Skip to main content

Beyond Genetic Engineering: Technical Capabilities in the Application Fields of Biocatalysis and Biosensors

  • Chapter
  • First Online:
Synthetic Biology

Abstract

Synthetic biology allows the generation of complex recombinant systems using libraries of modular components. Two major near-market applications are whole-cell biosensors and biocatalysts for conversion of lignocellulosic biomass to biofuels and chemical feedstocks. Whole cell biosensors consist of cells genetically modified so that binding of a specific analyte to a receptor in the cell triggers generation of a specific output which can be detected and quantified. Since these systems are intrinsically modular in nature, with separate systems for signal detection, signal processing, and generation of the output, they are well suited to a synthetic biology approach. Likewise, effective degradation of cellulosic biomass requires a battery of different enzymes working together to degrade the matrix, expose the polysaccharide fibres, hydrolyse these to release sugars, and convert the sugars to useful products. Synthetic biology provides a useful set of tools to generate such systems. In this chapter we consider how synthetic biology has been applied to these applications, and look at possible future developments in these areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboatox (2010). http://www.aboatox.com/environmental_analysis.html

  • Aleksic, J., Bizzari, F., Cai, Y. Z., Davidson, B., de Mora, K., Ivakhno, S., et al. (2007). Development of a novel biosensor for detection of arsenic in drinking water. IET Synthetic Biology, 1, 87–90.

    Article  Google Scholar 

  • Anderson, T. D., Robson, S. A., Jiang, X. W., Malmirchegini, G. R., Fierobe, H.-P., Lazazzera, B. A., et al. (2011). Assembly of minicellulosomes on the surface of Bacillus subtilis. Applied and Environmental Microbiology, 77(14), 4849–4858. doi:10.1128/AEM.02599-10.

    Article  Google Scholar 

  • Aono, R. (1998). Improvement of organic solvent tolerance level of Escherichia coli by overexpression of stress-responsive genes. Extremophiles, 2(3), 239–248. doi:10.1007/s007920050066.

    Article  Google Scholar 

  • Apiwatanapiwat, W., Murata, Y., Kosugi, A., Yamada, R., Kondo, A., Arai, T., et al. (2011). Direct ethanol production from cassava pulp using a surface-engineered yeast strain co-displaying two amylases, two cellulases, and β-glucosidase. Applied Microbiology and Biotechnology, 90, 377–384. doi:10.1007/s00253-011-3115-8.

    Article  Google Scholar 

  • Arantes, V., & Saddler, J. N. (2010). Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnology for Biofuels, 3(4), 4. doi:10.1186/1754-6834-3-4.

    Article  Google Scholar 

  • Arsenic Biosensor Collaboration (2013). http://arsenicbiosensor.org/

  • Baez, A., Cho, K.-M., & Liao, J. C. (2011). High-flux isobutanol production using engineered Escherichia coli: A bioreactor study with in situ product removal. Applied Microbiology and Biotechnology, 90, 1681–1690. doi:10.1007/s00253-011-3173-y.

    Article  Google Scholar 

  • Barnard, D. K. (2012). Design and construction of modular genetic devices encoding the enzymatic hydrolysis of lignocellulosic biomass. UK: University of Edinburgh.

    Google Scholar 

  • Baronian, K. H. R. (2003). The use of yeast and moulds as sensing elements in biosensors. Biosensors and Bioelectronics, 19(9), 953–962. doi:10.1016/j.bios.2003.09.010.

    Article  Google Scholar 

  • Baumgartner, J. W., Kim, C., Brisette, R. E., Inoue, M., Park, C., & Hazelbauer, G. L. (1994). Transmembrane signaling by a hybrid protein: Communication from the domain of chemoreceptor Trg that recognizes sugar-binding proteins to the kinase/phosphatase domain of osmosensor EnvZ. Journal of Bacteriology, 176(4), 1157–1163.

    Google Scholar 

  • Beller, H. R., Goh, E. B., & Keasling, J. D. (2010). Genes involved in long-chain alkene biosynthesis in Micrococcus luteus. Applied and Environmental Microbiology, 76(4), 1212–1223. doi:10.1128/aem.02312-09.

    Article  Google Scholar 

  • Bera, A. K., Sedlak, M., Khan, A., & Ho, N. W. Y. (2010). Establishment of l-arabinose fermentation in glucose/xylose co-fermenting recombinant Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering. Applied Microbiology and Biotechnology, 87(5), 1803–1811. doi:10.1007/s00253-010-2609-0.

    Article  Google Scholar 

  • Bermejo, L. L., Welker, N. E., & Papoutsakis, E. T. (1998). Expression of Clostridium acetobutylicum ATCC 824 genes in Escherichia coli for acetone production and acetate detoxification. Applied and Environmental Microbiology, 64(3), 1079–1085.

    Google Scholar 

  • Bettiga, M., Bengtsson, O., Hahn-Hägerdahl, B., & Gorwa-Grauslund, M. F. (2009). Arabinose and xylose fermentation by recombinant Saccharomyces cerevisiae expressing a fungal pentose utilization pathway. Microbial Cell Factories, 8, 40. doi:10.1186/1475-2859-8-40.

    Article  Google Scholar 

  • Bokinsky, G., Peralta-Yahya, P. P., George, A., Holmes, B. M., Steen, E. J., Dietrich, J., et al. (2011). Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 108(50), 19949–19954. doi:10.1073/pnas.1106958108.

    Article  Google Scholar 

  • Bovee, T. F. H., Lommerse, J. P. M., Peijnenburg, A. A. C. M., Fernandes, E. A., & Nielen, M. W. F. (2008). A new highly androgen specific yeast biosensor, enabling optimization of (Q)SAR model approaches. Journal of Steroid Biochemistry and Molecular Biology, 108(1–2), 121–131. doi:10.1016/j.jsbmb.2007.05.035.

    Article  Google Scholar 

  • Casino, P., Rubio, V., & Marina, A. (2010). The mechanism of signal transduction by two-component systems. Current Opinion in Structural Biology, 20(6), 763–771. doi:10.1016/j.sbi.2010.09.010.

    Article  Google Scholar 

  • Chappell, J., Jensen, K., & Freemont, P. S. (2013). Validation of an entirely in vitro approach for rapid prototyping of DNA regulatory elements for synthetic biology. Nucleic Acids Research, 41(5), 3471–3481. doi:10.1093/nar/gkt052.

    Article  Google Scholar 

  • Chen, M. T., & Weiss, R. (2005). Artificial cell-cell communication in yeast Saccharomyces cerevisiae using signaling elements from Arabidopsis thaliana. Nature Biotechnology, 23(12), 1551–1555. doi:10.1038/nbt1162.

    Article  Google Scholar 

  • Choi, E. S., Ryu, H. K., & Kim, S. W. (2010). Production of isoprenoids in Saccharomyces cerevisiae. Journal of Biotechnology, 150, 155. doi:10.1016/j.jbiotec.2010.08.402.

    Article  Google Scholar 

  • Date, A., Pasini, P., & Daunert, S. (2007). Construction of spores for portable bacterial whole-cell biosensing systems. Analytical Chemistry, 79(24), 9391–9397. doi:10.1021/ac701606g.

    Article  Google Scholar 

  • Date, A., Pasini, P., & Daunert, S. (2010). Integration of spore-based genetically engineered whole-cell sensing systems into portable centrifugal microfluidic platforms. Analytical and Bioanalytical Chemistry, 398(1), 349–356. doi:10.1007/s00216-010-3930-2.

    Article  Google Scholar 

  • Daunert, S., Barrett, G., Feliciano, J. S., Shetty, R. S., Shrestha, S., & Smith-Spencer, W. (2000). Genetically engineered whole-cell sensing systems: Coupling biological recognition with reporter genes. Chemical Reviews, 100(7), 2705–2738. doi:10.1021/cr990115p.

    Article  Google Scholar 

  • de Mora, K., Joshi, N., Balint, B. L., Ward, F. B., Elfick, A., & French, C. E. (2011). A pH-based biosensor for detection of arsenic in drinking water. Analytical and Bioanalytical Chemistry, 400(4), 1031–1039. doi:10.1007/s00216-011-4815-8.

    Article  Google Scholar 

  • Dekishima, Y., Lan, E. I., Shen, C. R., Cho, K. M., & Liao, J. C. (2011). Extending carbon chain length of 1-Butanol pathway for 1-Hexanol synthesis from glucose by engineered Escherichia coli. Journal of the American Chemical Society, 133(30), 11399–11401. doi:10.1021/ja203814d.

    Article  Google Scholar 

  • Dellomonaco, C., Clomburg, J. M., Miller, E. N., & Gonzalez, R. (2011). Engineered reversal of the beta-oxidation cycle for the synthesis of fuels and chemicals. Nature, 476(7360), 355–U131. doi:10.1038/nature10333.

    Article  Google Scholar 

  • Den Haan, R., Rose, S. H., Lynd, L. R., & van Zyl, W. H. (2007). Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metabolic Engineering, 9(1), 87–94. doi:10.1016/j.ymben.2006.08.005.

    Article  Google Scholar 

  • Diesel, E., Schreiber, M., & van der Meer, J. R. (2009). Development of bacteria-based bioassays for arsenic detection in natural waters. Analytical and Bioanalytical Chemistry, 394(3), 687–693. doi:10.1007/s00216-009-2785-x.

    Article  Google Scholar 

  • Duan, Y. K., Zhu, Z., Cai, K., Tan, X. M., & Lu, X. F. (2011). De novo biosynthesis of biodiesel by Escherichia coli in optimized fed-batch cultivation. Plos One, 6(5). doi:e20265 10.1371/journal.pone.0020265.

  • Dunlop, M. J., Dossani, Z. Y., Szmidt, H. L., Chu, H. C., Lee, T. S., Keasling, J. D., et al. (2011). Engineering microbial biofuel tolerance and export using efflux pumps. Molecular Systems Biology, 7. doi:48710.1038/msb.2011.21.

    Google Scholar 

  • Dymond, J. S., Richardson, S. M., Coombes, C. E., Babatz, T., Muller, H., Annaluru, N., et al. (2011). Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. Nature, 477(7365), 471–U124. doi:10.1038/nature10403.

    Article  Google Scholar 

  • Elowitz, M. B., & Leibler, S. (2000). A synthetic oscillatory network of transcriptional regulators. Nature, 403(6767), 335–338. doi:10.1038/35002125.

    Article  Google Scholar 

  • Environmental Bio-Detection Products, I. http://www.ebpi-kits.com/SOS-ChromoTest.html

  • Fontes, C. M. G. A., & Gilbert, H. J. (2010). Cellulosomes: Highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. In R. D. Kornberg, C. R. H. Raetz, J. E. Rothman & J. W. Thorner (Eds.), Annual review of biochemistry (Vol. 79, pp. 655-681, Annual Review of Biochemistry). Download: < Go to ISI > ://WOS:000280225300023.

    Google Scholar 

  • Forsberg, Z., Vaaje-Kolstad, G., Westereng, B., Bunaes, A. C., Stenstrom, Y., MacKenzie, A., et al. (2011). Cleavage of cellulose by a CBM33 protein. Protein Science, 20(9), 1479–1483. doi:10.1002/pro.689.

    Article  Google Scholar 

  • French, C. E. (2009). Synthetic biology and biomass conversion: A match made in heaven? Journal of the Royal Society Interface, 6. doi:10.1098/rsif.2008.0527.focus.

  • French, C. E., de Mora, K., Joshi, N., Elfick, A., Haseloff, J., & Ajioka, J. (2011). Synthetic biology and the art of biosensor design. In E. R. Choffnes, D. A. Relman, & L. Pray (Eds.), The science and applications of synthetic and systems biology: Workshop summary (The National Academies Collection: Reports funded by National Institutes of Health). Washington DC: National Academies Press. Download: http://ezproxy.lib.ed.ac.uk/login?url; https://search.ebscohost.com/login.aspx?direct=true&db=mnh&AN=22497031&site=eds-live.

  • French, C. E., Barnard, D. K., Fletcher, E., Kane, S. D., Lakhundi, S. S., Liu, C.-K., et al. (2012). Synthetic biology for biomass conversion. In S. Suib (Ed.), New and future developments in catalysis: Catalytic biomass conversion. Waltham: Elsevier. (in the press).

    Google Scholar 

  • Fujita, Y., Ito, J., Ueda, M., Fukuda, H., & Kondo, A. (2004). Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Applied and Environmental Microbiology, 70(2), 1207–1212. doi:10.1128/aem.70.2.1207-1212.2004.

    Article  Google Scholar 

  • Gardner, T. S., Cantor, C. R., & Collins, J. J. (2000). Construction of a genetic toggle switch in Escherichia coli. Nature, 403(6767), 339–342. doi:10.1038/35002131.

    Article  Google Scholar 

  • Goh, E. B., Baidoo, E. E. K., Keasling, J. D., & Beller, H. R. (2012). Engineering of bacterial methyl ketone synthesis for biofuels. Applied and Environmental Microbiology, 78(1), 70–80. doi:10.1128/aem.06785-11.

    Article  Google Scholar 

  • Goldbeck, C. P., Jensen, H. M., TerAvest, M. A., Beedle, N., Appling, Y., Hepler, M., et al. (2013). Tuning promoter strengths for improved synthesis and function of electron conduits in Escherichia coli. Acs Synthetic Biology, 2(3), 150–159. doi:10.1021/sb300119v.

    Article  Google Scholar 

  • Guo, Z.-P., Zhang, L., Ding, Z.-Y., Gu, Z.-H., & Shi, G.-Y. (2011). Development of an industrial ethanol-producing yeast strain for efficient utilization of cellobiose. Enzyme and Microbial Technology, 49(1), 105–112. doi:10.1016/j.enzmictec.2011.02.008.

    Article  Google Scholar 

  • Ho, N. W. Y., Chen, Z. D., & Brainard, A. P. (1998). Genetically engineered Sacccharomyces yeast capable of effective cofermentation of glucose and xylose. Applied and Environmental Microbiology, 64(5), 1852–1859.

    Google Scholar 

  • iGEM. (2007). http://2007.igem.org/Glasgow

  • iGEM. (2009). http://2009.igem.org/Team:Cambridge

  • iGEM. (2010). http://2010.igem.org/Team:Peking

  • iGEM. (2012). http://2012.igem.org/Team:Groningen

  • Ilmen, M., den Haan, R., Brevnova, E., McBride, J., Wiswall, E., Froehlich, A., et al. (2011). High level secretion of cellobiohydrolases by Saccharomyces cerevisiae. Biotechnology for Biofuels, 4(30). doi:3010.1186/1754-6834-4-30.

    Google Scholar 

  • Ingram, L. O., Aldrich, H. C., Borges, A. C. C., Causey, T. B., Martinez, A., Morales, F., et al. (1999). Enteric bacterial catalysts for fuel ethanol production. Biotechnology Progress, 15(5), 855–866. doi:10.1021/bp9901062.

    Article  Google Scholar 

  • Inokuma, K., Liao, J. C., Okamoto, M., & Hanai, T. (2010). Improvement of isopropanol production by metabolically engineered Escherichia coli using gas stripping. Journal of Bioscience and Bioengineering, 110(6), 696–701. doi:10.1016/j.jbiosc.2010.07.010.

    Article  Google Scholar 

  • Jeon, E., Hyeon, J. E., Eun, L. S., Park, B.-S., Kim, S. W., Lee, J., et al. (2009). Cellulosic alcoholic fermentation using recombinant Saccharomyces cerevisiae engineered for the production of Clostridium cellulovorans endoglucanase and Saccharomycopsis fibuligera beta-glucosidase. FEMS Microbiology Letters, 301(1), 130–136. doi:10.1111/j.1574-6968.2009.01808.x.

    Article  Google Scholar 

  • Kachroo, A. H., Kancherla, A. K., Singh, N. S., Varshney, U., & Mahadevan, S. (2007). Mutations that alter the regulation of the chb operon of Escherichia coli allow utilization of cellobiose. Molecular Microbiology, 66(6), 1382–1395. doi:10.1111/j.1365-2958.2007.05999.x.

    Google Scholar 

  • Karhumaa, K., Wiedemann, B., Hahn-Hagerdal, B., Boles, E., & Gorwa-Grauslund, M. F. (2006). Co-utilization of l-arabinose and d-xylose by laboratory and industrial Saccharomyces cerevisiae strains. Microbial Cell Factories, 5(18). doi:1810.1186/1475-2859-5-18.

    Google Scholar 

  • Karhumaa, K., Garcia Sanchez, R., Hahn-Hagerdal, B., & Gorwa-Grauslund, M.-F. (2007). Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae. Microbial Cell Factories, 6(5). doi:5 10.1186/1475-2859-6-5.

  • Kim, Y., Ingram, L. O., & Shanmugam, K. T. (2007). Construction of an Escherichia coli K-12 mutant for homoethanologenic fermentation of glucose or xylose without foreign genes. Applied and Environmental Microbiology, 73(6), 1766–1771. doi:10.1128/aem.02456-06.

    Article  Google Scholar 

  • Klöck, G. (2015). Synthetic biology: the next step forward for industrial biotechnology. In B. Giese, C. Pade, H. Wigger, A. von Gleich (Eds.), Synthetic biology: Character and impact (pp. 105–111). Berlin: Springer.

    Google Scholar 

  • Knight, T. (2003). Idempotent vector design for standard assembly of BioBricks. http://dspace.mit.edu/handle/1721.1/21168.

  • Lakhundi, S. S. (2012). A synthetic biology approach to cellulose degradation. UK: University of Edinburgh.

    Google Scholar 

  • Langston, J. A., Shaghasi, T., Abbate, E., Xu, F., Vlasenko, E., & Sweeney, M. D. (2011). Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61. Applied and Environmental Microbiology, 77(19), 7007–7015. doi:10.1128/aem.05815-11.

    Article  Google Scholar 

  • Lau, M. W., & Dale, B. E. (2009). Cellulosic ethanol production from AFEX-treated corn stover using Saccharomyces cerevisiae 424A(LNH-ST). Proceedings of the National Academy of Sciences of the United States of America, 106(5), 1368–1373. doi:10.1073/pnas.0812364106.

    Article  Google Scholar 

  • Leskinen, P., Virta, M., & Karp, M. (2003). One-step measurement of firefly luciferase activity in yeast. Yeast, 20(13), 1109–1113. doi:10.1002/yea.1024.

    Article  Google Scholar 

  • Levskaya, A., Chevalier, A. A., Tabor, J. J., Simpson, Z. B., Lavery, L. A., Levy, M., et al. (2005). Engineering Escherichia coli to see light: These smart bacteria ‘photograph’ a light pattern as a high-definition chemical image. Nature, 438(7067), 441–442. doi:10.1038/nature04405.

    Article  Google Scholar 

  • Li, S., Wen, J., & Jia, X. (2011). Engineering Bacillus subtilis for isobutanol production by heterologous Ehrlich pathway construction and the biosynthetic 2-ketoisovalerate precursor pathway overexpression. Applied Microbiology and Biotechnology, 91(3), 577–589. doi:10.1007/s00253-011-3280-9.

    Article  Google Scholar 

  • Liu, J.-M., Xin, X.-J., Li, C.-X., Xu, J.-H., & Bao, J. (2012). Cloning of thermostable cellulase genes of Clostridium thermocellum and their secretive expression in Bacillus subtilis. Applied Biochemistry and Biotechnology, 166(3), 652–662. doi:10.1007/s12010-011-9456-z.

    Article  Google Scholar 

  • Looger, L. L., Dwyer, M. A., Smith, J. J., & Hellinga, H. W. (2003). Computational design of receptor and sensor proteins with novel functions. Nature, 423(6936), 185–190. doi:10.1038/nature01556.

    Article  Google Scholar 

  • Lundell, T. K., Makela, M. R., & Hilden, K. (2010). Lignin-modifying enzymes in filamentous basidiomycetes: Ecological, functional and phylogenetic review. Journal of Basic Microbiology, 50(1), 5–20. doi:10.1002/jobm.200900338.

    Article  Google Scholar 

  • Lynd, L. R., Weimer, P. J., van Zyl, W. H., & Pretorius, I. S. (2002). Microbial cellulose utilization: Fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 66(3), 506. doi:10.1128/mmbr.66.3.506-5772002.

    Article  Google Scholar 

  • Mak, P., McDonnell, D. P., Weigel, N. L., Schrader, W. T., & Omalley, B. W. (1989). Expression of functional chicken oviduct progesterone receptors in yeast (Saccharomyces cerevisiae). Journal of Biological Chemistry, 264(36), 21613–21618.

    Google Scholar 

  • Massai, F., Imperi, F., Quattrucci, S., Zennaro, E., Visca, P., & Leoni, L. (2011). A multitask biosensor for micro-volumetric detection of N-3-oxo-dodecanoyl-homoserine lactone quorum sensing signal. Biosensors and Bioelectronics, 26(8), 3444–3449. doi:10.1016/j.bios.2011.01.022.

    Article  Google Scholar 

  • Modern Water plc. http://www.modernwater.com/monitoring/toxicity. Accessed July 2013.

  • Nakano, M. M., & Zuber, P. (1998). Anaerobic growth of a strict aerobe (Bacillus subtilis). Annual Review of Microbiology, 52, 165–190. doi:10.1146/annurev.micro.52.1.165.

    Article  Google Scholar 

  • Nawabi, P., Bauer, S., Kyrpides, N., & Lykidis, A. (2011). Engineering Escherichia coli for biodiesel production utilizing a bacterial fatty acid methyltransferase. Applied and Environmental Microbiology, 77(22), 8052–8061. doi:10.1128/aem.05046-11.

    Article  Google Scholar 

  • Ni, Y., & Chen, R. (2009). Extracellular recombinant protein production from Escherichia coli. Biotechnology Letters, 31(11), 1661–1670. doi:10.1007/s10529-009-0077-3.

    Article  Google Scholar 

  • Nicholson, W. L., Munakata, N., Horneck, G., Melosh, H. J., & Setlow, P. (2000). Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiology and Molecular Biology Reviews, 64(3), 548– + . doi:10.1128/mmbr.64.3.548-572.2000.

  • Nivens, D. E., McKnight, T. E., Moser, S. A., Osbourn, S. J., Simpson, M. L., & Sayler, G. S. (2004). Bioluminescent bioreporter integrated circuits: Potentially small, rugged and inexpensive whole-cell biosensors for remote environmental monitoring. Journal of Applied Microbiology, 96(1), 33–46. doi:10.1046/j.1365-2672.2003.02114.x.

    Article  Google Scholar 

  • Okochi, M., Kanie, K., Kurimoto, M., Yohda, M., & Honda, H. (2008). Overexpression of prefoldin from the hyperthermophilic archaeum Pyrococcus horikoshii OT3 endowed Escherichia coli with organic solvent tolerance. Applied Microbiology and Biotechnology, 79(3), 443–449. doi:10.1007/s00253-008-1450-1.

    Article  Google Scholar 

  • Peltola, P., Ivask, A., Astrom, M., & Virta, M. (2005). Lead and Cu in contaminated urban soils: Extraction with chemical reagents and bioluminescent bacteria and yeast. Science of the Total Environment, 350(1–3), 194–203. doi:10.1016/j.scitotenv.2005.01.029.

    Article  Google Scholar 

  • Peralta-Yahya, P. P., Ouellet, M., Chan, R., Mukhopadhyay, A., Keasling, J. D., & Lee, T. S. (2011). Identification and microbial production of a terpene-based advanced biofuel. Nature Communications, 2. doi:483 10.1038/ncomms1494.

  • Peterson, R., & Nevalainen, H. (2012). Trichoderma reesei RUT-C30-thirty years of strain improvement. Microbiology-Sgm, 158(1), 58–68. doi:10.1099/mic.0.054031-0.

    Article  Google Scholar 

  • Romero, S., Merino, E., Bolivar, F., Gosset, G., & Martinez, A. (2007). Engineering of Bacillus subtilis for ethanol production: Lactate dehydrogenase plays a key role in fermentative metabolism. Applied and Environmental Microbiology, 73(16), 5190–5198. doi:10.1128/aem.00625-07.

    Article  Google Scholar 

  • Ryu, S., & Karim, M. N. (2011). A whole cell biocatalyst for cellulosic ethanol production from dilute acid-pretreated corn stover hydrolyzates. Applied Microbiology and Biotechnology, 91(3), 529–542. doi:10.1007/s00253-011-3261-z.

    Article  Google Scholar 

  • Sadie, C. J., Rose, S. H., den Haan, R., & van Zyl, W. H. (2011). Co-expression of a cellobiose phosphorylase and lactose permease enables intracellular cellobiose utilisation by Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 90(4), 1373–1380. doi:10.1007/s00253-011-3164-z.

    Article  Google Scholar 

  • Scheller, H. V., & Ulvskov, P. (2010). Hemicelluloses. Annual Review of Plant Biology, 61(61), 263–289. doi:10.1146/annurev-arplant-042809-112315.

    Article  Google Scholar 

  • Schmidt, J. C. (2015). Synthetic biology as late-modern technology. In B. Giese, C. Pade, H. Wigger, A. von Gleich (Eds.), Synthetic biology: Character and impact (pp. 1–30). Berlin: Springer.

    Google Scholar 

  • Shen, C. R., Lan, E. I., Dekishima, Y., Baez, A., Cho, K. M., & Liao, J. C. (2011). Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Applied and Environmental Microbiology, 77(9), 2905–2915. doi:10.1128/aem.03034-10.

    Article  Google Scholar 

  • Shimizu, K., Hayashi, S., Kako, T., Suzuki, M., Tsukagoshi, N., Doukyu, N., et al. (2005). Discovery of glpC, an organic solvent tolerance-related gene in Escherichia coli, using gene expression profiles from DNA microarrays. Applied and Environmental Microbiology, 71(2), 1093–1096. doi:10.1128/aem.71.2.1093-1096.2005.

    Article  Google Scholar 

  • Sommer, M. O. A., Church, G. M., & Dantas, G. (2010). A functional metagenomic approach for expanding the synthetic biology toolbox for biomass conversion. Molecular Systems Biology, 6(1). doi:36010.1038/msb.2010.16.

    Google Scholar 

  • Steen, E. J., Chan, R., Prasad, N., Myers, S., Petzold, C. J., Redding, A., et al. (2008). Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microbial Cell Factories, 7(36). doi:36 10.1186/1475-2859-7-36.

  • Stocker, J., Balluch, D., Gsell, M., Harms, H., Feliciano, J., Daunert, S., et al. (2003). Development of a set of simple bacterial biosensors for quantitative and rapid measurements of arsenite and arsenate in potable water. Environmental Science and Technology, 37(20), 4743–4750. doi:10.1021/es034258b.

    Article  Google Scholar 

  • Stoll, D. (2001). Mapping of genes encoding glycoside hydrolases on the chromosome of Cellulomonas fimi. Canadian Journal of Microbiology, 47(12), 1063–1067. doi:10.1139/cjm-47-12-1063.

    Article  Google Scholar 

  • Suen, G., Weimer, P. J., Stevenson, D. M., Aylward, F. O., Boyum, J., Deneke, J., et al. (2011). The complete genome sequence of Fibrobacter succinogenes S85 reveals a cellulolytic and metabolic specialist. Plos One, 6(4). doi:e1881410.1371/journal.pone.0018814.

    Google Scholar 

  • Suzuki, H., Imaeda, T., Kitagawa, T., & Kohda, K. (2012). Deglycosylation of cellulosomal enzyme enhances cellulosome assembly in Saccharomyces cerevisiae. Journal of Biotechnology, 157(1), 64–70. doi:10.1016/j.jbiotec.2011.11.015.

    Article  Google Scholar 

  • Tauriainen, S., Karp, H., Chang, W., & Virta, M. (1997). Recombinant luminescent bacteria for measuring bioavailable arsenite and antimonite. Applied and Environmental Microbiology, 63(11), 4456–4461.

    Google Scholar 

  • Tauriainen, S., Karp, M., Chang, W., & Virta, M. (1998). Luminescent bacterial sensor for cadmium and lead. Biosensors and Bioelectronics, 13(9), 931–938. doi:10.1016/s0956-5663(98)00027-x.

    Article  Google Scholar 

  • Tsai, S.-L., Oh, J., Singh, S., Chen, R., & Chen, W. (2009). Functional assembly of minicellulosomes on the Saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production. Applied and Environmental Microbiology, 75(19), 6087–6093. doi:10.1128/aem.01538-09.

    Article  Google Scholar 

  • UK Synthetic Biology Roadmap Coordination Group. (2012). A synthetic biology roadmap for the UK. In TSB Technology Strategy Board (Ed.). Swindon, UK.

    Google Scholar 

  • van Bloois, E., Winter, R. T., Kolmar, H., & Fraaije, M. W. (2011). Decorating microbes: Surface display of proteins on Escherichia coli. Trends in Biotechnology, 29(2), 79–86. doi:10.1016/j.tibtech.2010.11.003.

    Article  Google Scholar 

  • van der Meer, J. R., & Belkin, S. (2010). Where microbiology meets microengineering: Design and applications of reporter bacteria. Nature Reviews Microbiology, 8(7), 511–522. doi:10.1038/nrmicro2392.

    Article  Google Scholar 

  • van der Meer, J. R., Tropel, D., & Jaspers, M. (2004). Illuminating the detection chain of bacterial bioreporters. Environmental Microbiology, 6(10), 1005–1020. doi:10.1111/j.1462-2920.2004.00655.x.

    Article  Google Scholar 

  • van Wyk, N., den Haan, R., & van Zyl, W. H. (2010). Heterologous co-production of Thermobifida fusca Cel9A with other cellulases in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 87(5), 1813–1820. doi:10.1007/s00253-010-2618-z.

    Article  Google Scholar 

  • Vinuselvi, P., & Lee, S. K. (2012). Engineered Escherichia coli capable of co-utilization of cellobiose and xylose. Enzyme and Microbial Technology, 50(1), 1–4. doi:10.1016/j.enzmictec.2011.10.001.

    Article  Google Scholar 

  • Wackwitz, A., Harms, H., Chatzinotas, A., Breuer, U., Vogne, C., & van der Meer, J. R. (2008). Internal arsenite bioassay calibration using multiple bioreporter cell lines. Microbial Biotechnology, 1(2), 149–157. doi:10.1111/j.1751-7915.2007.00011.x.

    Article  Google Scholar 

  • Wang, B., & Buck, M. (2012). Customizing cell signaling using engineered genetic logic circuits. Trends in Microbiology, 20(8), 376–384. doi:10.1016/j.tim.2012.05.001.

    Article  Google Scholar 

  • Wang, C., Yoon, S. H., Shah, A. A., Chung, Y. R., Kim, J. Y., Choi, E. S., et al. (2010). Farnesol production from Escherichia coli by harnessing the exogenous mevalonate pathway. Biotechnology and Bioengineering, 107(3), 421–429. doi:10.1002/bit.22831.

    Article  Google Scholar 

  • Wang, C., Yoon, S. H., Jang, H. J., Chung, Y. R., Kim, J. Y., Choi, E. S., et al. (2011). Metabolic engineering of Escherichia coli for alpha-farnesene production. Metabolic Engineering, 13(6), 648–655. doi:10.1016/j.ymben.2011.08.001.

    Article  Google Scholar 

  • Wargacki, A. J., Leonard, E., Win, M. N., Regitsky, D. D., Santos, C. N. S., Kim, P. B., et al. (2012). An engineered microbial platform for direct biofuel production from brown macroalgae. Science, 335(6066), 308–313. doi:10.1126/science.1214547.

    Article  Google Scholar 

  • Wen, F., Sun, J., & Zhao, H. (2010). Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol. Applied and Environmental Microbiology, 76(4), 1251–1260. doi:10.1128/aem.01687-09.

    Article  Google Scholar 

  • Wilson, D. B. (2009). Evidence for a novel mechanism of microbial cellulose degradation. Cellulose, 16(4), 723–727. doi:10.1007/s10570-009-9326-9.

    Article  Google Scholar 

  • Wisselink, H. W., Toirkens, M. J., Wu, Q., Pronk, J. T., & van Maris, A. J. A. (2009). Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains. Applied and Environmental Microbiology, 75(4), 907–914. doi:10.1128/aem.02268-08.

    Article  Google Scholar 

  • Woodruff, L. B. A., Boyle, N. R., & Gill, R. T. (2013a). Engineering improved ethanol production in Escherichia coli with a genome-wide approach. Metabolic Engineering, 17, 1–11. doi:10.1016/j.ymben.2013.01.006.

    Article  Google Scholar 

  • Woodruff, L. B. A., Pandhal, J., Ow, S. Y., Karimpour-Fard, A., Weiss, S. J., Wright, P. C., et al. (2013b). Genome-scale identification and characterization of ethanol tolerance genes in Escherichia coli. Metabolic Engineering, 15, 124–133. doi:10.1016/j.ymben.2012.10.007.

    Article  Google Scholar 

  • Xie, G., Bruce, D. C., Challacombe, J. F., Chertkov, O., Detter, J. C., Gilna, P., et al. (2007). Genome sequence of the cellulolytic gliding bacterium Cytophaga hutchinsonii. Applied and Environmental Microbiology, 73(11), 3536–3546. doi:10.1128/aem.00225-07.

    Article  Google Scholar 

  • Yamada, R., Taniguchi, N., Tanaka, T., Ogino, C., Fukuda, H., & Kondo, A. (2010). Cocktail delta-integration: A novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains. Microbial Cell Factories, 9. doi:3210.1186/1475-2859-9-32.

    Google Scholar 

  • Yamada, R., Taniguchi, N., Tanaka, T., Ogino, C., Fukuda, H., & Kondo, A. (2011). Direct ethanol production from cellulosic materials using a diploid strain of Saccharomyces cerevisiae with optimized cellulase expression. Biotechnology for Biofuels, 4. doi:810.1186/1754-6834-4-8.

    Google Scholar 

  • Yoshida, K., Inoue, K., Takahashi, Y., Ueda, S., Isoda, K., Yagi, K., et al. (2008). Novel carotenoid-based biosensor for simple visual detection of arsenite: Characterization and preliminary evaluation for environmental application. Applied and Environmental Microbiology, 74(21), 6730–6738. doi:10.1128/aem.00498-08.

    Article  Google Scholar 

  • You, C., Zhang, X.-Z., Sathitsuksanoh, N., Lynd, L. R., & Zhang, Y. H. P. (2012). Enhanced microbial utilization of recalcitrant cellulose by an ex vivo cellulosome-microbe complex. Applied and Environmental Microbiology, 78(5), 1437–1444. doi:10.1128/aem.07138-11.

    Article  Google Scholar 

  • Zhang, X.-Z., & Zhang, Y.-H. P. (2010). One-step production of biocommodities from lignocellulosic biomass by recombinant cellulolytic Bacillus subtilis: Opportunities and challenges. Engineering in Life Sciences, 10(5), 398–406. doi:10.1002/elsc.201000011.

    Article  Google Scholar 

  • Zhang, X.-Z., Sathitsuksanoh, N., Zhu, Z., & Zhang, Y. H. P. (2011). One-step production of lactate from cellulose as the sole carbon source without any other organic nutrient by recombinant cellulolytic Bacillus subtilis. Metabolic Engineering, 13(4), 364–372. doi:10.1016/j.ymben.2011.04.003.

    Article  Google Scholar 

  • Zhou, S. D., & Ingram, L. O. (2001). Simultaneous saccharification and fermentation of amorphous cellulose to ethanol by recombinant Klebsiella oxytoca SZ21 without supplemental cellulase. Biotechnology Letters, 23(18), 1455–1462. doi:10.1023/a:1011623509335.

    Article  Google Scholar 

  • Zhou, S. D., Davis, F. C., & Ingram, L. O. (2001). Gene integration and expression and extracellular secretion of Erwinia chrysanthemi endoglucanase CelY (celY) and CelZ (celZ) in ethanologenic Klebsiella oxytoca P2. Applied and Environmental Microbiology, 67(1), 6–14. doi:10.1128/aem.67.1.6-14.2001.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge funding from EPSRC, BBSRC, Wellcome Trust, Darwin Trust, and Higher Education Commission of Pakistan, as well as editorial assistance from Dr. Yuhua Hu, University of Edinburgh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher E. French .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

French, C.E. et al. (2015). Beyond Genetic Engineering: Technical Capabilities in the Application Fields of Biocatalysis and Biosensors. In: Giese, B., Pade, C., Wigger, H., von Gleich, A. (eds) Synthetic Biology. Risk Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-02783-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02783-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02782-1

  • Online ISBN: 978-3-319-02783-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics