Skip to main content

Using Image-based CFD to Investigate the Intracardiac Turbulence

  • Chapter
Modeling the Heart and the Circulatory System

Part of the book series: MS&A ((MS&A,volume 14))

Abstract

A numerical framework designed to compute the blood flow in patient-specific human hearts is presented. The geometry of the heart cavities and associated wall motion are extracted from 4D medical images while the valves of the heart are accounted for thanks to low order geometrical models. The resulting blood flow equations are solved using a fourth-order low-dissipative finite-volume scheme and a mixed Aribtrary Lagrangian-Eulerian / Immersed Boundary framework. On top of retrieving the main fluid flow phenomena commonly observed in the left heart, the methodology allows studying the heart flow dynamics, including the turbulence characteristics and cycle-to-cycle variations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashburner, J., Andersson, J.L.R., Friston, K.J.: High-dimensional image registration using symmetric priors, NeuroImage 9(6), 619–628 (1999)

    Article  Google Scholar 

  2. Ashburner, J., Neelin, P., Collins, D.L., Evans, A., Friston, K.J.: Incorporating prior knowledge into image registration, NeuroImage 6(4), 344–352 (1997)

    Article  Google Scholar 

  3. Chnafa, C., Mendez, S., Nicoud, F.: Image-based large-eddy simulation in a realistic left heart.,Comp. Fluids, manuscript accepted for publication

    Google Scholar 

  4. Cimino, S., Pedrizzetti, G., Tonti, G., Canali, E., Petronilli, V., De Luca, L., Iacoboni, C., Agati, L.: In vivo analysis of intraventricular fluid dynamics in healthy hearts, Eu. J. Mech. — B/Fluids 35, 40–46 (2012)

    Article  Google Scholar 

  5. Doenst, T., Spiegel, K., Reik, M., Markl, M., Hennig, J., Nitzsche, S., Beyersdorf, F., Oertel, H.: Fluid-dynamic modeling of the human left ventricle: Methodology and application to surgical ventricular reconstruction, Ann. Thor. Surg. 87, 1187–1195 (2009)

    Article  Google Scholar 

  6. Domenichini, F., Pedrizzetti, G., Baccani, B.: Three-dimensional filling flow into a model left ventricle, J. Fluid Mech. 539, 179–198 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Falahatpisheh, A., Kheradvar, A.: High-speed particle image velocimetry to assess cardiac fluid dynamics in vitro: From performance to validation, Eu. J. Mech. — B/Fluids 35, 2–8 (2012)

    Article  Google Scholar 

  8. Fernandez, M.A., Formaggia, L., Gerbeau, J.F., Quarteroni, A.: Cardiovascular Mathematics. Modeling and simulation of the circulatory system, MS&A — Modeling, Simulation and Applications, vol. 1, chap. 3, The derivation of the equations for fluids and structure, pp. 77–121. Springer, Milan (2009)

    Google Scholar 

  9. Fung, Y.C.: Biomechanics — Circulation, 2nd edn. Springer-Verlag, New York (1997)

    Book  Google Scholar 

  10. Fyrenius, A., Wigstrom, L., Ebbers, T., Karlsson, M., Engvall, J., Bolger, A.: Three dimensional flow in the human left atrium, Heart 86, 448–455 (2001)

    Article  Google Scholar 

  11. Garcia, D., del Alamo, J.C., Tanne, D., Yotti, R.L., Cortina, C., Bertrand, E., Antoranz, J.C., Perez-David, E., Rieu, R., Fernandez-Aviles, F., Bermejo, J.: Two-dimensional intraventricular flow mapping by digital processing conventional color-doppler echocardiography images, IEEE Trans. Med. Imag. 29, 1701–1713 (2010)

    Article  Google Scholar 

  12. Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model, Phys. Fluids 3, 1760–1765 (1991)

    Article  MATH  Google Scholar 

  13. Gharib, M., Rambod, E., Kheradvar, A., Sahn, D., Dabiri, J.: Optimal vortex formation as an index of cardiac health, Proc. Natl. Acad. Sci. U.S.A. 103, 6305–6308 (2006)

    Article  Google Scholar 

  14. Haugen, B.O., Berg, S., Brecke, K.M., Samstad, S.O., Slørdahl, S.A., Skjærpe, T., Torp, H.: Velocity profiles in mitral blood flow based on three-dimensional freehand colour flow imaging acquired at high frame rate, Eu. J. Echo. 1, 252–256 (2000)

    Article  Google Scholar 

  15. Hollnagel, D.I., Summers, P.E., Poulikakos, D., Kollias, S.S.: Comparative velocity investigations in cerebral arteries and aneurysms: 3D phase-contrast MR angiography, laser doppler velocimetry and computational fluid dynamics, NMR in Biomed. 22, 795–808 (2009)

    Article  Google Scholar 

  16. Hong, G.R., Pedrizzetti, G., Tonti, G., Li, P., Wei, Z., Kim, J., Baweja, A., Liu, S., Chung, N., Houle, H., Narula, J., Vannan, M.: Characterization and quantification of vortex flow in the human left ventricle by contrast echocardiography using vector particle image velocimetry, J. Am. Coll. Cardiol. 1, 705–717 (2008)

    Article  Google Scholar 

  17. Kilner, P., Yang, G., Mohiaddin, R., Firmin, D., Longmore, D.: Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping, Circulation 88, 2235–2247 (1993)

    Article  Google Scholar 

  18. Kilner, P., Yang, G.Z., Wilkes, A., Mohiaddin, R.H., Firmin, D.N., Yacoub, M.H.: Asymmetric redirection of flow through the heart, Nature 404, 759–761 (2000)

    Article  Google Scholar 

  19. Kim, H., Hertzberg, J., Shandas, R.: Development and validation of echo PIV, Expe. Fluids 36, 455–462 (2004)

    Article  Google Scholar 

  20. Le, T.B., Sotiropoulos, F.: On the three-dimensional vortical structure of early diastolic flow in a patient-specific left ventricle. Eu. J. Mech. — B/Fluids 35, 20–24 (2012)

    Article  Google Scholar 

  21. Long, Q.: Subject-specific computational simulation of left ventricular flow based on magnetic resonance imaging, Proceedings of the Institution of Mechanical Engineers, Part H 222, 475–485 (2008)

    Article  Google Scholar 

  22. Maintz, J.B.A., Viergever, M.A.: A survey of medical image registration, Medical Image Analysis 2(1), 1–36 (1998)

    Article  Google Scholar 

  23. Makela, T., Clarysse, P., Sipila, O., Pauna, N., Pham, Q.C., Katila, T., Magnin, I.E.: A review of cardiac image registration methods. Medical Imaging, IEEE Transactions on 21(9), 1011–1021 (2002)

    Article  Google Scholar 

  24. Malandin, M., Maheu, N., Moureau, V.: Optimization of the deflated conjugate gradient algorithm for the solving of elliptic equations on massively parallel machines, J. Comp. Phys. 238, 32–47 (2013)

    Article  Google Scholar 

  25. Markl, M., Kilner, P., Ebbers, T.: Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance, J. Cardiovasc. Magn. Reson. 13, 1–22 (2011)

    Article  Google Scholar 

  26. Masud, A., Bhanabhagvanwala, M., Khurram, R.A.: An adaptive mesh rezoning scheme for moving boundary flows and fluid-structure interaction, Comp. Fluids 36(1), 77–91 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. Mendez, S., Gibaud, E., Nicoud, E.: An unstructured solver for simulations of deformable particles in flows at arbitrary reynolds numbers, JCP 256, 465–483 (2014)

    MathSciNet  Google Scholar 

  28. Merrifield, R., Long, Q., Xu, X.Y., Kilner, P.J., Firmin, D.N., Yang, G.Z.: Combined CFD/MRI analysis of left ventricular flow, Med. Im. and augmented reality 3150, 229–236 (2004)

    Article  Google Scholar 

  29. Midulla, M., Moreno, R., Baali, A., Chau, M., Negre-Salvayre, A., Nicoud, F., Pruvo, J.P., Haulon, S., Rousseau, H.: Haemodynamic imaging of thoracic stent-grafts by computational fluid dynamics (CFD): presentation of a patient-specific method combining magnetic resonance imaging and numerical simulations, Eu. Radiol. 22, 2094–2102 (2012)

    Article  Google Scholar 

  30. Mihalef, V., Ionasec, R.I., Sharma, P., Georgescu, B., Voigt, I., Suehling, M., Comaniciu, D.: Patient-specific modelling of whole heart anatomy, dynamics and haemodynamics from four-dimensional cardiac CT images, Interface Focus 1, 286–296 (2011)

    Article  Google Scholar 

  31. Modersitzki, J.: Numerical Methods for Image Registration, Numerical Mathematics and Scientific Computation, Oxford University Press USA (2004)

    Google Scholar 

  32. Mohd-Yusof, J.: Combined immersed-boundary/B-spline methods for simulations of flow in complex geometries, Ann. Research Briefs, Center for Turbulence Research (1997)

    Google Scholar 

  33. Moin, P.: Advances in large eddy simulation methodology for complex flows, Int. J. Heat Fluid Flow 23(5), 710–720 (2002)

    Article  Google Scholar 

  34. Moureau, V., Domingo, P., Vervisch, L.: Design of a massively parallel CFD code for complex geometries, Comptes Rendus Mécanique 339, 141–148 (2011). High Performance Computing

    Article  MATH  Google Scholar 

  35. Nicoud, F., Moreno, R., Tayllamin, B., Chau, M., Rousseau, H.: Computational hemodynamics in moving geometries without solving the fluid-structure interaction problem. In: Conference on Modelling Fluid Flow (2009)

    Google Scholar 

  36. Nicoud, F., Toda, H.B., O. Cabrit, S.B., Lee, J.: Using singular values to build a subgrid-scale model for large eddy simulations, Phys. Fluids 23, 085,106 (2011)

    Article  Google Scholar 

  37. Pedrizzetti, G., Domenichini, F.: Nature optimizes the swirling flow in the human left ventricle, Phys. Rev. Lett. 95, 108,101 (2005)

    Article  Google Scholar 

  38. Pham, D.L., Xu, C., Prince, J.L.: Current methods in medical image segmentation, Annu. Rev. Biomed. Eng. 2, 315–337 (2000)

    Article  Google Scholar 

  39. Pope, S.B.: Turbulent flows. Cambridge University Press (2000)

    Google Scholar 

  40. Pope, S.B.: Ten questions concerning the large-eddy simulation of turbulent flows, New J. Phys. 6(1), 35 (2004)

    Article  Google Scholar 

  41. Querzoli, G., Fortini, S., Cenedese, A.: Effect of the prosthetic mitral valve on vortex dynamics and turbulence of the left ventricular flow, Phys. Fluids 22, 041,901 (2010)

    Article  Google Scholar 

  42. Saber, N.R., Wood, N.B., Gosman, A.B., Merrifield, R.D., Yang, G.Z., Charrier, C.L., Gatehouse, P.D., Firmin, D.N.: Progress towards patient-specific computational flow modeling of the left heart via combination of magnetic resonance imaging with computational fluid dynamics, Ann. Biomed. Eng. 31, 42–52 (2003)

    Article  Google Scholar 

  43. Sagaut, P.: Large eddy simulation for incompressible flows, vol. 3, Springer, Berlin (2000)

    Google Scholar 

  44. Schenkel, T., Malve, M., Reik, M., Markl, M., Jung, B., Oertel, H.: MRI-based CFD analysis of flow in a human left ventricle: Methodology and application to a healthy heart, Ann. Biomed. Eng. 37, 503–515 (2009)

    Article  Google Scholar 

  45. Smagorinsky, J.: General circulation experiments with the primitive equations: 1. the basic experiment, Mon. Weather Rev. 91(3), 99–164 (1963)

    Article  Google Scholar 

  46. Taylor, C.A., Figueroa, C.A.: Patient-specific modeling of cardiovascular mechanics, Annu. Rev. Biomed. Eng. 11, 109–134 (2009)

    Article  Google Scholar 

  47. Vadakkumpadan, F., Arevalo, H., Ceritoglu, C., Miller, M., Trayanova, N.: Image-based estimation of ventricular fiber orientations for personalized modeling of cardiac electrophysiology, IEEE Trans. Med. Imag. 31, 1051–1060 (2012)

    Article  Google Scholar 

  48. Yoganathan, A.P., He, Z., Casey, J.S.: Fluid mechanics of heart valves, Annu. Rev. Biomed. Eng. 6, 331–362 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Chnafa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chnafa, C., Mendez, S., Moreno, R., Nicoud, F. (2015). Using Image-based CFD to Investigate the Intracardiac Turbulence. In: Quarteroni, A. (eds) Modeling the Heart and the Circulatory System. MS&A, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-05230-4_4

Download citation

Publish with us

Policies and ethics