Skip to main content
Log in

BREVIS RADIX is involved in cytokinin-mediated inhibition of lateral root initiation in Arabidopsis

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

In contrast to auxin, relatively little is known about the molecular mechanism of cytokinin (CTK) inhibition of lateral root initiation. Previous studies demonstrated that BREVIS RADIX (BRX), a protein of unknown biochemical function, maintains a rate-limiting brassinosteroid biosynthesis enzyme expression to keep brassinosteroid biosynthesis above a critical threshold. Here, we show that the brx-2 mutant is insensitive to exogenous CTK-induced inhibition of lateral root initiation and that this can be restored by embryonic brassinosteroid treatment. However post-embryonic brassinosteroid treatment can not rescue brx-2 mutant phenotype in the presence of CTK. Meanwhile the brassinosteroid receptor defective mutant bri1-6 shows normal CTK-mediated inhibition on LR growth. These results suggest the CTK-mediated inhibition of LR initiation is not directly dependent on brassinosteroid level. Furthermore, compared with wild type, brx-2 exhibits altered auxin response in presumptive founder cells, lateral root primodia and primary root tip in the presence of exogenous CTK. We concluded that CTK inhibition on lateral root initiation depend on specific auxin response loss in presumptive founder cell. The aberrant primary root growth caused by the embryonic brassinosteroid shortage can indirectly result in the lateral root phenotype of brx-2 in presence of CTK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BA:

6-Benzylaminopurine

BL:

Brassinolide

BRX:

BREVIS RADIX

CPD :

CONSTITUTIVE PHOTOMORPHOGENESIS AND DWARF

CTK:

Cytokinin

DAG:

Days after germination

IAA:

Indole-3-acetic acid

LR:

Lateral root

LRI:

Lateral root initiation

LRP:

Lateral root primordium

NAA:

α-Naphthaleneacetic acid

QRT-PCR:

Quantitative real-time PCR

References

  • Akiyoshi DE, Morris RO, Hinz R, Mischke BS, Kosuge T, Garfinkel DJ, Gordon MP, Nester EW (1983) Cytokinin/auxin balance in crown gall tumors is regulated by specific loci in the T-DNA. Proc Natl Acad Sci USA 80:407–411

    Article  PubMed  CAS  Google Scholar 

  • Bao F, Shen J, Brady SR, Muday GK, Asami T, Yang Z (2004) Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis. Plant Physiol 134:1624–1631

    Article  PubMed  CAS  Google Scholar 

  • Barlier I, Kowalczyk M, Marchant A, Ljung K, Bhalerao R, Bennett M, Sandberg G, Bellini C (2000) The SUR2 gene of Arabidopsis thaliana encodes the cytochrome P450 CYP83B1, a modulator of auxin homeostasis. Proc Natl Acad Sci USA 97:14819–14824

    Article  PubMed  CAS  Google Scholar 

  • Baskin TI, Cork A, Williamson RE, Gorst JR (1995) STUNTED PLANT 1, a gene required for expansion in rapidly elongating but not in dividing cells and mediating root growth responses to applied cytokinin. Plant Physiol 107:233–243

    PubMed  CAS  Google Scholar 

  • Beemster GT, Baskin TI (2000) STUNTED PLANT 1 mediates effects of cytokinin, but not of auxin, on cell division and expansion in the root of Arabidopsis. Plant Physiol 124:1718–1727

    Article  PubMed  CAS  Google Scholar 

  • Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jurgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602

    Article  PubMed  CAS  Google Scholar 

  • Bhalerao RP, Eklof J, Ljung K, Marchant A, Bennett M, Sandberg G (2002) Shoot-derived auxin is essential for early lateral root emergence in Arabidopsis seedlings. Plant J 29:325–332

    Article  PubMed  CAS  Google Scholar 

  • Blakely LM, Blakely RM, Colowit PM, Elliott DS (1988) Experimental studies on lateral root formation in radish seedling roots: II. Analysis of the dose-response to exogenous auxin. Plant Physiol 87:414–419

    Article  PubMed  CAS  Google Scholar 

  • Boerjan W, Cervera MT, Delarue M, Beeckman T, Dewitte W, Bellini C, Caboche M, Van Onckelen H, Van Montagu M, Inzé D (1995) Superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell 7:1405–1419

    Article  PubMed  CAS  Google Scholar 

  • Boyes DC, Zayed AM, Ascenzi R, McCaskill AJ, Hoffman NE, Davis KR, Gorlach J (2001) Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. Plant Cell 13:1499–1510

    Article  PubMed  CAS  Google Scholar 

  • Briggs GC, Mouchel CF, Hardtke CS (2006) Characterization of the plant-specific BREVIS RADIX gene family reveals limited genetic redundancy despite high sequence conservation. Plant Physiol 140:1306–1316

    Article  PubMed  CAS  Google Scholar 

  • Casimiro I, Marchant A, Bhalerao RP, Beeckman T, Dhooge S, Swarup R, Graham N, Inze D, Sandberg G, Casero PJ, Bennett M (2001) Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell 13:843–852

    Article  PubMed  CAS  Google Scholar 

  • Celenza JL Jr, Grisafi PL, Fink GR (1995) A pathway for lateral root formation in Arabidopsis thaliana. Genes & Development 9:2131–2142

    Article  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • De Smet I, Vanneste S, Inze D, Beeckman T (2006) Lateral root initiation or the birth of a new meristem. Plant Mol Biol 60:871–887

    Article  PubMed  CAS  Google Scholar 

  • Deikman J, Ulrich M (1995) A novel cytokinin-resistant mutant of Arabidopsis with abbreviated shoot development. Planta 195:440–449

    Article  PubMed  CAS  Google Scholar 

  • Doerner P, Jorgensen JE, You R, Steppuhn J, Lamb C (1996) Control of root growth and development by cyclin expression. Nature 380:520–523

    Article  PubMed  CAS  Google Scholar 

  • Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jurgens G (2003) Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426:147–153

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Rizzo S, Crespi M, Frugier F (2006) The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti. Plant Cell 18:2680–2693

    Article  PubMed  CAS  Google Scholar 

  • Gray WM, Ostin A, Sandberg G, Romano CP, Estelle M (1998) High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Proc Natl Acad Sci USA 95:7197–7202

    Article  PubMed  CAS  Google Scholar 

  • Hardtke CS, Dorcey E, Osmont KS, Sibout R (2007) Phytohormone collaboration: zooming in on auxin–brassinosteroid interactions. Trends Cell Biol 17:485–492

    Article  PubMed  CAS  Google Scholar 

  • Higuchi M, Pischke MS, Mahonen AP, Miyawaki K, Hashimoto Y, Seki M, Kobayashi M, Shinozaki K, Kato T, Tabata S, Helariutta Y, Sussman MR, Kakimoto T (2004) In planta functions of the Arabidopsis cytokinin receptor family. Proc Natl Acad Sci USA 101:8821–8826

    Article  PubMed  CAS  Google Scholar 

  • Himanen SL, Virkkala J, Huhtala H, Hasan J (2002) Spindle frequencies in sleep EEG show U-shape within first four NREM sleep episodes. J Sleep Res 11:35–42

    Article  PubMed  Google Scholar 

  • Hirose N, Takei K, Kuroha T, Kamada-Nobusada T, Hayashi H, Sakakibara H (2008) Regulation of cytokinin biosynthesis, compartmentalization and translocation. J Exp Bot 59:75–83

    Article  PubMed  CAS  Google Scholar 

  • Hutchison CE, Kieber JJ (2002) Cytokinin signaling in Arabidopsis. Plant Cell 14(suppl):S47–S59

    PubMed  CAS  Google Scholar 

  • Inoue T, Higuchi M, Hashimoto Y, Seki M, Kobayashi M, Kato T, Tabata S, Shinozaki K, Kakimoto T (2001) Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature 409:1060–1063

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. Embo J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Kurakawa T, Ueda N, Maekawa M, Kobayashi K, Kojima M, Nagato Y, Sakakibara H, Kyozuka J (2007) Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 445:652–655

    Article  PubMed  CAS  Google Scholar 

  • Laplaze L, Benkova E, Casimiro I, Maes L, Vanneste S, Swarup R, Weijers D, Calvo V, Parizot B, Herrera-Rodriguez MB, Offringa R, Graham N, Doumas P, Friml J, Bogusz D, Beeckman T, Bennett M (2007) Cytokinins act directly on lateral root founder cells to inhibit root initiation. Plant Cell 19:3889–3900

    Article  PubMed  CAS  Google Scholar 

  • Laskowski MJ, Williams ME, Nusbaum HC, Sussex IM (1995) Formation of lateral root meristems is a two-stage process. Development (Cambridge, UK) 121:3303–3310

    CAS  Google Scholar 

  • Laxmi A, Paul LK, Raychaudhuri A, Peters JL, Khurana JP (2006) Arabidopsis cytokinin-resistant mutant, cnr1, displays altered auxin responses and sugar sensitivity. Plant Mol Biol 62:409–425

    Article  PubMed  CAS  Google Scholar 

  • Li X, Mo X, Shou H, Wu P (2006) Cytokinin-mediated cell cycling arrest of pericycle founder cells in lateral root initiation of Arabidopsis. Plant Cell Physiol 47:1112–1123

    Article  PubMed  CAS  Google Scholar 

  • Lincoln C, Britton JH, Estelle M (1990) Growth and development of the axr1 mutants of Arabidopsis. Plant Cell 2:1071–1080

    Article  PubMed  CAS  Google Scholar 

  • Ljung K, Bhalerao RP, Sandberg G (2001) Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant J 28:465–474

    Article  PubMed  CAS  Google Scholar 

  • Lohar DP, Schaff JE, Laskey JG, Kieber JJ, Bilyeu KD, Bird DM (2004) Cytokinins play opposite roles in lateral root formation, and nematode and rhizobial symbioses. Plant J 38:203–214

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Bucio J, Millan-Godinez M, Mendez-Bravo A, Morquecho-Contreras A, Ramirez-Chavez E, Molina-Torres J, Perez-Torres A, Higuchi M, Kakimoto T, Herrera-Estrella L (2007) Cytokinin receptors are involved in alkamide regulation of root and shoot development in Arabidopsis. Plant Physiol 145:1703–1713

    Article  PubMed  CAS  Google Scholar 

  • Marchant A, Bhalerao R, Casimiro I, Eklof J, Casero PJ, Bennett M, Sandberg G (2002) AUX1 promotes lateral root formation by facilitating indole-3-acetic acid distribution between sink and source tissues in the Arabidopsis seedling. Plant Cell 14:589–597

    Article  PubMed  CAS  Google Scholar 

  • Mason MG, Mathews DE, Argyros DA, Maxwell BB, Kieber JJ, Alonso JM, Ecker JR, Schaller GE (2005) Multiple type-B response regulators mediate cytokinin signal transduction in Arabidopsis. Plant Cell 17:3007–3018

    Article  PubMed  CAS  Google Scholar 

  • Miyawaki K, Matsumoto-Kitano M, Kakimoto T (2004) Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate. Plant J 37:128–138

    Article  PubMed  CAS  Google Scholar 

  • Mok DW, Mok MC (2001) Cytokinin metabolism and action. Annu Rev Plant Physiol Plant Mol Biol 52:89–118

    Article  PubMed  CAS  Google Scholar 

  • Mouchel CF, Briggs GC, Hardtke CS (2004) Natural genetic variation in Arabidopsis identifies BREVIS RADIX, a novel regulator of cell proliferation and elongation in the root. Genes Dev 18:700–714

    Article  PubMed  CAS  Google Scholar 

  • Mouchel CF, Osmont KS, Hardtke CS (2006) BRX mediates feedback between brassinosteroid levels and auxin signalling in root growth. Nature 443:458–461

    Article  PubMed  CAS  Google Scholar 

  • Nagpal P, Walker LM, Young JC, Sonawala A, Timpte C, Estelle M, Reed JW (2000) AXR2 encodes a member of the Aux/IAA protein family. Plant Physiol 123:563–574

    Article  PubMed  CAS  Google Scholar 

  • Nemhauser JL, Mockler TC, Chory J (2004) Interdependency of brassinosteroid and auxin signaling in Arabidopsis. PLoS Biology 2:E258

    Article  PubMed  CAS  Google Scholar 

  • Nishimura C, Ohashi Y, Sato S, Kato T, Tabata S, Ueguchi C (2004) Histidine kinase homologs that act as cytokinin receptors possess overlapping functions in the regulation of shoot and root growth in Arabidopsis. Plant Cell 16:1365–1377

    Article  PubMed  CAS  Google Scholar 

  • Okushima Y, Fukaki H, Onoda M, Theologis A, Tasaka M (2007) ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. Plant Cell 19:118–130

    Article  PubMed  CAS  Google Scholar 

  • Riefler M, Novak O, Strnad M, Schmulling T (2006) Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell 18:40–54

    Article  PubMed  CAS  Google Scholar 

  • Sathiyamoorthy P, Nakamura S (1990) In vitro root induction by 24-epibrassinolide on hypocotyl segments of soybean [Glycine max (L.) Merr.]. Plant Growth Regul 9:73–76

    Article  CAS  Google Scholar 

  • Suzuki T, Miwa K, Ishikawa K, Yamada H, Aiba H, Mizuno T (2001) The Arabidopsis sensor His-kinase, AHk4, can respond to cytokinins. Plant Cell Physiol 42:107–113

    Article  PubMed  CAS  Google Scholar 

  • Swarup R, Friml J, Marchant A, Ljung K, Sandberg G, Palme K, Bennett M (2001) Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Genes & Development 15:2648–2653

    Article  CAS  Google Scholar 

  • Sweere U, Eichenberg K, Lohrmann J, Mira-Rodado V, Baurle I, Kudla J, Nagy F, Schafer E, Harter K (2001) Interaction of the response regulator ARR4 with phytochrome B in modulating red light signaling. Science (New York, NY) 294:1108–1111

    CAS  Google Scholar 

  • Szekeres M, Nemeth K, Koncz-Kalman Z, Mathur J, Kauschmann A, Altmann T, Redei GP, Nagy F, Schell J, Koncz C (1996) Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85:171–182

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Asami T, Yoshida S, Nakamura Y, Matsuo T, Okamoto S (2005) Brassinosteroid homeostasis in Arabidopsis is ensured by feedback expressions of multiple genes involved in its metabolism. Plant Physiol 138:1117–1125

    Article  PubMed  CAS  Google Scholar 

  • Teale WD, Paponov IA, Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 7:847–859

    Article  PubMed  CAS  Google Scholar 

  • Timpte C, Wilson AK, Estelle M (1994) The axr2-1 mutation of Arabidopsis thaliana is a gain-of-function mutation that disrupts an early step in auxin response. Genetics 138:1239–1249

    PubMed  CAS  Google Scholar 

  • To JP, Haberer G, Ferreira FJ, Deruere J, Mason MG, Schaller GE, Alonso JM, Ecker JR, Kieber JJ (2004) Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. Plant Cell 16:658–671

    Article  PubMed  CAS  Google Scholar 

  • Ueguchi C, Sato S, Kato T, Tabata S (2001) The AHK4 gene involved in the cytokinin-signaling pathway as a direct receptor molecule in Arabidopsis thaliana. Plant Cell Physiol 42:751–755

    Article  PubMed  CAS  Google Scholar 

  • Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9:1963–1971

    Article  PubMed  CAS  Google Scholar 

  • Vanneste S, De Rybel B, Beemster GT, Ljung K, De Smet I, Van Isterdael G, Naudts M, Iida R, Gruissem W, Tasaka M, Inze D, Fukaki H, Beeckman T (2005) Cell cycle progression in the pericycle is not sufficient for SOLITARY ROOT/IAA14-mediated lateral root initiation in Arabidopsis thaliana. Plant Cell 17:3035–3050

    Article  PubMed  CAS  Google Scholar 

  • Vogler H, Caderas D, Mandel T, Kuhlemeier C (2003) Domains of expansin gene expression define growth regions in the shoot apex of tomato. Plant Mol Biol 53:267–272

    Article  PubMed  CAS  Google Scholar 

  • Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmulling T (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15:2532–2550

    Article  PubMed  CAS  Google Scholar 

  • Werner T, Motyka V, Strnad M, Schmulling T (2001) Regulation of plant growth by cytokinin. Proc Natl Acad Sci USA 98:10487–10492

    Article  PubMed  CAS  Google Scholar 

  • Woeste KE, Ye C, Kieber JJ (1999) Two Arabidopsis mutants that overproduce ethylene are affected in the posttranscriptional regulation of 1-aminocyclopropane-1-carboxylic acid synthase. Plant Physiol 119:521–530

    Article  PubMed  CAS  Google Scholar 

  • Yamada H, Suzuki T, Terada K, Takei K, Ishikawa K, Miwa K, Yamashino T, Mizuno T (2001) The Arabidopsis AHK4 histidine kinase is a cytokinin-binding receptor that transduces cytokinin signals across the membrane. Plant Cell Physiol 42:1017–1023

    Article  PubMed  CAS  Google Scholar 

  • Yi HC, Joo S, Nam KH, Lee JS, Kang BG, Kim WT (1999) Auxin and brassinosteroid differentially regulate the expression of three members of the 1-aminocyclopropane-1-carboxylate synthase gene family in mung bean (Vigna radiata L.). Plant Mol Biol 41:443–454

    Article  PubMed  CAS  Google Scholar 

  • Yokota T, Nomura T, Kitasaka Y, Takatsuto S, Reid JB (1997) Biosynthetic lesions in brassinosteroid-deficient pea mutants. In: Proceeding of 24th annual meeting of the plant growth regulation Society of America, p 24

Download references

Acknowledgments

We thank Professor Malcolm Bennett’s group of Nottingham University for their kindly providing the DR5::GUS and IAA2::GUS maker lines; Peter Doerner of University of Edinburgh for the CYCB1;1::GUS line; Jason W. Reed (University of North Carolina, Chapel Hill, NC, USA) for the axr2-1 seeds. The seeds of bri1-6 and sur1 are supplied by ABRC (Arabidopsis Biological Resource Center, Ohio State University, Columbus, OH, USA). This work was supported by the National Natural Science Foundation in China (30600046). We are grateful to Professor Hanma Zhang (University of Leeds, UK) for generously providing the brx-2 mutant seeds and Professor Peter Hedden (Rothamsted Research, UK) for reviewing this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaorong Mo.

Electronic Supplemental material

Supplement Table. 1 The sequence information and the chromosomal positions of markers inmapping of brx-2. (537 KB)

425_2008_854_MOESM2_ESM.jpeg

Supplement Fig. 1 The brx-2 mutant show sensitive to CTK-induced responses anthocyanin accumulation (a) and chlorophyll retention assay (b). To determine the effect of CTK onanthocyanin accumulation, seeds were plated on MS medium supplemented with 5 μM BA. After 10days of growth, the seedlings were weighed and anthocyanin was extracted and estimated. Anthocyanin was extracted from seedlings by overnight extraction in 3 ml of 1% (v/v) acidic methanol. Phase partitioning was done next day by adding 3 ml chloroform and 2 ml reverse-osmosiswater. Absorbance in the aqueous phase was recorded spectrophotometrically at 530nm. For chlorophyll retention assay, fully expanded leaves were excised from 24-day-old plants (initial) and floated on water supplemented with 0.1% DMSO carrier control or BA for 7 d in the dark.Chlorophyll was extracted and quantified spectrophotometrically from freshly cut leaves and senesced leaves as in the seedling chlorophyll analysis. Absorbance of aqueous phase was recordedspectrophotometrically at 652nm. (183 KB)

425_2008_854_MOESM3_ESM.jpeg

Supplement Fig. 2 RT-PCR analysis for transcription of the genes for CTK biosynthesis and signalling pathway. 20 DAG seedlings of the WT and brx-2 mutant grown on control medium and then transferred to control or 10 μM BA medium for 24 hours. (938 KB)

425_2008_854_MOESM4_ESM.jpeg

Supplement Fig. 3 The brx-2 mutant is sensitive to auxin. Comparison of the number of visible LRs between WT and brx-2 seedlings on 0.1 μM IAA and 0.1 μM NAA medium (n=30). (48.5 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Mo, X., Wang, J. et al. BREVIS RADIX is involved in cytokinin-mediated inhibition of lateral root initiation in Arabidopsis . Planta 229, 593–603 (2009). https://doi.org/10.1007/s00425-008-0854-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-008-0854-6

Keywords

Navigation