoids with important functions in plant-environment interactions such as the attraction of pollinators and the defense against pathogens and herbivores. Apocarotenoids also include volatile aromatic compounds that act as repellents, chemoattractants, growth simulators and inhibitors, as well as the phytohormones abscisic acid and strigolactones. In plants, apocarotenoids can be found in several types of plastids (etioplast, leucoplast and chromoplast) and among different plant tissues such as flowers and roots. The structural similarity of some flower and spice isoprenoid volatile organic compounds (β-ionone and safranal) to carotenoids has led to the recent discovery of carotenoid-specific cleavage oxygenases, including carotenoid cleavage dioxygenases and 9-cis-epoxydioxygenases, which tailor and transform carotenoids into apocarotenoids. The great diversity of apocarotenoids is a consequence of the huge amount of carotenoid precursors, the variations in specific cleavage sites and the modifications after cleavage. Lycopene, β-carotene and zeaxanthin are the precursors of the main apocarotenoids described to date, which include bixin, crocin, picrocrocin, abscisic acid, strigolactone and mycorradicin.

The current chapter will give rise to an overview of the biosynthesis and function of the most important apocarotenoids in plants, as well as the current knowledge about the carotenoid cleavage oxygenase enzymes involved in these biosynthetic pathways.

Keywords

Carotenoid cleavage dioxygenases 9-cis carotenoid cleavage dioxygenases Strigolactone Carlactone SL synthesis Branching 

Notes

Acknowledgement

We thank Dr. Andrew Wiszniewski for the proof-reading of this text and the Chilean Conicyt- Fondecyt 1130245 Founding.

References

  1. Aguilar-Martinez JA, Poza-Carrion C, Cubas P (2007) Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell 19:458–472PubMedPubMedCentralCrossRefGoogle Scholar
  2. Agusti J, Lichtenberger R, Schwarz M, Nehlin L, Greb T (2011) Characterization of transcriptome remodeling during cambium formation identifies MOL1 and RUL1 as opposing regulators of secondary growth. PLoS Genet 7:e1001312PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ahrazem O, Rubio-Moraga A, Argandoña-Picazo J, Castillo R, Gómez-Gómez L (2016) Intron retention and rhythmic diel pattern regulation of carotenoid cleavage dioxygenase 2 during crocetin biosynthesis in saffron. Plant Mol Biol 91:355–374. http://doi.org/10.1007/s11103-016-0473-8
  4. Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827PubMedCrossRefGoogle Scholar
  5. Akiyama K, Ogasawara S, Ito S, Hayashi H (2010) Structural requirements of strigolactones for hyphal branching in AM fungi. Plant Cell Physiol 51:1104–1117PubMedPubMedCentralCrossRefGoogle Scholar
  6. Al-Babili S, Bouwmeester HJ (2015) Strigolactones, a novel carotenoid-derived plant hormone. Annu Rev Plant Biol 66:161–186PubMedCrossRefGoogle Scholar
  7. Alder A, Holdermann I, Beyer P, Al-Babili S (2008) Carotenoid oxygenases involved in plant branching catalyse a highly specific conserved apocarotenoid cleavage reaction. Biochemical J 416:289–296CrossRefGoogle Scholar
  8. Alder A, Jamil M, Marzorati M, Bruno M, Vermathen M, Bigler P, Ghisla S, Bouwmeester H, Beyer P, Al-Babili S (2012) The path from beta-carotene to carlactone, a strigolactone-like plant hormone. Science 335:1348–1351PubMedCrossRefGoogle Scholar
  9. Arite T, Iwata H, Ohshima K, Maekawa M, Nakajima M, Kojima M, Sakakibara H, Kyozuka J (2007) DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J Cell Mol Biol 51:1019–1029CrossRefGoogle Scholar
  10. Arite T, Umehara M, Ishikawa S, Hanada A, Maekawa M, Yamaguchi S, Kyozuka J (2009) d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiology 50:1416–1424PubMedCrossRefGoogle Scholar
  11. Auldridge ME, McCarty DR, Klee HJ (2006a) Plant carotenoid cleavage oxygenases and their apocarotenoid products. Curr Opin Plant Biol 9:315–321PubMedCrossRefGoogle Scholar
  12. Auldridge ME, Block A, Vogel JT, Dabney-Smith C, Mila I, Bouzayen M, Magallanes-Lundback M, DellaPenna D, McCarty DR, Klee HJ (2006b) Characterization of three members of the Arabidopsis carotenoid cleavage dioxygenase family demonstrates the divergent roles of this multifunctional enzyme family. Plant J Cell Mol Biol 45:982–993CrossRefGoogle Scholar
  13. Azuma H, Toyota M, Asakawa Y, Takaso T, Tobe H (2002) Floral scent chemistry of mangrove plants. J Plant Res 115:0047–0053CrossRefGoogle Scholar
  14. Baldermann S, Kato M, Kurosawa M, Kurobayashi Y, Fujita A, Fleischmann P, Watanabe N (2010) Functional characterization of a carotenoid cleavage dioxygenase 1 and its relation to the carotenoid accumulation and volatile emission during the floral development of Osmanthus fragrans Lour. J Exp Bot 61:2967–2977PubMedCrossRefGoogle Scholar
  15. Bennett T, Leyser O (2014) Strigolactone signalling: standing on the shoulders of DWARFs. Curr Opin Plant Biol 22:7–13PubMedCrossRefGoogle Scholar
  16. Beveridge CA, Ross JJ, Murfet IC (1996) Branching in Pea (Action of Genes Rms3 and Rms4). Plant Physiol 110:859–865PubMedPubMedCentralGoogle Scholar
  17. Beveridge CA, Murfet IC, Kerhoas L, Sotta B, Miginiac E, Rameau C (1997) The shoot controls zeatin riboside export from pea roots. Evidence from the branching mutant rms4. Plant J 11:339–345CrossRefGoogle Scholar
  18. Bishopp A, Lehesranta S, Vaten A, Help H, El-Showk S, Scheres B, Helariutta K, Mahonen AP, Sakakibara H, Helariutta Y (2011) Phloem-transported cytokinin regulates polar auxin transport and maintains vascular pattern in the root meristem. Curr Biol CB 21:927–932PubMedCrossRefGoogle Scholar
  19. Booker J, Auldridge M, Wills S, McCarty D, Klee H, Leyser O (2004) MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Curr Biol CB 14:1232–1238PubMedCrossRefGoogle Scholar
  20. Bouvier F, Dogbo O, Camara B (2003) Biosynthesis of the food and cosmetic plant pigment bixin (annatto). Science 300:2089–2091PubMedCrossRefGoogle Scholar
  21. Bouvier F, Isner JC, Dogbo O, Camara B (2005) Oxidative tailoring of carotenoids: a prospect towards novel functions in plants. Trends Plant Sci 10:187–194PubMedCrossRefGoogle Scholar
  22. Bouwmeester HJ, Matusova R, Zhongkui S, Beale MH (2003) Secondary metabolite signalling in host-parasitic plant interactions. Curr Opin Plant Biol 6:358–364PubMedCrossRefGoogle Scholar
  23. Boyer FD, de Saint Germain A, Pillot JP, Pouvreau JB, Chen VX, Ramos S, Stevenin A, Simier P, Delavault P, Beau JM, Rameau C (2012) Structure-activity relationship studies of strigolactone-related molecules for branching inhibition in garden pea: molecule design for shoot branching. Plant Physiol 159:1524–1544PubMedPubMedCentralCrossRefGoogle Scholar
  24. Brandi F, Bar E, Mourgues F, Horvath G, Turcsi E, Giuliano G, Liverani A, Tartarini S, Lewinsohn E, Rosati C (2011) Study of ‘Redhaven’ peach and its white-fleshed mutant suggests a key role of CCD4 carotenoid dioxygenase in carotenoid and norisoprenoid volatile metabolism. BMC Plant Biol 11:24PubMedPubMedCentralCrossRefGoogle Scholar
  25. Brehelin C, Kessler F (2008) The plastoglobule: a bag full of lipid biochemistry tricks. Photochem Photobiol 84:1388–1394PubMedCrossRefGoogle Scholar
  26. Brewer PB, Koltai H, Beveridge CA (2013) Diverse roles of strigolactones in plant development. Mol Plant 6:18–28PubMedCrossRefGoogle Scholar
  27. Bruno M, Hofmann M, Vermathen M, Alder A, Beyer P, Al-Babili S (2014) On the substrate- and stereospecificity of the plant carotenoid cleavage dioxygenase 7. FEBS Lett 588:1802–1807PubMedCrossRefGoogle Scholar
  28. Burbidge A, Grieve TM, Jackson A, Thompson A, McCarty DR, Taylor IB (1999) Characterization of the ABA-deficient tomato mutant notabilis and its relationship with maize Vp14. Plant J Cell Mol Biol 17:427–431CrossRefGoogle Scholar
  29. Caballero-Ortega H, Pereda-Miranda R, Abdullaev FI (2007) HPLC quantification of major active components from 11 different saffron (Crocus sativus L.) sources. Food Chem 100:1126–1131CrossRefGoogle Scholar
  30. Campbell R, Ducreux LJ, Morris WL, Morris JA, Suttle JC, Ramsay G, Bryan GJ, Hedley PE, Taylor MA (2010) The metabolic and developmental roles of carotenoid cleavage dioxygenase4 from potato. Plant Physiol 154:656–664PubMedPubMedCentralCrossRefGoogle Scholar
  31. Challis RJ, Hepworth J, Mouchel C, Waites R, Leyser O (2013) A role for more axillary growth1 (MAX1) in evolutionary diversity in strigolactone signaling upstream of MAX2. Plant Physiol 161:1885–1902PubMedPubMedCentralCrossRefGoogle Scholar
  32. Cheng WH, Endo A, Zhou L, Penney J, Chen HC, Arroyo A, Leon P, Nambara E, Asami T, Seo M, Koshiba T, Sheen J (2002) A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14:2723–2743PubMedPubMedCentralCrossRefGoogle Scholar
  33. Chernys JT, Zeevaart JAD (2000) Characterization of the 9-Cis-epoxycarotenoid dioxygenase gene family and the regulation of abscisic acid biosynthesis in avocado. Plant Physiol 124:343–354PubMedPubMedCentralCrossRefGoogle Scholar
  34. Cohen M, Prandi C, Occhiato EG, Tabasso S, Wininger S, Resnick N, Steinberger Y, Koltai H, Kapulnik Y (2013) Structure-function relations of strigolactone analogs: activity as plant hormones and plant interactions. Mol Plant 6:141–152PubMedCrossRefGoogle Scholar
  35. Crawford S, Shinohara N, Sieberer T, Williamson L, George G, Hepworth J, Muller D, Domagalska MA, Leyser O (2010) Strigolactones enhance competition between shoot branches by dampening auxin transport. Development 137:2905–2913PubMedCrossRefGoogle Scholar
  36. Cutler AJ, Krochko JE (1999) Formation and breakdown of ABA. Trends Plant Sci 4:472–478PubMedCrossRefGoogle Scholar
  37. de Saint Germain A, Bonhomme S, Boyer FD, Rameau C (2013) Novel insights into strigolactone distribution and signalling. Curr Opin Plant Biol 16:583–589PubMedCrossRefGoogle Scholar
  38. De Smet I (2012) Lateral root initiation: one step at a time. New Phytol 193:867–873PubMedCrossRefGoogle Scholar
  39. Destefano-Beltran L, Knauber D, Huckle L, Suttle J (2006) Chemically forced dormancy termination mimics natural dormancy progression in potato tuber meristems by reducing ABA content and modifying expression of genes involved in regulating ABA synthesis and metabolism. J Exp Bot 57:2879–2886PubMedCrossRefGoogle Scholar
  40. Domagalska MA, Leyser O (2011) Signal integration in the control of shoot branching. Nat Rev Mol Cell Biol 12:211–221PubMedCrossRefGoogle Scholar
  41. Dong L, Ishak A, Yu J, Zhao R, Zhao L (2013) Identification and functional analysis of three MAX2 orthologs in chrysanthemum. J Integr Plant Biol 55:434–442PubMedCrossRefGoogle Scholar
  42. Drummond RS, Martinez-Sanchez NM, Janssen BJ, Templeton KR, Simons JL, Quinn BD, Karunairetnam S, Snowden KC (2009) Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE7 is involved in the production of negative and positive branching signals in petunia. Plant Physiol 151:1867–1877PubMedPubMedCentralCrossRefGoogle Scholar
  43. Dun EA, de Saint Germain A, Rameau C, Beveridge CA (2012) Antagonistic action of strigolactone and cytokinin in bud outgrowth control. Plant Physiol 158:487–498PubMedCrossRefGoogle Scholar
  44. Fester T, Hause B, Schmidt D, Halfmann K, Schmidt J, Wray V, Hause G, Strack D (2002) Occurrence and localization of apocarotenoids in arbuscular mycorrhizal plant roots. Plant Cell Physiol 43:256–265PubMedCrossRefGoogle Scholar
  45. Floss DS, Walter MH (2009) Role of carotenoid cleavage dioxygenase 1 (CCD1) in apocarotenoid biogenesis revisited. Plant Signal Behav 4:172–175PubMedPubMedCentralCrossRefGoogle Scholar
  46. Floss DS, Schliemann W, Schmidt J, Strack D, Walter MH (2008) RNA interference-mediated repression of MtCCD1 in mycorrhizal roots of Medicago truncatula causes accumulation of C27 apocarotenoids, shedding light on the functional role of CCD1. Plant Physiol 148:1267–1282PubMedPubMedCentralCrossRefGoogle Scholar
  47. Foo E, Davies N (2011) Strigolactones promote nodulation in pea. Planta 234:1073–1081PubMedCrossRefGoogle Scholar
  48. Foo E, Bullier E, Goussot M, Foucher F, Rameau C, Beveridge CA (2005) The branching gene RAMOSUS1 mediates interactions among two novel signals and auxin in pea. Plant Cell 17:464–474PubMedPubMedCentralCrossRefGoogle Scholar
  49. Foo E, Morris SE, Parmenter K, Young N, Wang H, Jones A, Rameau C, Turnbull CG, Beveridge CA (2007) Feedback regulation of xylem cytokinin content is conserved in pea and Arabidopsis. Plant Physiol 143:1418–1428PubMedPubMedCentralCrossRefGoogle Scholar
  50. Frusciante S, Diretto G, Bruno M, Ferrante P, Pietrella M, Prado-Cabrero A, Rubio-Moraga A, Beyer P, Gomez-Gomez L, Al-Babili S, Giuliano G (2014) Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis. Proc Natl Acad Sci U S A 111:12246–12251PubMedPubMedCentralCrossRefGoogle Scholar
  51. Garcia-Limones C, Schnabele K, Blanco-Portales R, Luz Bellido M, Caballero JL, Schwab W, Munoz-Blanco J (2008) Functional characterization of FaCCD1: a carotenoid cleavage dioxygenase from strawberry involved in lutein degradation during fruit ripening. J Agric Food Chem 56:9277–9285PubMedCrossRefGoogle Scholar
  52. Giuliano G, Al-Babili S, von Lintig J (2003) Carotenoid oxygenases: cleave it or leave it. Trends Plant Sci 8:145–149PubMedCrossRefGoogle Scholar
  53. Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pages V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC, Bouwmeester H, Becard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194PubMedCrossRefGoogle Scholar
  54. Gonzalez-Guzman M, Apostolova N, Belles JM, Barrero JM, Piqueras P, Ponce MR, Micol JL, Serrano R, Rodriguez PL (2002) The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde. Plant Cell 14:1833–1846PubMedPubMedCentralCrossRefGoogle Scholar
  55. Grilli-Caiola MG, Canini A (2004) Ultrastructure of chromoplasts and other plastids in Crocus sativus L. (Iridaceae). Plant Biosyst 138:9. doi:  10.1080/11263500410001684116
  56. Gutjahr C, Parniske M (2013) Cell and developmental biology of arbuscular mycorrhiza symbiosis. Annu Rev Cell Dev Biol 29:593–617PubMedCrossRefGoogle Scholar
  57. Ha CV, Leyva-Gonzalez MA, Osakabe Y, Tran UT, Nishiyama R, Watanabe Y, Tanaka M, Seki M, Yamaguchi S, Dong NV, Yamaguchi-Shinozaki K, Shinozaki K, Herrera-Estrella L, Tran LS (2014) Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proc Natl Acad Sci U S A 111:851–856PubMedCrossRefGoogle Scholar
  58. Hamiaux C, Drummond RS, Janssen BJ, Ledger SE, Cooney JM, Newcomb RD, Snowden KC (2012) DAD2 is an alpha/beta hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone. Curr Biol CB 22:2032–2036PubMedCrossRefGoogle Scholar
  59. Han SY, Kitahata N, Sekimata K, Saito T, Kobayashi M, Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K, Yoshida S, Asami T (2004) A novel inhibitor of 9-cis-epoxycarotenoid dioxygenase in abscisic acid biosynthesis in higher plants. Plant Physiol 135:1574–1582PubMedPubMedCentralCrossRefGoogle Scholar
  60. Huang FC, Molnar P, Schwab W (2009) Cloning and functional characterization of carotenoid cleavage dioxygenase 4 genes. J Exp Bot 60:3011–3022PubMedPubMedCentralCrossRefGoogle Scholar
  61. Ilg A, Beyer P, Al-Babili S (2009) Characterization of the rice carotenoid cleavage dioxygenase 1 reveals a novel route for geranial biosynthesis. FEBS J 276:736–747PubMedCrossRefGoogle Scholar
  62. Ilg A, Yu Q, Schaub P, Beyer P, Al-Babili S (2010) Overexpression of the rice carotenoid cleavage dioxygenase 1 gene in Golden Rice endosperm suggests apocarotenoids as substrates in planta. Planta 232:691–699PubMedCrossRefGoogle Scholar
  63. Ishikawa S, Maekawa M, Arite T, Onishi K, Takamure I, Kyozuka J (2005) Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiol 46:79–86PubMedCrossRefGoogle Scholar
  64. Isin EM, Guengerich FP (2007) Complex reactions catalyzed by cytochrome P450 enzymes. Biochim Biophys Acta 1770:314–329PubMedCrossRefGoogle Scholar
  65. Ito S, Kitahata N, Umehara M, Hanada A, Kato A, Ueno K, Mashiguchi K, Kyozuka J, Yoneyama K, Yamaguchi S, Asami T (2010) A new lead chemical for strigolactone biosynthesis inhibitors. Plant Cell Physiol 51:1143–1150PubMedPubMedCentralCrossRefGoogle Scholar
  66. Iuchi S, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2000) A stress-inducible gene for 9-cis-epoxycarotenoid dioxygenase involved in abscisic acid biosynthesis under water stress in drought-tolerant cowpea. Plant Physiol 123:553–562Google Scholar
  67. Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (2001) Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J 27:325–333PubMedCrossRefGoogle Scholar
  68. Jiang L, Liu X, Xiong G, Liu H, Chen F, Wang L, Meng X, Liu G, Yu H, Yuan Y, Yi W, Zhao L, Ma H, He Y, Wu Z, Melcher K, Qian Q, Xu HE, Wang Y, Li J (2013) DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature 504:401–405PubMedCrossRefGoogle Scholar
  69. Johnson X, Brcich T, Dun EA, Goussot M, Haurogne K, Beveridge CA, Rameau C (2006) Branching genes are conserved across species. Genes controlling a novel signal in pea are coregulated by other long-distance signals. Plant Physiol 142:1014–1026PubMedPubMedCentralCrossRefGoogle Scholar
  70. Kagiyama M, Hirano Y, Mori T, Kim SY, Kyozuka J, Seto Y, Yamaguchi S, Hakoshima T (2013) Structures of D14 and D14L in the strigolactone and karrikin signaling pathways. Genes Cells 18:147–160PubMedCrossRefGoogle Scholar
  71. Kang J, Hwang JU, Lee M, Kim YY, Assmann SM, Martinoia E, Lee Y (2010) PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc Natl Acad Sci U S A 107:2355–2360PubMedPubMedCentralCrossRefGoogle Scholar
  72. Kapulnik Y, Resnick N, Mayzlish-Gati E, Kaplan Y, Wininger S, Hershenhorn J, Koltai H (2011a) Strigolactones interact with ethylene and auxin in regulating root-hair elongation in Arabidopsis. J Exp Bot 62:2915–2924PubMedCrossRefGoogle Scholar
  73. Kapulnik Y, Delaux PM, Resnick N, Mayzlish-Gati E, Wininger S, Bhattacharya C, Sejalon-Delmas N, Combier JP, Becard G, Belausov E, Beeckman T, Dor E, Hershenhorn J, Koltai H (2011b) Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta 233:209–216PubMedCrossRefGoogle Scholar
  74. Kishimoto S, Maoka T, Sumitomo K, Ohmiya A (2005) Analysis of carotenoid composition in petals of calendula (Calendula officinalis L.). Biosci Biotechnol Biochem 69:2122–2128PubMedCrossRefGoogle Scholar
  75. Kisugi T, Xie X, Kim HI, Yoneyama K, Sado A, Akiyama K, Hayashi H, Uchida K, Yokota T, Nomura T, Yoneyama K (2013) Strigone, isolation and identification as a natural strigolactone from Houttuynia cordata. Phytochemistry 87:60–64PubMedCrossRefGoogle Scholar
  76. Klingner A, Hundeshagen B, Kernebeck H, Bothe H (1995) Localization of the yellow pigment formed in roots of gramineous plants colonized by arbuscular fungi. Protoplasma 185:50–57CrossRefGoogle Scholar
  77. Kloer DP, Schulz GE (2006) Structural and biological aspects of carotenoid cleavage. Cell Mol Life Sci CMLS 63:2291–2303PubMedCrossRefGoogle Scholar
  78. Kloer DP, Ruch S, Al-Babili S, Beyer P, Schulz GE (2005) The structure of a retinal-forming carotenoid oxygenase. Science 308:267–269PubMedCrossRefGoogle Scholar
  79. Kohlen W, Charnikhova T, Liu Q, Bours R, Domagalska MA, Beguerie S, Verstappen F, Leyser O, Bouwmeester H, Ruyter-Spira C (2011) Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis. Plant Physiol 155:974–987PubMedCrossRefGoogle Scholar
  80. Koltai H, LekKala SP, Bhattacharya C, Mayzlish-Gati E, Resnick N, Wininger S, Dor E, Yoneyama K, Yoneyama K, Hershenhorn J, Joel DM, Kapulnik Y (2010) A tomato strigolactone-impaired mutant displays aberrant shoot morphology and plant interactions. J Exp Bot 61:1739–1749PubMedPubMedCentralCrossRefGoogle Scholar
  81. Kretzschmar T, Kohlen W, Sasse J, Borghi L, Schlegel M, Bachelier JB, Reinhardt D, Bours R, Bouwmeester HJ, Martinoia E (2012) A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature 483:341–344PubMedCrossRefGoogle Scholar
  82. Kuromori T, Miyaji T, Yabuuchi H, Shimizu H, Sugimoto E, Kamiya A, Moriyama Y, Shinozaki K (2010) ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proc Natl Acad Sci U S A 107:2361–2366PubMedPubMedCentralCrossRefGoogle Scholar
  83. Li J, Mo X, Wang J, Chen N, Fan H, Dai C, Wu P (2009) BREVIS RADIX is involved in cytokinin-mediated inhibition of lateral root initiation in Arabidopsis. Planta 229:593–603PubMedCrossRefGoogle Scholar
  84. Liang YS, Jeon YA, Lim SH, Kim JK, Lee JY, Kim YM, Lee YH, Ha SH (2011) Vascular-specific activity of the Arabidopsis carotenoid cleavage dioxygenase 7 gene promoter. Plant Cell Rep 30:973–980PubMedCrossRefGoogle Scholar
  85. Lin H, Wang R, Qian Q, Yan M, Meng X, Fu Z, Yan C, Jiang B, Su Z, Li J, Wang Y (2009) DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell 21:1512–1525PubMedPubMedCentralCrossRefGoogle Scholar
  86. Lopez-Raez JA, Kohlen W, Charnikhova T, Mulder P, Undas AK, Sergeant MJ, Verstappen F, Bugg TD, Thompson AJ, Ruyter-Spira C, Bouwmeester H (2010) Does abscisic acid affect strigolactone biosynthesis? New Phytol 187:343–354PubMedCrossRefGoogle Scholar
  87. Lu S, Li L (2008) Carotenoid metabolism: biosynthesis, regulation, and beyond. J Integr Plant Biol 50:778–785PubMedCrossRefGoogle Scholar
  88. Lundquist PK, Poliakov A, Bhuiyan NH, Zybailov B, Sun Q, van Wijk KJ (2012) The functional network of the Arabidopsis plastoglobule proteome based on quantitative proteomics and genome-wide coexpression analysis. Plant Physiol 158:1172–1192PubMedPubMedCentralCrossRefGoogle Scholar
  89. Maier W, Peipp H, Schmidt J, Wray V, Strack D (1995) Levels of a terpenoid glycoside (blumenin) and cell wall-bound phenolics in some cereal mycorrhizas. Plant Physiol 109:465–470PubMedPubMedCentralCrossRefGoogle Scholar
  90. Marin E, Nussaume L, Quesada A, Gonneau M, Sotta B, Hugueney P, Frey A, Marion-Poll A (1996) Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana. EMBO J 15:2331–2342PubMedPubMedCentralGoogle Scholar
  91. Mashiguchi K, Sasaki E, Shimada Y, Nagae M, Ueno K, Nakano T, Yoneyama K, Suzuki Y, Asami T (2009) Feedback-regulation of strigolactone biosynthetic genes and strigolactone-regulated genes in Arabidopsis. Biosci Biotechnol Biochem 73:2460–2465PubMedCrossRefGoogle Scholar
  92. Mathieu S, Terrier N, Procureur J, Bigey F, Gunata Z (2005) A carotenoid cleavage dioxygenase from Vitis vinifera L.: functional characterization and expression during grape berry development in relation to C13-norisoprenoid accumulation. J Exp Bot 56:2721–2731PubMedCrossRefGoogle Scholar
  93. Matusova R, Rani K, Verstappen FW, Franssen MC, Beale MH, Bouwmeester HJ (2005) The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol 139:920–934PubMedPubMedCentralCrossRefGoogle Scholar
  94. Mayzlish-Gati E, De-Cuyper C, Goormachtig S, Beeckman T, Vuylsteke M, Brewer PB, Beveridge CA, Yermiyahu U, Kaplan Y, Enzer Y, Wininger S, Resnick N, Cohen M, Kapulnik Y, Koltai H (2012) Strigolactones are involved in root response to low phosphate conditions in Arabidopsis. Plant Physiol 160:1329–1341PubMedPubMedCentralCrossRefGoogle Scholar
  95. McQuate GT, Peck SL (2001) Enhancement of attraction of alpha-ionol to male Bactrocera latifrons (Diptera: Tephritidae) by addition of a synergist, cade oil. J Econ Entomol 94:39–46PubMedCrossRefGoogle Scholar
  96. Mendes-Pinto MM (2009) Carotenoid breakdown products the—norisoprenoids—in wine aroma. Arch Biochem Biophys 483:236–245PubMedCrossRefGoogle Scholar
  97. Messing SA, Gabelli SB, Echeverria I, Vogel JT, Guan JC, Tan BC, Klee HJ, McCarty DR, Amzel LM (2010) Structural insights into maize viviparous14, a key enzyme in the biosynthesis of the phytohormone abscisic acid. Plant Cell 22:2970–2980PubMedPubMedCentralCrossRefGoogle Scholar
  98. Nakamura H, Xue YL, Miyakawa T, Hou F, Qin HM, Fukui K, Shi X, Ito E, Ito S, Park SH, Miyauchi Y, Asano A, Totsuka N, Ueda T, Tanokura M, Asami T (2013) Molecular mechanism of strigolactone perception by DWARF14. Nat Commun 4:2613PubMedGoogle Scholar
  99. Napoli C (1996) Highly branched phenotype of the Petunia dad1-1 mutant is reversed by grafting. Plant Physiol 111:27–37PubMedPubMedCentralGoogle Scholar
  100. Nelson DC, Scaffidi A, Dun EA, Waters MT, Flematti GR, Dixon KW, Beveridge CA, Ghisalberti EL, Smith SM (2011) F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana. Proc Natl Acad Sci U S A 108:8897–8902PubMedPubMedCentralCrossRefGoogle Scholar
  101. Ohmiya A (2009) Carotenoid cleavage dioxygenases and their apocarotenoid products in plants. Plant Biotechnol 26:351–358CrossRefGoogle Scholar
  102. Ohmiya A, Kishimoto S, Aida R, Yoshioka S, Sumitomo K (2006) Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in chrysanthemum petals. Plant Physiol 142:1193–1201PubMedPubMedCentralCrossRefGoogle Scholar
  103. Pan Z, Zeng Y, An J, Ye J, Xu Q, Deng X (2012) An integrative analysis of transcriptome and proteome provides new insights into carotenoid biosynthesis and regulation in sweet orange fruits. J Proteome 75:2670–2684CrossRefGoogle Scholar
  104. Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775PubMedCrossRefGoogle Scholar
  105. Petrasek J, Friml J (2009) Auxin transport routes in plant development. Development 136:2675–2688PubMedCrossRefGoogle Scholar
  106. Proust H, Hoffmann B, Xie X, Yoneyama K, Schaefer DG, Yoneyama K, Nogue F, Rameau C (2011) Strigolactones regulate protonema branching and act as a quorum sensing-like signal in the moss Physcomitrella patens. Development 138:1531–1539PubMedCrossRefGoogle Scholar
  107. Qin X, Zeevaart JA (1999) The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean. Proc Natl Acad Sci U S A 96:15354–15361PubMedPubMedCentralCrossRefGoogle Scholar
  108. Qin X, Zeevaart JAD (2002) Overexpression of a 9-cis-Epoxycarotenoid Dioxygenase Gene in Nicotiana plumbaginifolia Increases Abscisic Acid and Phaseic Acid Levels and Enhances Drought Tolerance. Plant Physiol 128:544–551PubMedPubMedCentralCrossRefGoogle Scholar
  109. Qin J, Yeum KJ, Johnson EJ, Krinsky NI, Russell RM, Tang G (2008) Determination of 9-cis beta-carotene and zeta-carotene in biological samples. J Nutr Biochem 19:612–618PubMedCrossRefGoogle Scholar
  110. Rasmussen A, Beveridge CA, Geelen D (2012a) Inhibition of strigolactones promotes adventitious root formation. Plant Signal Behav 7:694–697PubMedPubMedCentralCrossRefGoogle Scholar
  111. Rasmussen A, Mason MG, De Cuyper C, Brewer PB, Herold S, Agusti J, Geelen D, Greb T, Goormachtig S, Beeckman T, Beveridge CA (2012b) Strigolactones suppress adventitious rooting in Arabidopsis and pea. Plant Physiol 158:1976–1987PubMedPubMedCentralCrossRefGoogle Scholar
  112. Rasmussen A, Depuydt S, Goormachtig S, Geelen D (2013) Strigolactones fine-tune the root system. Planta 238:615–626PubMedCrossRefGoogle Scholar
  113. Raupp FM, Spring O (2013) New sesquiterpene lactones from sunflower root exudate as germination stimulants for Orobanche cumana. J Agric Food Chem 61:10481–10487PubMedCrossRefGoogle Scholar
  114. Recorbet G, Abdallah C, Renaut J, Wipf D, Dumas-Gaudot E (2013) Protein actors sustaining arbuscular mycorrhizal symbiosis: underground artists break the silence. New Phytol 199:26–40PubMedCrossRefGoogle Scholar
  115. Rodrigo MJ, Alquezar B, Zacarias L (2006) Cloning and characterization of two 9-cis-epoxycarotenoid dioxygenase genes, differentially regulated during fruit maturation and under stress conditions, from orange (Citrus sinensis L. Osbeck). J Exp Bot 57:633–643PubMedCrossRefGoogle Scholar
  116. Rook F, Corke F, Card R, Munz G, Smith C, Bevan MW (2001) Impaired sucrose-induction mutants reveal the modulation of sugar-induced starch biosynthetic gene expression by abscisic acid signalling. Plant J Cell Mol Biol 26:421–433CrossRefGoogle Scholar
  117. Rosati C, Diretto G, Giuliano G (2009) Biosynthesis and Engineering of Carotenoids and Apocarotenoids in Plants: State of the Art and Future Prospects. Biotechnol Genet Eng Rev 26:139–162CrossRefGoogle Scholar
  118. Rubio A, Rambla JL, Santaella M, Gomez MD, Orzaez D, Granell A, Gomez-Gomez L (2008) Cytosolic and plastoglobule-targeted carotenoid dioxygenases from Crocus sativus are both involved in beta-ionone release. J Biol Chem 283:24816–24825PubMedPubMedCentralCrossRefGoogle Scholar
  119. Ruiz-Sola MA, Rodriguez-Concepcion M (2012) Carotenoid biosynthesis in Arabidopsis: a colorful pathway. Arabidopsis Book/Am Soc Plant Biol 10:e0158Google Scholar
  120. Ruyter-Spira C, Kohlen W, Charnikhova T, van Zeijl A, van Bezouwen L, de Ruijter N, Cardoso C, Lopez-Raez JA, Matusova R, Bours R, Verstappen F, Bouwmeester H (2011) Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones? Plant Physiol 155:721–734PubMedCrossRefGoogle Scholar
  121. Ruyter-Spira C, Al-Babili S, van der Krol S, Bouwmeester H (2013) The biology of strigolactones. Trends Plant Sci 18:72–83PubMedCrossRefGoogle Scholar
  122. Sato D, Awad AA, Takeuchi Y, Yoneyama K (2005) Confirmation and quantification of strigolactones, germination stimulants for root parasitic plants Striga and Orobanche, produced by cotton. Biosci Biotechnol Biochem 69:98–102PubMedCrossRefGoogle Scholar
  123. Scaffidi A, Waters MT, Ghisalberti EL, Dixon KW, Flematti GR, Smith SM (2013) Carlactone-independent seedling morphogenesis in Arabidopsis. Plant J Cell Mol Biol 76:1–9Google Scholar
  124. Schwartz SH, Tan BC, Gage DA, Zeevaart JA, McCarty DR (1997) Specific oxidative cleavage of carotenoids by VP14 of maize. Science 276:1872–1874PubMedCrossRefGoogle Scholar
  125. Schwartz SH, Qin X, Zeevaart JA (2001) Characterization of a novel carotenoid cleavage dioxygenase from plants. J Biol Chem 276:25208–25211PubMedCrossRefGoogle Scholar
  126. Schwartz SH, Tan BC, McCarty DR, Welch W, Zeevaart JA (2003) Substrate specificity and kinetics for VP14, a carotenoid cleavage dioxygenase in the ABA biosynthetic pathway. Biochim Biophys Acta 1619:9–14PubMedCrossRefGoogle Scholar
  127. Schwartz SH, Qin X, Loewen MC (2004) The biochemical characterization of two carotenoid cleavage enzymes from Arabidopsis indicates that a carotenoid-derived compound inhibits lateral branching. J Biol Chem 279:46940–46945PubMedCrossRefGoogle Scholar
  128. Seto Y, Yamaguchi S (2014) Strigolactone biosynthesis and perception. Curr Opin Plant Biol 21:1–6PubMedCrossRefGoogle Scholar
  129. Seto Y, Kameoka H, Yamaguchi S, Kyozuka J (2012) Recent advances in strigolactone research: chemical and biological aspects. Plant Cell Physiol 53:1843–1853PubMedCrossRefGoogle Scholar
  130. Seto Y, Sado A, Asami K, Hanada A, Umehara M, Akiyama K, Yamaguchi S (2014) Carlactone is an endogenous biosynthetic precursor for strigolactones. Proc Natl Acad Sci U S A 111:1640–1645PubMedPubMedCentralCrossRefGoogle Scholar
  131. Sharda JN, Koide RT (2008) Can hypodermal passage cell distribution limit root penetration by mycorrhizal fungi? New Phytol 180:696–701PubMedCrossRefGoogle Scholar
  132. Shinohara N, Taylor C, Leyser O (2013) Strigolactone can promote or inhibit shoot branching by triggering rapid depletion of the auxin efflux protein PIN1 from the plasma membrane. PLoS Biol 11:e1001474PubMedPubMedCentralCrossRefGoogle Scholar
  133. Simkin AJ, Schwartz SH, Auldridge M, Taylor MG, Klee HJ (2004a) The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavor volatiles beta-ionone, pseudoionone, and geranylacetone. Plant J Cell Mol Biol 40:882–892CrossRefGoogle Scholar
  134. Simkin AJ, Underwood BA, Auldridge M, Loucas HM, Shibuya K, Schmelz E, Clark DG, Klee HJ (2004b) Circadian regulation of the PhCCD1 carotenoid cleavage dioxygenase controls emission of beta-ionone, a fragrance volatile of petunia flowers. Plant Physiol 136:3504–3514PubMedPubMedCentralCrossRefGoogle Scholar
  135. Simkin AJ, Moreau H, Kuntz M, Pagny G, Lin C, Tanksley S, McCarthy J (2008) An investigation of carotenoid biosynthesis in Coffea canephora and Coffea arabica. J Plant Physiol 165:1087–1106PubMedCrossRefGoogle Scholar
  136. Simons JL, Napoli CA, Janssen BJ, Plummer KM, Snowden KC (2007) Analysis of the DECREASED APICAL DOMINANCE genes of petunia in the control of axillary branching. Plant Physiol 143:697–706PubMedPubMedCentralCrossRefGoogle Scholar
  137. Sorefan K, Booker J, Haurogne K, Goussot M, Bainbridge K, Foo E, Chatfield S, Ward S, Beveridge C, Rameau C, Leyser O (2003) MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. Genes Dev 17:1469–1474PubMedPubMedCentralCrossRefGoogle Scholar
  138. Stirnberg P, van De Sande K, Leyser HM (2002) MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development 129:1131–1141PubMedGoogle Scholar
  139. Stirnberg P, Furner IJ, Ottoline Leyser HM (2007) MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching. Plant J Cell Mol Biol 50:80–94CrossRefGoogle Scholar
  140. Stirnberg P, Zhao S, Williamson L, Ward S, Leyser O (2012) FHY3 promotes shoot branching and stress tolerance in Arabidopsis in an AXR1-dependent manner. Plant J Cell Mol Biol 71:907–920CrossRefGoogle Scholar
  141. Sui X, Kiser PD, Lintig J, Palczewski K (2013) Structural basis of carotenoid cleavage: from bacteria to mammals. Arch Biochem Biophys 539:203–213PubMedCrossRefGoogle Scholar
  142. Tai CY, Chen BH (2000) Analysis and stability of carotenoids in the flowers of daylily (Hemerocallis disticha) as affected by various treatments. J Agric Food Chem 48:5962–5968PubMedCrossRefGoogle Scholar
  143. Tan BC, Schwartz SH, Zeevaart JA, McCarty DR (1997) Genetic control of abscisic acid biosynthesis in maize. Proc Natl Acad Sci U S A 94:12235–12240PubMedPubMedCentralCrossRefGoogle Scholar
  144. Tan BC, Joseph LM, Deng WT, Liu L, Li QB, Cline K, McCarty DR (2003) Molecular characterization of the Arabidopsis 9-cis epoxycarotenoid dioxygenase gene family. Plant J Cell Mol Biol 35:44–56CrossRefGoogle Scholar
  145. Taylor I, Sonneveld T, Bugg TH, Thompson A (2005) Regulation and Manipulation of the Biosynthesis of Abscisic Acid, Including the Supply of Xanthophyll Precursors. J Plant Growth Regul 24:253–273Google Scholar
  146. Thompson AJ, Jackson AC, Parker RA, Morpeth DR, Burbidge A, Taylor IB (2000) Abscisic acid biosynthesis in tomato: regulation of zeaxanthin epoxidase and 9-cis-epoxycarotenoid dioxygenase mRNAs by light/dark cycles, water stress and abscisic acid. Plant Mol Biol 42:833–845PubMedCrossRefGoogle Scholar
  147. Toh S, Imamura A, Watanabe A, Nakabayashi K, Okamoto M, Jikumaru Y, Hanada A, Aso Y, Ishiyama K, Tamura N, Iuchi S, Kobayashi M, Yamaguchi S, Kamiya Y, Nambara E, Kawakami N (2008) High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds. Plant Physiol 146:1368–1385PubMedPubMedCentralCrossRefGoogle Scholar
  148. Toh S, Kamiya Y, Kawakami N, Nambara E, McCourt P, Tsuchiya Y (2012) Thermoinhibition uncovers a role for strigolactones in Arabidopsis seed germination. Plant Cell Physiol 53:107–117PubMedCrossRefGoogle Scholar
  149. Tung SA, Smeeton R, White CA, Black CR, Taylor IB, Hilton HW, Thompson AJ (2008) Over-expression of LeNCED1 in tomato (Solanum lycopersicum L.) with the rbcS3C promoter allows recovery of lines that accumulate very high levels of abscisic acid and exhibit severe phenotypes. Plant Cell Environ 31:968–981PubMedCrossRefGoogle Scholar
  150. Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow TY, Hsing YI, Kitano H, Yamaguchi I, Matsuoka M (2005) GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437:693–698PubMedCrossRefGoogle Scholar
  151. Ueno K, Nomura S, Muranaka S, Mizutani M, Takikawa H, Sugimoto Y (2011) Ent-2′-epi-Orobanchol and its acetate, as germination stimulants for Striga gesnerioides seeds isolated from cowpea and red clover. J Agric Food Chem 59:10485–10490PubMedCrossRefGoogle Scholar
  152. Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200PubMedCrossRefGoogle Scholar
  153. Vidi PA, Kanwischer M, Baginsky S, Austin JR, Csucs G, Dormann P, Kessler F, Brehelin C (2006) Tocopherol cyclase (VTE1) localization and vitamin E accumulation in chloroplast plastoglobule lipoprotein particles. J Biol Chem 281:11225–11234PubMedCrossRefGoogle Scholar
  154. Vierstra RD (2012) The expanding universe of ubiquitin and ubiquitin-like modifiers. Plant Physiol 160:2–14PubMedPubMedCentralCrossRefGoogle Scholar
  155. Vogel JT, Tan BC, McCarty DR, Klee HJ (2008) The carotenoid cleavage dioxygenase 1 enzyme has broad substrate specificity, cleaving multiple carotenoids at two different bond positions. J Biol Chem 283:11364–11373PubMedCrossRefGoogle Scholar
  156. Vogel JT, Walter MH, Giavalisco P, Lytovchenko A, Kohlen W, Charnikhova T, Simkin AJ, Goulet C, Strack D, Bouwmeester HJ, Fernie AR, Klee HJ (2010) SlCCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza-induced apocarotenoid formation in tomato. Plant J Cell Mol Biol 61:300–311CrossRefGoogle Scholar
  157. Waldie T, McCulloch H, Leyser O (2014) Strigolactones and the control of plant development: lessons from shoot branching. Plant J Cell Mol Biol 79:607–622CrossRefGoogle Scholar
  158. Walter MH, Strack D (2011) Carotenoids and their cleavage products: biosynthesis and functions. Nat Prod Rep 28:663–692PubMedCrossRefGoogle Scholar
  159. Walter MH, Floss DS, Hans J, Fester T, Strack D (2007) Apocarotenoid biosynthesis in arbuscular mycorrhizal roots: contributions from methylerythritol phosphate pathway isogenes and tools for its manipulation. Phytochemistry 68:130–138PubMedCrossRefGoogle Scholar
  160. Walter MH, Floss DS, Strack D (2010) Apocarotenoids: hormones, mycorrhizal metabolites and aroma volatiles. Planta 232:1–17PubMedCrossRefGoogle Scholar
  161. Walter MH, Stauder R, Tissier A (2015) Evolution of root-specific carotenoid precursor pathways for apocarotenoid signal biogenesis. Plant Sci Int J Exp Plant Biol 233:1–10Google Scholar
  162. Wang Y, Sun S, Zhu W, Jia K, Yang H, Wang X (2013) Strigolactone/MAX2-induced degradation of brassinosteroid transcriptional effector BES1 regulates shoot branching. Dev Cell 27:681–688PubMedCrossRefGoogle Scholar
  163. Waters MT, Brewer PB, Bussell JD, Smith SM, Beveridge CA (2012) The Arabidopsis ortholog of rice DWARF27 acts upstream of MAX1 in the control of plant development by strigolactones. Plant Physiol 159:1073–1085PubMedPubMedCentralCrossRefGoogle Scholar
  164. Woo HR, Chung KM, Park JH, Oh SA, Ahn T, Hong SH, Jang SK, Nam HG (2001) ORE9, an F-box protein that regulates leaf senescence in Arabidopsis. Plant Cell 13:1779–1790PubMedPubMedCentralCrossRefGoogle Scholar
  165. Yamamizo C, Kishimoto S, Ohmiya A (2010) Carotenoid composition and carotenogenic gene expression during Ipomoea petal development. J Exp Bot 61:709–719PubMedCrossRefGoogle Scholar
  166. Yoneyama K, Xie X, Sekimoto H, Takeuchi Y, Ogasawara S, Akiyama K, Hayashi H, Yoneyama K (2008) Strigolactones, host recognition signals for root parasitic plants and arbuscular mycorrhizal fungi, from Fabaceae plants. New Phytol 179:484–494PubMedCrossRefGoogle Scholar
  167. Yoneyama K, Awad AA, Xie X, Yoneyama K, Takeuchi Y (2010) Strigolactones as germination stimulants for root parasitic plants. Plant Cell Physiol 51:1095–1103PubMedPubMedCentralCrossRefGoogle Scholar
  168. Yoneyama K, Xie X, Kisugi T, Nomura T, Yoneyama K (2013) Nitrogen and phosphorus fertilization negatively affects strigolactone production and exudation in sorghum. Planta 238:885–894PubMedCrossRefGoogle Scholar
  169. Ytterberg AJ, Peltier JB, van Wijk KJ (2006) Protein profiling of plastoglobules in chloroplasts and chromoplasts. A surprising site for differential accumulation of metabolic enzymes. Plant Physiol 140:984–997PubMedPubMedCentralCrossRefGoogle Scholar
  170. Zhang M, Yuan B, Leng P (2009) Cloning of 9-cis-epoxycarotenoid dioxygenase (NCED) gene and the role of ABA on fruit ripening. Plant Signal Behav 4:460–463PubMedPubMedCentralCrossRefGoogle Scholar
  171. Zhang Y, van Dijk AD, Scaffidi A, Flematti GR, Hofmann M, Charnikhova T, Verstappen F, Hepworth J, van der Krol S, Leyser O, Smith SM, Zwanenburg B, Al-Babili S, Ruyter-Spira C, Bouwmeester HJ (2014) Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis. Nat Chem Biol 10:1028–1033PubMedCrossRefGoogle Scholar
  172. Zhou F, Lin Q, Zhu L, Ren Y, Zhou K, Shabek N, Wu F, Mao H, Dong W, Gan L, Ma W, Gao H, Chen J, Yang C, Wang D, Tan J, Zhang X, Guo X, Wang J, Jiang L, Liu X, Chen W, Chu J, Yan C, Ueno K, Ito S, Asami T, Cheng Z, Wang J, Lei C, Zhai H, Wu C, Wang H, Zheng N, Wan J (2013) D14-SCF(D3)-dependent degradation of D53 regulates strigolactone signalling. Nature 504:406–410PubMedPubMedCentralCrossRefGoogle Scholar
  173. Zwanenburg B, Mwakaboko AS, Reizelman A, Anilkumar G, Sethumadhavan D (2009) Structure and function of natural and synthetic signalling molecules in parasitic weed germination. Pest Manag Sci 65:478–491PubMedCrossRefGoogle Scholar
  174. Zwanenburg B, Nayak SK, Charnikhova TV, Bouwmeester HJ (2013) New strigolactone mimics: structure-activity relationship and mode of action as germinating stimulants for parasitic weeds. Bioorg Med Chem Lett 23:5182–5186PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Max Planck institute for Molecular Plant PhysiologyPotsdamGermany
  2. 2.Centro de Biología Molecular Vegetal, Departamento de Biología, Facultad de CienciasUniversidad de ChileSantiagoChile

Personalised recommendations