Advertisement

Sensing and Remembering Cellular States Through Chromatin

  • Shanxi Jiang
  • Thomas M. VondriskaEmail author
Chapter

Abstract

Chromatin is the means by which the same genome encodes multiple cells: it enables orderly development, normal physiology and, when it goes haywire, malfunctioning chromatin is a hallmark of disease. In the cardiovascular system, the epigenomic features controlling gene expression have recently become the focus of intense research. This chapter examines the principles of chromatin structure, details their regulation and identifies areas of rapid development in our understanding of how the genome is packaged. Also explored are the recent observations indicating that deranged epigenomic features on a genome-wide scale may underpin various cardiovascular diseases.

Keywords

Heart Vasculature Epigenetics Epigenomics Genomics Proteomics Transcription 

Notes

Acknowledgements

We thank Dr. Manuel Rosa Garrido for help with the figure and all members of the Vondriska laboratory for helpful discussions. Research in the Vondriska laboratory is supported by the National Heart, Lung and Blood Institute of the NIH, the American Heart Association, Thermo Fisher Scientific and the Department of Anesthesiology in the David Geffen School of Medicine at UCLA.

References

  1. 1.
    Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33(Suppl):245–54.PubMedCrossRefGoogle Scholar
  2. 2.
    Kouzarides T. Chromatin modifications and their function. Cell. 2007;128:693–705.PubMedCrossRefGoogle Scholar
  3. 3.
    Soon WW, Hariharan M, Snyder MP. High-throughput sequencing for biology and medicine. Mol Syst Biol. 2013;9:640.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Franklin S, Zhang MJ, Chen H, Paulsson AK, Mitchell-Jordan SA, Li Y, Ping P, Vondriska TM. Specialized compartments of cardiac nuclei exhibit distinct proteomic anatomy. Mol Cell Proteomics MCP. 2011;10:M110.000703.PubMedCrossRefGoogle Scholar
  5. 5.
    Franklin S, Chen H, Mitchell-Jordan S, Ren S, Wang Y, Vondriska TM. Quantitative analysis of the chromatin proteome in disease reveals remodeling principles and identifies high mobility group protein b2 as a regulator of hypertrophic growth. Mol Cell Proteomics MCP. 2012;11:M111.014258.PubMedCrossRefGoogle Scholar
  6. 6.
    Black BE, Cleveland DW. Epigenetic centromere propagation and the nature of cenp-a nucleosomes. Cell. 2011;144:471–9.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Logsdon GA, Barrey EJ, Bassett EA, DeNizio JE, Guo LY, Panchenko T, Dawicki-McKenna JM, Heun P, Black BE. Both tails and the centromere targeting domain of cenp-a are required for centromere establishment. J Cell Biol. 2015;208:521–31.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Lacoste N, Woolfe A, Tachiwana H, Garea AV, Barth T, Cantaloube S, Kurumizaka H, Imhof A, Almouzni G. Mislocalization of the centromeric histone variant cenh3/cenp-a in human cells depends on the chaperone daxx. Mol Cell. 2014;53:631–44.PubMedCrossRefGoogle Scholar
  9. 9.
    Elsaesser SJ, Goldberg AD, Allis CD. New functions for an old variant: no substitute for histone h3.3. Curr Opin Genet Dev. 2010;20:110–7.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Ha M, Kraushaar DC, Zhao K. Genome-wide analysis of h3.3 dissociation reveals high nucleosome turnover at distal regulatory regions of embryonic stem cells. Epigenetics Chromatin. 2014;7:38.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Weth O, Paprotka C, Gunther K, Schulte A, Baierl M, Leers J, Galjart N, Renkawitz R. Ctcf induces histone variant incorporation, erases the h3k27me3 histone mark and opens chromatin. Nucleic Acids Res. 2014;42:11941–51.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Chen P, Wang Y, Li G. Dynamics of histone variant h3.3 and its coregulation with h2a.Z at enhancers and promoters. Nucleus. 2014;5:21–7.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Wen D, Banaszynski LA, Liu Y, Geng F, Noh KM, Xiang J, Elemento O, Rosenwaks Z, Allis CD, Rafii S. Histone variant h3.3 is an essential maternal factor for oocyte reprogramming. Proc Natl Acad Sci U S A. 2014;111:7325–30.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Jang CW, Shibata Y, Starmer J, Yee D, Magnuson T. Histone h3.3 maintains genome integrity during mammalian development. Genes Dev. 2015;29:1377–92.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Pehrson JR, Fuji RN. Evolutionary conservation of histone macroh2a subtypes and domains. Nucleic Acids Res. 1998;26:2837–42.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Lavigne MD, Vatsellas G, Polyzos A, Mantouvalou E, Sianidis G, Maraziotis I, Agelopoulos M, Thanos D. Composite macroh2a/nrf-1 nucleosomes suppress noise and generate robustness in gene expression. Cell Rep. 2015;11:1090–101.PubMedCrossRefGoogle Scholar
  17. 17.
    Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. DNA double-stranded breaks induce histone h2ax phosphorylation on serine 139. J Biol Chem. 1998;273:5858–68.PubMedCrossRefGoogle Scholar
  18. 18.
    Turinetto V, Giachino C. Multiple facets of histone variant h2ax: a DNA double-strand-break marker with several biological functions. Nucleic Acids Res. 2015;43:2489–98.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Wu T, Liu Y, Wen D, Tseng Z, Tahmasian M, Zhong M, Rafii S, Stadtfeld M, Hochedlinger K, Xiao A. Histone variant h2a.X deposition pattern serves as a functional epigenetic mark for distinguishing the developmental potentials of ipscs. Cell Stem Cell. 2014;15:281–94.PubMedCrossRefGoogle Scholar
  20. 20.
    Chadwick BP, Willard HF. A novel chromatin protein, distantly related to histone h2a, is largely excluded from the inactive x chromosome. J Cell Biol. 2001;152:375–84.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Arimura Y, Kimura H, Oda T, Sato K, Osakabe A, Tachiwana H, Sato Y, Kinugasa Y, Ikura T, Sugiyama M, Sato M, Kurumizaka H. Structural basis of a nucleosome containing histone h2a.B/h2a.Bbd that transiently associates with reorganized chromatin. Sci Rep. 2013;3:3510.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Chen Y, Chen Q, McEachin RC, Cavalcoli JD, Yu X. H2a.B facilitates transcription elongation at methylated cpg loci. Genome Res. 2014;24:570–9.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Gu M, Naiyachit Y, Wood TJ, Millar CB. H2a.Z marks antisense promoters and has positive effects on antisense transcript levels in budding yeast. BMC Genomics. 2015;16:99.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Jeronimo C, Watanabe S, Kaplan CD, Peterson CL, Robert F. The histone chaperones fact and spt6 restrict h2a.Z from intragenic locations. Mol Cell. 2015;58:1113–23.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Weber CM, Ramachandran S, Henikoff S. Nucleosomes are context-specific, h2a.Z-modulated barriers to rna polymerase. Mol Cell. 2014;53:819–30.PubMedCrossRefGoogle Scholar
  26. 26.
    Wang J, Qiao M, He Q, Shi R, Loh SJ, Stanton LW, Wu M. Pluripotency activity of nanog requires biochemical stabilization by variant histone protein h2a.Z. Stem Cells. 2015;33:2126–34.PubMedCrossRefGoogle Scholar
  27. 27.
    Huh YH, Noh M, Burden FR, Chen JC, Winkler DA, Sherley JL. Sparse feature selection identifies h2a.Z as a novel, pattern-specific biomarker for asymmetrically self-renewing distributed stem cells. Stem Cell Res. 2015;14:144–54.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Chen IY, Lypowy J, Pain J, Sayed D, Grinberg S, Alcendor RR, Sadoshima J, Abdellatif M. Histone h2a.Z is essential for cardiac myocyte hypertrophy but opposed by silent information regulator 2alpha. J Biol Chem. 2006;281:19369–77.PubMedCrossRefGoogle Scholar
  29. 29.
    Hartman PG, Chapman GE, Moss T, Bradbury EM. Studies on the role and mode of operation of the very-lysine-rich histone h1 in eukaryote chromatin. The three structural regions of the histone h1 molecule. Eur J Biochem/FEBS. 1977;77:45–51.CrossRefGoogle Scholar
  30. 30.
    Zhou BR, Jiang J, Feng H, Ghirlando R, Xiao TS, Bai Y. Structural mechanisms of nucleosome recognition by linker histones. Mol Cell. 2015;59:628–38.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Vogler C, Huber C, Waldmann T, Ettig R, Braun L, Izzo A, Daujat S, Chassignet I, Lopez-Contreras AJ, Fernandez-Capetillo O, Dundr M, Rippe K, Langst G, Schneider R. Histone h2a c-terminus regulates chromatin dynamics, remodeling, and histone h1 binding. PLoS Genet. 2010;6:e1001234.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Shukla MS, Syed SH, Goutte-Gattat D, Richard JL, Montel F, Hamiche A, Travers A, Faivre-Moskalenko C, Bednar J, Hayes JJ, Angelov D, Dimitrov S. The docking domain of histone h2a is required for h1 binding and rsc-mediated nucleosome remodeling. Nucleic Acids Res. 2011;39:2559–70.PubMedCrossRefGoogle Scholar
  33. 33.
    Szerlong HJ, Herman JA, Krause CM, DeLuca JG, Skoultchi A, Winger QA, Prenni JE, Hansen JC. Proteomic characterization of the nucleolar linker histone h1 interaction network. J Mol Biol. 2015;427:2056–71.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Talasz H, Helliger W, Puschendorf B, Lindner H. In vivo phosphorylation of histone h1 variants during the cell cycle. Biochemistry. 1996;35:1761–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Lopez R, Sarg B, Lindner H, Bartolome S, Ponte I, Suau P, Roque A. Linker histone partial phosphorylation: effects on secondary structure and chromatin condensation. Nucleic Acids Res. 2015;43:4463–76.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Chen Y, Hoover ME, Dang X, Shomo AA, Guan X, Marshall AG, Freitas MA, Young NL. Quantitative mass spectrometry reveals that intact histone h1 phosphorylations are variant specific and exhibit single molecule hierarchical dependence. Mol Cell Proteomics MCP. 2015;15:813–33.Google Scholar
  37. 37.
    Fan Y, Nikitina T, Morin-Kensicki EM, Zhao J, Magnuson TR, Woodcock CL, Skoultchi AI. H1 linker histones are essential for mouse development and affect nucleosome spacing in vivo. Mol Cell Biol. 2003;23:4559–72.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Zhang Y, Cooke M, Panjwani S, Cao K, Krauth B, Ho PY, Medrzycki M, Berhe DT, Pan C, McDevitt TC, Fan Y. Histone h1 depletion impairs embryonic stem cell differentiation. PLoS Genet. 2012;8:e1002691.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Vidali G, Boffa LC, Allfrey VG. Selective release of chromosomal proteins during limited dnaase 1 digestion of avian erythrocyte chromatin. Cell. 1977;12:409–15.PubMedCrossRefGoogle Scholar
  40. 40.
    Fussner E, Strauss M, Djuric U, Li R, Ahmed K, Hart M, Ellis J, Bazett-Jones DP. Open and closed domains in the mouse genome are configured as 10-nm chromatin fibres. EMBO Rep. 2012;13:992–6.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Maeshima K, Imai R, Tamura S, Nozaki T. Chromatin as dynamic 10-nm fibers. Chromosoma. 2014;123:225–37.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Song F, Chen P, Sun D, Wang M, Dong L, Liang D, Xu RM, Zhu P, Li G. Cryo-em study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units. Science. 2014;344:376–80.PubMedCrossRefGoogle Scholar
  43. 43.
    Collepardo-Guevara R, Schlick T. Chromatin fiber polymorphism triggered by variations of DNA linker lengths. Proc Natl Acad Sci U S A. 2014;111:8061–6.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Cremer T, Cremer C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet. 2001;2:292–301.PubMedCrossRefGoogle Scholar
  45. 45.
    Dekker J, Marti-Renom MA, Mirny LA. Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat Rev Genet. 2013;14:390–403.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature. 2012;485:376–80.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Ciabrelli F, Cavalli G. Chromatin-driven behavior of topologically associating domains. J Mol Biol. 2015;427:608–25.PubMedCrossRefGoogle Scholar
  48. 48.
    Pope BD, Ryba T, Dileep V, Yue F, Wu W, Denas O, Vera DL, Wang Y, Hansen RS, Canfield TK, Thurman RE, Cheng Y, Gulsoy G, Dennis JH, Snyder MP, Stamatoyannopoulos JA, Taylor J, Hardison RC, Kahveci T, Ren B, Gilbert DM. Topologically associating domains are stable units of replication-timing regulation. Nature. 2014;515:402–5.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Lupianez DG, Kraft K, Heinrich V, Krawitz P, Brancati F, Klopocki E, Horn D, Kayserili H, Opitz JM, Laxova R, Santos-Simarro F, Gilbert-Dussardier B, Wittler L, Borschiwer M, Haas SA, Osterwalder M, Franke M, Timmermann B, Hecht J, Spielmann M, Visel A, Mundlos S. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell. 2015;161:1012–25.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Travis GH, Colavito-Shepanski M, Grunstein M. Extensive purification and characterization of chromatin-bound histone acetyltransferase from saccharomyces cerevisiae. J Biol Chem. 1984;259:14406–12.PubMedGoogle Scholar
  51. 51.
    Allfrey VG. In chromatin and chromosome structure. New York: Academic; 1977.Google Scholar
  52. 52.
    Zhao Y, Garcia BA. Comprehensive catalog of currently documented histone modifications. Cold Spring Harb Perspect Biol. 2015;7:a025064.PubMedCrossRefGoogle Scholar
  53. 53.
    Rada-Iglesias A, Bajpai R, Swigut T, Brugmann SA, Flynn RA, Wysocka J. A unique chromatin signature uncovers early developmental enhancers in humans. Nature. 2011;470:279–83.PubMedCrossRefGoogle Scholar
  54. 54.
    Karlic R, Chung HR, Lasserre J, Vlahovicek K, Vingron M. Histone modification levels are predictive for gene expression. Proc Natl Acad Sci U S A. 2010;107:2926–31.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Gillette TG, Hill JA. Readers, writers, and erasers: chromatin as the whiteboard of heart disease. Circ Res. 2015;116:1245–53.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    McKinsey TA, Zhang CL, Olson EN. Control of muscle development by dueling hats and hdacs. Curr Opin Genet Dev. 2001;11:497–504.PubMedCrossRefGoogle Scholar
  57. 57.
    Awad S, Al-Haffar KM, Marashly Q, Quijada P, Kunhi M, Al-Yacoub N, Wade FS, Mohammed SF, Al-Dayel F, Sutherland G, Assiri A, Sussman M, Bers D, Al-Habeeb W, Poizat C. Control of histone h3 phosphorylation by camkiidelta in response to haemodynamic cardiac stress. J Pathol. 2015;235:606–18.PubMedCrossRefGoogle Scholar
  58. 58.
    Sharma A, Nguyen H, Geng C, Hinman MN, Luo G, Lou H. Calcium-mediated histone modifications regulate alternative splicing in cardiomyocytes. Proc Natl Acad Sci U S A. 2014;111:E4920–8.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Blakeslee WW, Wysoczynski CL, Fritz KS, Nyborg JK, Churchill ME, McKinsey TA. Class i hdac inhibition stimulates cardiac protein sumoylation through a post-translational mechanism. Cell Signal. 2014;26:2912–20.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Papait R, Cattaneo P, Kunderfranco P, Greco C, Carullo P, Guffanti A, Vigano V, Stirparo GG, Latronico MV, Hasenfuss G, Chen J, Condorelli G. Genome-wide analysis of histone marks identifying an epigenetic signature of promoters and enhancers underlying cardiac hypertrophy. Proc Natl Acad Sci U S A. 2013;110:20164–9.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Capra JA. Extrapolating histone marks across developmental stages, tissues, and species: an enhancer prediction case study. BMC Genomics. 2015;16:104.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Heinig M, Colome-Tatche M, Taudt A, Rintisch C, Schafer S, Pravenec M, Hubner N, Vingron M, Johannes F. Histonehmm: differential analysis of histone modifications with broad genomic footprints. BMC Bioinf. 2015;16:60.CrossRefGoogle Scholar
  63. 63.
    Rintisch C, Heinig M, Bauerfeind A, Schafer S, Mieth C, Patone G, Hummel O, Chen W, Cook S, Cuppen E, Colome-Tatche M, Johannes F, Jansen RC, Neil H, Werner M, Pravenec M, Vingron M, Hubner N. Natural variation of histone modification and its impact on gene expression in the rat genome. Genome Res. 2014;24:942–53.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Whitehouse I, Flaus A, Cairns BR, White MF, Workman JL, Owen-Hughes T. Nucleosome mobilization catalysed by the yeast swi/snf complex. Nature. 1999;400:784–7.PubMedCrossRefGoogle Scholar
  65. 65.
    Dechassa ML, Sabri A, Pondugula S, Kassabov SR, Chatterjee N, Kladde MP, Bartholomew B. Swi/snf has intrinsic nucleosome disassembly activity that is dependent on adjacent nucleosomes. Mol Cell. 2010;38:590–602.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Mizuguchi G, Shen X, Landry J, Wu WH, Sen S, Wu C. Atp-driven exchange of histone h2az variant catalyzed by swr1 chromatin remodeling complex. Science. 2004;303:343–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Payne S, Burney MJ, McCue K, Popal N, Davidson SM, Anderson RH, Scambler PJ. A critical role for the chromatin remodeller chd7 in anterior mesoderm during cardiovascular development. Dev Biol. 2015;405:82–95.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Hang CT, Yang J, Han P, Cheng HL, Shang C, Ashley E, Zhou B, Chang CP. Chromatin regulation by brg1 underlies heart muscle development and disease. Nature. 2010;466:62–7.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases dnmt3a and dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99:247–57.PubMedCrossRefGoogle Scholar
  70. 70.
    Deaton AM, Bird A. Cpg islands and the regulation of transcription. Genes Dev. 2011;25:1010–22.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Jones PA. Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13:484–92.PubMedCrossRefGoogle Scholar
  72. 72.
    Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by mll partner tet1. Science. 2009;324:930–5.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Lev Maor G, Yearim A, Ast G. The alternative role of DNA methylation in splicing regulation. Trends Genet TIG. 2015;31:274–80.PubMedCrossRefGoogle Scholar
  74. 74.
    Serra-Juhe C, Cusco I, Homs A, Flores R, Toran N, Perez-Jurado LA. DNA methylation abnormalities in congenital heart disease. Epigenetics. 2015;10:167–77.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Sheng W, Qian Y, Zhang P, Wu Y, Wang H, Ma X, Chen L, Ma D, Huang G. Association of promoter methylation statuses of congenital heart defect candidate genes with tetralogy of fallot. J Transl Med. 2014;12:31.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Haas J, Frese KS, Park YJ, Keller A, Vogel B, Lindroth AM, Weichenhan D, Franke J, Fischer S, Bauer A, Marquart S, Sedaghat-Hamedani F, Kayvanpour E, Kohler D, Wolf NM, Hassel S, Nietsch R, Wieland T, Ehlermann P, Schultz JH, Dosch A, Mereles D, Hardt S, Backs J, Hoheisel JD, Plass C, Katus HA, Meder B. Alterations in cardiac DNA methylation in human dilated cardiomyopathy. EMBO Mol Med. 2013;5:413–29.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Movassagh M, Choy MK, Goddard M, Bennett MR, Down TA, Foo RS. Differential DNA methylation correlates with differential expression of angiogenic factors in human heart failure. PLoS One. 2010;5:e8564.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Chamberlain AA, Lin M, Lister RL, Maslov AA, Wang Y, Suzuki M, Wu B, Greally JM, Zheng D, Zhou B. DNA methylation is developmentally regulated for genes essential for cardiogenesis. J Am Heart Assoc. 2014;3:e000976.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Hon GC, Rajagopal N, Shen Y, McCleary DF, Yue F, Dang MD, Ren B. Epigenetic memory at embryonic enhancers identified in DNA methylation maps from adult mouse tissues. Nat Genet. 2013;45:1198–206.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Gilsbach R, Preissl S, Gruning BA, Schnick T, Burger L, Benes V, Wurch A, Bonisch U, Gunther S, Backofen R, Fleischmann BK, Schubeler D, Hein L. Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease. Nat Commun. 2014;5:5288.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Paradis A, Xiao D, Zhou J, Zhang L. Endothelin-1 promotes cardiomyocyte terminal differentiation in the developing heart via heightened DNA methylation. Int J Med Sci. 2014;11:373–80.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Xiao D, Dasgupta C, Chen M, Zhang K, Buchholz J, Xu Z, Zhang L. Inhibition of DNA methylation reverses norepinephrine-induced cardiac hypertrophy in rats. Cardiovasc Res. 2014;101:373–82.PubMedCrossRefGoogle Scholar
  83. 83.
    Cech TR, Steitz JA. The noncoding rna revolution-trashing old rules to forge new ones. Cell. 2014;157:77–94.PubMedCrossRefGoogle Scholar
  84. 84.
    Su H, Trombly MI, Chen J, Wang X. Essential and overlapping functions for mammalian argonautes in microrna silencing. Genes Dev. 2009;23:304–17.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Li LC. Chromatin remodeling by the small rna machinery in mammalian cells. Epigenetics. 2014;9:45–52.PubMedCrossRefGoogle Scholar
  86. 86.
    Zhang B, Arun G, Mao YS, Lazar Z, Hung G, Bhattacharjee G, Xiao X, Booth CJ, Wu J, Zhang C, Spector DL. The lncrna malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult. Cell Rep. 2012;2:111–23.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, Wang Y, Brzoska P, Kong B, Li R, West RB, van de Vijver MJ, Sukumar S, Chang HY. Long non-coding rna hotair reprograms chromatin state to promote cancer metastasis. Nature. 2010;464:1071–6.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Moazed D. Small rnas in transcriptional gene silencing and genome defence. Nature. 2009;457:413–20.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Lam MT, Li W, Rosenfeld MG, Glass CK. Enhancer rnas and regulated transcriptional programs. Trends Biochem Sci. 2014;39:170–82.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Li L, Chang HY. Physiological roles of long noncoding rnas: insight from knockout mice. Trends Cell Biol. 2014;24:594–602.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Klattenhoff CA, Scheuermann JC, Surface LE, Bradley RK, Fields PA, Steinhauser ML, Ding H, Butty VL, Torrey L, Haas S, Abo R, Tabebordbar M, Lee RT, Burge CB, Boyer LA. Braveheart, a long noncoding rna required for cardiovascular lineage commitment. Cell. 2013;152:570–83.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Grote P, Wittler L, Hendrix D, Koch F, Wahrisch S, Beisaw A, Macura K, Blass G, Kellis M, Werber M, Herrmann BG. The tissue-specific lncrna fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell. 2013;24:206–14.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Han P, Li W, Lin CH, Yang J, Shang C, Nurnberg ST, Jin KK, Xu W, Lin CY, Lin CJ, Xiong Y, Chien HC, Zhou B, Ashley E, Bernstein D, Chen PS, Chen HS, Quertermous T, Chang CP. A long noncoding rna protects the heart from pathological hypertrophy. Nature. 2014;514:102–6.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Ishii N, Ozaki K, Sato H, Mizuno H, Saito S, Takahashi A, Miyamoto Y, Ikegawa S, Kamatani N, Hori M, Saito S, Nakamura Y, Tanaka T. Identification of a novel non-coding rna, miat, that confers risk of myocardial infarction. J Hum Genet. 2006;51:1087–99.PubMedCrossRefGoogle Scholar
  95. 95.
    Boon RA, Dimmeler S. Micrornas in myocardial infarction. Nat Rev Cardiol. 2015;12:135–42.PubMedCrossRefGoogle Scholar
  96. 96.
    Dorn 2nd GW. Decoding the cardiac message: the 2011 thomas w. Smith memorial lecture. Circ Res. 2012;110:755–63.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Jeck WR, Sharpless NE. Detecting and characterizing circular rnas. Nat Biotechnol. 2014;32:453–61.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Burd CE, Jeck WR, Liu Y, Sanoff HK, Wang Z, Sharpless NE. Expression of linear and novel circular forms of an ink4/arf-associated non-coding rna correlates with atherosclerosis risk. PLoS Genet. 2010;6:e1001233.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Szabo L, Morey R, Palpant NJ, Wang PL, Afari N, Jiang C, Parast MM, Murry CE, Laurent LC, Salzman J. Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular rna during human fetal development. Genome Biol. 2015;16:126.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Boeckel JN, Jae N, Heumuller AW, Chen W, Boon RA, Stellos K, Zeiher AM, John D, Uchida S, Dimmeler S. Identification and characterization of hypoxia-regulated endothelial circular rna. Circ Res. 2015;117:884–90.PubMedCrossRefGoogle Scholar
  101. 101.
    Chen PB, Zhu LJ, Hainer SJ, McCannell KN, Fazzio TG. Unbiased chromatin accessibility profiling by red-seq uncovers unique features of nucleosome variants in vivo. BMC Genomics. 2014;15:1104.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I, Servant N, Piolot T, van Berkum NL, Meisig J, Sedat J, Gribnau J, Barillot E, Bluthgen N, Dekker J, Heard E. Spatial partitioning of the regulatory landscape of the x-inactivation centre. Nature. 2012;485:381–5.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Fullwood MJ, Liu MH, Pan YF, Liu J, Xu H, Mohamed YB, Orlov YL, Velkov S, Ho A, Mei PH, Chew EG, Huang PY, Welboren WJ, Han Y, Ooi HS, Ariyaratne PN, Vega VB, Luo Y, Tan PY, Choy PY, Wansa KD, Zhao B, Lim KS, Leow SC, Yow JS, Joseph R, Li H, Desai KV, Thomsen JS, Lee YK, Karuturi RK, Herve T, Bourque G, Stunnenberg HG, Ruan X, Cacheux-Rataboul V, Sung WK, Liu ET, Wei CL, Cheung E, Ruan Y. An oestrogen-receptor-alpha-bound human chromatin interactome. Nature. 2009;462:58–64.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods. 2013;10:1213–8.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Ishii H, Kadonaga JT, Ren B. Mpe-seq, a new method for the genome-wide analysis of chromatin structure. Proc Natl Acad Sci U S A. 2015;112:E3457–65.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Landt SG, Marinov GK, Kundaje A, Kheradpour P, Pauli F, Batzoglou S, Bernstein BE, Bickel P, Brown JB, Cayting P, Chen Y, DeSalvo G, Epstein C, Fisher-Aylor KI, Euskirchen G, Gerstein M, Gertz J, Hartemink AJ, Hoffman MM, Iyer VR, Jung YL, Karmakar S, Kellis M, Kharchenko PV, Li Q, Liu T, Liu XS, Ma L, Milosavljevic A, Myers RM, Park PJ, Pazin MJ, Perry MD, Raha D, Reddy TE, Rozowsky J, Shoresh N, Sidow A, Slattery M, Stamatoyannopoulos JA, Tolstorukov MY, White KP, Xi S, Farnham PJ, Lieb JD, Wold BJ, Snyder M. Chip-seq guidelines and practices of the encode and modencode consortia. Genome Res. 2012;22:1813–31.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Urich MA, Nery JR, Lister R, Schmitz RJ, Ecker JR. Methylc-seq library preparation for base-resolution whole-genome bisulfite sequencing. Nat Protoc. 2015;10:475–83.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Booth MJ, Branco MR, Ficz G, Oxley D, Krueger F, Reik W, Balasubramanian S. Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science. 2012;336:934–7.PubMedCrossRefGoogle Scholar
  109. 109.
    Booth MJ, Marsico G, Bachman M, Beraldi D, Balasubramanian S. Quantitative sequencing of 5-formylcytosine in DNA at single-base resolution. Nat Chem. 2014;6:435–40.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Chu C, Qu K, Zhong FL, Artandi SE, Chang HY. Genomic maps of long noncoding rna occupancy reveal principles of rna-chromatin interactions. Mol Cell. 2011;44:667–78.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Churchman LS, Weissman JS. Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature. 2011;469:368–73.PubMedCrossRefGoogle Scholar
  112. 112.
    Churko JM, Mantalas GL, Snyder MP, Wu JC. Overview of high throughput sequencing technologies to elucidate molecular pathways in cardiovascular diseases. Circ Res. 2013;112:1613–23.PubMedCrossRefGoogle Scholar
  113. 113.
    Li Y, Klena NT, Gabriel GC, Liu X, Kim AJ, Lemke K, Chen Y, Chatterjee B, Devine W, Damerla RR, Chang C, Yagi H, San Agustin JT, Thahir M, Anderton S, Lawhead C, Vescovi A, Pratt H, Morgan J, Haynes L, Smith CL, Eppig JT, Reinholdt L, Francis R, Leatherbury L, Ganapathiraju MK, Tobita K, Pazour GJ, Lo CW. Global genetic analysis in mice unveils central role for cilia in congenital heart disease. Nature. 2015;521:520–4.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Do R, Stitziel NO, Won HH, Jorgensen AB, Duga S, Angelica Merlini P, Kiezun A, Farrall M, Goel A, Zuk O, Guella I, Asselta R, Lange LA, Peloso GM, Auer PL, Project NES, Girelli D, Martinelli N, Farlow DN, DePristo MA, Roberts R, Stewart AF, Saleheen D, Danesh J, Epstein SE, Sivapalaratnam S, Hovingh GK, Kastelein JJ, Samani NJ, Schunkert H, Erdmann J, Shah SH, Kraus WE, Davies R, Nikpay M, Johansen CT, Wang J, Hegele RA, Hechter E, Marz W, Kleber ME, Huang J, Johnson AD, Li M, Burke GL, Gross M, Liu Y, Assimes TL, Heiss G, Lange EM, Folsom AR, Taylor HA, Olivieri O, Hamsten A, Clarke R, Reilly DF, Yin W, Rivas MA, Donnelly P, Rossouw JE, Psaty BM, Herrington DM, Wilson JG, Rich SS, Bamshad MJ, Tracy RP, Cupples LA, Rader DJ, Reilly MP, Spertus JA, Cresci S, Hartiala J, Tang WH, Hazen SL, Allayee H, Reiner AP, Carlson CS, Kooperberg C, Jackson RD, Boerwinkle E, Lander ES, Schwartz SM, Siscovick DS, McPherson R, Tybjaerg-Hansen A, Abecasis GR, Watkins H, Nickerson DA, Ardissino D, Sunyaev SR, O’Donnell CJ, Altshuler D, Gabriel S, Kathiresan S. Exome sequencing identifies rare ldlr and apoa5 alleles conferring risk for myocardial infarction. Nature. 2015;518:102–6.PubMedCrossRefGoogle Scholar
  115. 115.
    Myocardial Infarction Genetics Consortium I, Stitziel NO, Won HH, Morrison AC, Peloso GM, Do R, Lange LA, Fontanillas P, Gupta N, Duga S, Goel A, Farrall M, Saleheen D, Ferrario P, Konig I, Asselta R, Merlini PA, Marziliano N, Notarangelo MF, Schick U, Auer P, Assimes TL, Reilly M, Wilensky R, Rader DJ, Hovingh GK, Meitinger T, Kessler T, Kastrati A, Laugwitz KL, Siscovick D, Rotter JI, Hazen SL, Tracy R, Cresci S, Spertus J, Jackson R, Schwartz SM, Natarajan P, Crosby J, Muzny D, Ballantyne C, Rich SS, O’Donnell CJ, Abecasis G, Sunyaev S, Nickerson DA, Buring JE, Ridker PM, Chasman DI, Austin E, Ye Z, Kullo IJ, Weeke PE, Shaffer CM, Bastarache LA, Denny JC, Roden DM, Palmer C, Deloukas P, Lin DY, Tang ZZ, Erdmann J, Schunkert H, Danesh J, Marrugat J, Elosua R, Ardissino D, McPherson R, Watkins H, Reiner AP, Wilson JG, Altshuler D, Gibbs RA, Lander ES, Boerwinkle E, Gabriel S, Kathiresan S. Inactivating mutations in npc1l1 and protection from coronary heart disease. N Engl J Med. 2014;371:2072–82.CrossRefGoogle Scholar
  116. 116.
    Tao H, Yang JJ, Shi KH, Deng ZY, Li J. DNA methylation in cardiac fibrosis: new advances and perspectives. Toxicology. 2014;323:125–9.PubMedCrossRefGoogle Scholar
  117. 117.
    Zhao JY, Yang XY, Shi KH, Sun SN, Hou J, Ye ZZ, Wang J, Duan WY, Qiao B, Chen YJ, Shen HB, Huang GY, Jin L, Wang HY. A functional variant in the cystathionine beta-synthase gene promoter significantly reduces congenital heart disease susceptibility in a han chinese population. Cell Res. 2012;23:242–53.PubMedCentralCrossRefGoogle Scholar
  118. 118.
    Sanchez-Castro M, Gordon CT, Petit F, Nord AS, Callier P, Andrieux J, Guerin P, Pichon O, David A, Abadie V, Bonnet D, Visel A, Pennacchio LA, Amiel J, Lyonnet S, Le Caignec C. Congenital heart defects in patients with deletions upstream of sox9. Hum Mutat. 2013;34:1628–31.PubMedCrossRefGoogle Scholar
  119. 119.
    Morikawa Y, Zhang M, Heallen T, Leach J, Tao G, Xiao Y, Bai Y, Li W, Willerson JT, Martin JF. Actin cytoskeletal remodeling with protrusion formation is essential for heart regeneration in hippo-deficient mice. Sci Signal. 2015;8:ra41.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Heallen T, Zhang M, Wang J, Bonilla-Claudio M, Klysik E, Johnson RL, Martin JF. Hippo pathway inhibits wnt signaling to restrain cardiomyocyte proliferation and heart size. Science. 2011;332:458–61.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Huang GN, Thatcher JE, McAnally J, Kong Y, Qi X, Tan W, DiMaio JM, Amatruda JF, Gerard RD, Hill JA, Bassel-Duby R, Olson EN. C/ebp transcription factors mediate epicardial activation during heart development and injury. Science. 2012;338:1599–603.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Takeuchi JK, Lou X, Alexander JM, Sugizaki H, Delgado-Olguin P, Holloway AK, Mori AD, Wylie JN, Munson C, Zhu Y, Zhou YQ, Yeh RF, Henkelman RM, Harvey RP, Metzger D, Chambon P, Stainier DY, Pollard KS, Scott IC, Bruneau BG. Chromatin remodelling complex dosage modulates transcription factor function in heart development. Nat Commun. 2011;2:187.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Lei I, Gao X, Sham MH, Wang Z. Swi/snf protein component baf250a regulates cardiac progenitor cell differentiation by modulating chromatin accessibility during second heart field development. J Biol Chem. 2012;287:24255–62.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    He A, Ma Q, Cao J, von Gise A, Zhou P, Xie H, Zhang B, Hsing M, Christodoulou DC, Cahan P, Daley GQ, Kong SW, Orkin SH, Seidman CE, Seidman JG, Pu WT. Polycomb repressive complex 2 regulates normal development of the mouse heart. Circ Res. 2012;110:406–15.PubMedCrossRefGoogle Scholar
  125. 125.
    Anand P, Brown JD, Lin CY, Qi J, Zhang R, Artero PC, Alaiti MA, Bullard J, Alazem K, Margulies KB, Cappola TP, Lemieux M, Plutzky J, Bradner JE, Haldar SM. Bet bromodomains mediate transcriptional pause release in heart failure. Cell. 2013;154:569–82.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    He A, Kong SW, Ma Q, Pu WT. Co-occupancy by multiple cardiac transcription factors identifies transcriptional enhancers active in heart. Proc Natl Acad Sci U S A. 2011;108:5632–7.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Mitchell-Jordan S, Chen H, Franklin S, Stefani E, Bentolila LA, Vondriska TM. Features of endogenous cardiomyocyte chromatin revealed by super-resolution sted microscopy. J Mol Cell Cardiol. 2012;53:552–8.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Wood AJ, Lo TW, Zeitler B, Pickle CS, Ralston EJ, Lee AH, Amora R, Miller JC, Leung E, Meng X, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Meyer BJ. Targeted genome editing across species using zfns and talens. Science. 2011;333:307.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Hsu PD, Lander ES, Zhang F. Development and applications of crispr-cas9 for genome engineering. Cell. 2014;157:1262–78.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Ghamari A, van de Corput MP, Thongjuea S, van Cappellen WA, van Ijcken W, van Haren J, Soler E, Eick D, Lenhard B, Grosveld FG. In vivo live imaging of rna polymerase ii transcription factories in primary cells. Genes Dev. 2013;27:767–77.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Wang Y, Maharana S, Wang MD, Shivashankar GV. Super-resolution microscopy reveals decondensed chromatin structure at transcription sites. Sci Rep. 2014;4:4477.PubMedPubMedCentralGoogle Scholar
  132. 132.
    Ricci MA, Manzo C, Garcia-Parajo MF, Lakadamyali M, Cosma MP. Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo. Cell. 2015;160:1145–58.PubMedCrossRefGoogle Scholar
  133. 133.
    Kohl T, Westphal V, Hell SW, Lehnart SE. Superresolution microscopy in heart – cardiac nanoscopy. J Mol Cell Cardiol. 2013;58:13–21.PubMedCrossRefGoogle Scholar
  134. 134.
    Bhat S, Ohn J, Liebling M. Motion-based structure separation for label-free, high-speed, 3d cardiac microscopy. IEEE Trans Image Process Publ IEEE Signal Process Soc. 2012;21:3638–47.CrossRefGoogle Scholar
  135. 135.
    Lee S, Vinegoni C, Feruglio PF, Fexon L, Gorbatov R, Pivoravov M, Sbarbati A, Nahrendorf M, Weissleder R. Real-time in vivo imaging of the beating mouse heart at microscopic resolution. Nat Commun. 2012;3:1054.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Jung K, Kim P, Leuschner F, Gorbatov R, Kim JK, Ueno T, Nahrendorf M, Yun SH. Endoscopic time-lapse imaging of immune cells in infarcted mouse hearts. Circ Res. 2013;112:891–9.PubMedCrossRefGoogle Scholar
  137. 137.
    Nance ME, Whitfield JT, Zhu Y, Gibson AK, Hanft LM, Campbell KS, Meininger GA, McDonald KS, Segal SS, Domeier TL. Attenuated sarcomere lengthening of the aged murine left ventricle observed using two-photon fluorescence microscopy. Am J Physiol Heart Circ Physiol. 2015;309:H918–25.PubMedPubMedCentralGoogle Scholar
  138. 138.
    Sewell-Loftin MK, Brown CB, Baldwin HS, Merryman WD. A novel technique for quantifying mouse heart valve leaflet stiffness with atomic force microscopy. J Heart Valve Dis. 2012;21:513–20.PubMedPubMedCentralGoogle Scholar
  139. 139.
    Pauza DH, Rysevaite K, Inokaitis H, Jokubauskas M, Pauza AG, Brack KE, Pauziene N. Innervation of sinoatrial nodal cardiomyocytes in mouse. A combined approach using immunofluorescent and electron microscopy. J Mol Cell Cardiol. 2014;75:188–97.PubMedCrossRefGoogle Scholar
  140. 140.
    Leo-Macias A, Liang FX, Delmar M. Ultrastructure of the intercellular space in adult murine ventricle revealed by quantitative tomographic electron microscopy. Cardiovasc Res. 2015;107:442–52.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Fujioka H, Tandler B, Hoppel CL. Mitochondrial division in rat cardiomyocytes: an electron microscope study. Anat Rec. 2012;295:1455–61.CrossRefGoogle Scholar
  142. 142.
    Gherghiceanu M, Popescu LM. Heterocellular communication in the heart: electron tomography of telocyte-myocyte junctions. J Cell Mol Med. 2011;15:1005–11.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of AnesthesiologyDavid Geffen School of Medicine at UCLALos AngelesUSA

Personalised recommendations