Skip to main content

Physiology and Pharmacology of the GABA System: Focus on GABA Receptors

  • Chapter
  • First Online:
GABA and Sleep

Abstract

Wake and sleep states have long been known to be implemented by distinct synchronized neural oscillations. Changes in the pattern of neural oscillations have recently been recognized to be largely due to the impact of GABAergic regulation. Inhibitory interneurons are the main players in sculpting neuronal rhythms, controlling spike timing, selecting network assemblies and implementing brain states. A rich diversity of GABAergic interneurons imprints its activity, mediated through a comparably rich diversity of GABAA receptors. Pharmacologically, there is a clear division of labor among GABAA receptor subtypes. Sedation, a common denominator of GABAA receptor-related hypnotics, is mediated via α1GABAA receptors. However, the hypnotic EEG finger print of diazepam is largely linked to α2GABAA receptors, pointing to two distinct receptor systems for sleep regulation. Anxiety is a major impairment of sleep, which can be selectively controlled by α2 GABAA receptor modulators. Chronic pain, another frequent sleep impediment can be alleviated by α2/GABAA receptor modulators. Chronic pain, another frequent sleep impediment can be alleviated by α23GABAA receptor modulators. Finally, cognitive deficits can be pharmacologically addressed by partial inverse agonists of α5GABAA receptors. Thus, in the future, it is conceivable that disease-specific hypnotics could be developed by combining the modulation of suitable GABAA receptor subtypes. GABAB receptors play a pharmacological role as target of γ-hydroxybutyrate, which is frequently used in the treatment of narcolepsy. Thus, as our understanding of GABAergic deficits in sleep disturbances increases, the strategic targeting of GABA receptor subtypes may represent a new approach for the personalized pharmacological management of sleep disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saper CB, Scammeli TE, Lu J (2005) Hypothalamic regulation of sleep and circadian rhythms. Nature 437:1257–1263

    Article  PubMed  CAS  Google Scholar 

  2. Borbély AA (1982) A two process model of sleep regulation. Hum Neurobiol 1:195–204

    PubMed  Google Scholar 

  3. Sherin JE, Shiromani PJ, McCarley RW, Saper CB (1996) Activation of ventrolateral preoptic neurons during sleep. Science 271:216–219

    Article  PubMed  CAS  Google Scholar 

  4. Pace-Schott EF, Hobson JA (2002) The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nat Rev Neurosci 3:591–605

    PubMed  CAS  Google Scholar 

  5. Buszaki G, Draguhn A (2004) Neuronal oscillations and cortical networks. Science 304:1926–1929

    Article  Google Scholar 

  6. Klausberger T, Somogyi P (2008) Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 321:53–57

    Article  PubMed  CAS  Google Scholar 

  7. Möhler H (2008) GABAA-benzodiazepine receptors as targets for novel hypnotics. In: Pandi SR et al (eds) Sleep disorders. Informa, London, pp 206–219

    Google Scholar 

  8. Möhler H (2007) Molecular regulation of cognitive functions and developmental plasticity: impact of GABAA receptors. J Neurochem 102:1–12

    Article  PubMed  Google Scholar 

  9. Sieghart W (2006) Structure, pharmacology and function of GABAA receptors. Adv Pharmacol 54:231–263

    Article  PubMed  CAS  Google Scholar 

  10. Ernst M, Brauchart D, Boresch S, Sieghart W (2003) Comparative modeling of GABAA receptors: limits, insights, future developments. J Neurosci 4:933–943

    Google Scholar 

  11. Mody I, Pearce RA (2004) Diversity of inhibitory neurotransmission through GABA(A) receptors. Trends Neurosci 27:569–575

    Article  PubMed  CAS  Google Scholar 

  12. Möhler H, Fritschy JM, Vogt K, Crestani F, Rudolph U (2005) Pathophysiology and pharmacology of GABAA receptors. In: Holsboer F, Ströhle A (eds) Anxiety and anxiolytic drugs, handbook of experimental pharmacology, vol 169. Springer, Berlin, pp 225–247

    Chapter  Google Scholar 

  13. Möhler H (2009) Role of GABAA receptors in cognition. Biochem Soc Trans 37:1328–1333

    Article  PubMed  Google Scholar 

  14. Olsen RW, Sieghart W (2008) International Union of Pharmacology. LXX. Subtypes of gamma-aminobutyric acid(A) receptors: classification on the basis of subunit composition, pharmacology, and function. Update. Pharmacol Rev 60:243–260

    Article  PubMed  CAS  Google Scholar 

  15. Barnard EA, Skolnick P, Olsen RW, Möhler H, Sieghart W, Biggio G, Braestrup C, Bateson AN, Langer SZ (1998) Subtypes of γ-aminobutyric acidA receptors: classification on the bases of subunit structure and receptor function Pharmacol. Reviews 50:291–313

    CAS  Google Scholar 

  16. Dämgen K, Lüddens H (1999) Zaleplon displays a selecitvity to recombinant GABAA receptors different from zolpidem, zopiclone and benzodiazepines. Neurosci Res Commun 25:139–148

    Article  Google Scholar 

  17. Foster AC, Pelleymounter MA, Cullen MJ, Lewis D, Joppa M, Chen TK, Bozigian HP, Gross RS, Gogas KR (2004) In vivo pharmacological characterization of indiplon, a novel pyrazolopyrimidine sedative-hypnotic. J Pharmacol Exp Ther 311:547–559

    Article  PubMed  CAS  Google Scholar 

  18. McKernan RM, Rosahl TW, Reynolds DS, Sur C, Wafford KA, Atack JR, Farrar S, Myers J, Cook G, Ferris P et al (2000) Sedative but not anxiolytic properties of benzodiazepines are mediated by the GABAA receptor α1 subtype. Nat Neurosci 3:587–592

    Article  PubMed  CAS  Google Scholar 

  19. Knabl J, Witschi R, Hösl K, Reinold H, Zeilhofer UB, Ahmadi S, Brockhaus J, Sergejeva M, Hess A, Brune K, Fritschy JM, Rudolph U, Möhler H, Zeilhofer HU (2008) Reversal of pathological pain through specific spinal GABAA receptor subtypes. Nature 451:330–334

    Article  PubMed  CAS  Google Scholar 

  20. Lippa A, Czobor P, Stark J, Beer B, Kostakis E, Gravielle M, Bandyopadhyay S, Russek SJ, Gibbs TT, Farb DH, Skolnick P (2005) Selective anxiolytic activity produced by ocinaplon, a GABA(A) receptor modulator. Proc Natl Acad Sci USA 102:7380–7385

    Article  PubMed  CAS  Google Scholar 

  21. Griebel G, Perrault G, Simiand J, Cohen C, Granger P, Depoortere H, Francon D, Avenet P, Schoemaker H, Evanno Y, Sevrin M, George P, Scatton B (2003) SL651498, a GABAA receptor agonist with subtype-selective efficacy, as a potential treatment for generalized anxiety disorder and muscle spasms. CNS Drug Rev 9:3–20

    Article  PubMed  CAS  Google Scholar 

  22. Knabl J, Zeilhofer UB, Crestani F, Rudolph U, Zeilhofer HU (2009) Genuine antihyperalgesia by systemic diazepam revealed by experiments in GABA-A receptor point-mutated mice. Pain 141:233–238

    Article  PubMed  CAS  Google Scholar 

  23. Atack JR, Wafford K, Tye SJ, Cook SM, Sohal B, Pike A, Sur C, Melillo D, Bristow L, Bromidge F (2006) TPA023, an agonist selective for α2- and α3-containing GABAA receptors, is a non-sedating anxiolytic in rodents and primates. J Pharmacol Exp Ther 316:410–422

    Article  PubMed  CAS  Google Scholar 

  24. Sheppard DR, WF FRL, Garrett EM, Stanley JL, Tye SJ, Goodacre S, Lincoln RJ, Cook SM, Conley R (2005) Evidence for a significant role of alpha3-containing GABAA receptors in mediating the anxiolytic effects of benzodiazepines. J Neurosci 25:10682–10688

    Article  PubMed  Google Scholar 

  25. Langen B, Egerland U, Bernoster K, Dost R, Unverferth K, Rundfeldt C (2005) Characterization in rats of the anxiolytic potential of ELB139 [1-(4-chlorophenyl)-4-piperidin-1-yl-1, 5-dihydro-imidazol-2-on], a new agonist at the benzodiazepine binding site of the GABAA receptor. J Pharmacol Exp Ther 314:717–724

    Article  PubMed  CAS  Google Scholar 

  26. Mirza NR, Larsen JS, Mathiasen C, Jacobsen TA, Munro G, Erichsen HK, Nielsen AN, Troelsen KB, Nielsen EØ, Ahring PK (2008) NS11394, a unique subtype-selective GABAA receptor positive allosteric modulator: in vitro actions, pharmacokinetic properties and in vivo anxiolytic efficacy. J Pharmcol Exp Ther 327:954–968

    Article  CAS  Google Scholar 

  27. Munro G, Lopez-Garcia JA, Rivera-Arconada I, Erichsen HK, Nielsen EØ, Larsen JS, Ahring PK, Mirza NR (2008) Comparison of the novel subtype-selective GABAA receptor-positive allosteric modulator NS11394 with diazepam, zolpidem, bretazenil and gaboxadol in rat models of inflammatory and neuropathic pain. J Pharmcol Exp Ther 327:969–981

    Article  CAS  Google Scholar 

  28. Atack JR, Hutson PH, Collinson N, Marchall G, Bentley G, Moyes C, Cook SM, Collins I, Wafford K, McKernan RM, Dawson GR (2005) Anxiogenic properties of an inverse agonist selective for α3 subunit-containing GABAA receptors. Br J Pharmacol 144:357–366

    Article  PubMed  CAS  Google Scholar 

  29. Chambers MS, Atack JR, Carling RW, Collinson N, Cook SM, Dawson GR, Ferris P, Hobbs SC, O'Connor D, Marshall G, Rycroft W et al (2004) An orally bioavailable, functionally selective inverse agonist at the benzodiazepine site of GABAA alpha5 receptors with cognition enhancing properties. J Med Chem 47:5829–5832

    Article  PubMed  CAS  Google Scholar 

  30. Navarro JF, Buron E, Martin-Lopez M (2004) Behavioral profile of L-655 708, a selective ligand for the benzodiazepine site of GABAA receptors which contain the α5 subunit in social encounters between male mice. Aggress Behav 30:319–325

    Article  CAS  Google Scholar 

  31. Nutt DJ, Besson M, Wilson SJ, Dawson GR, Lingford-Hughes R (2007) Blockade of alcohol’s amnestic activity in humans by an alpha5 subtype benzodiazepine receptor inverse agonist. Neuropharmacology 53:810–820

    Article  PubMed  CAS  Google Scholar 

  32. Sternfeld F, Carling RW, Jelley RA, Ladduwahetty T, Merchant KJ, Moore KW, Reeve AJ, Street LJ, O'Connor D, Sohal B et al (2004) Selective, orally active gamma-amonobutyric acidA alpha5 receptor inverse agonists as cognition enhancers. J Med Chem 47:2176–2179

    Article  PubMed  CAS  Google Scholar 

  33. Dawson GR, Maubach KA, Collins N, Cobain M, Everitt BJ, MacLeod AM, Choudhury HI, McDonald LM, Pillai G, Rycroft W et al (2006) An inverse agonist selective for α5 subunit containing GABAA receptor enhances cognition. J Pharmacol Exp Ther 316:1335–1345

    Article  PubMed  CAS  Google Scholar 

  34. Ballard TM, Knoflach F, Prinssen E, Borroni E, Vivian JA, Basile J, Gasser R, Moreau JL, Wettstein JG, Buettelmann B et al (2009) RO4938581, a novel cognitive enhancer acting at GABAA alpha5 subunit-containing receptors. Psychopharmacol (Berl) 202:207–223

    Article  CAS  Google Scholar 

  35. Wallner M, Hanchar HJ, Olsen RW (2003) Ethanol enhances alpha 4 beta3 delta and alpha 6 beta 3 delta gamma-aminobutyric acid type A receptors at low concentration known to affect humans. Proc Natl Acad Sci USA 100:15218–15223

    Article  PubMed  CAS  Google Scholar 

  36. Belelli D, Lambert JJ (2005) Neurosteroids: endogenous regulators of the GABA(A) receptor. Nat Rev Neurosci 6:565–575

    Article  PubMed  CAS  Google Scholar 

  37. Rudolph U, Antkowiak B (2004) Molecular and neuronal substrates for general anaesthetics. Nat Rev Neurosci 5:709–720

    Article  PubMed  CAS  Google Scholar 

  38. Storustovu S, Ebert B (2003) Gaboxadol: in vitro interaction studies with benzodiazepines and ethanol suggest functional selectivity. Eur J Pharmacol 467:49–56

    Article  PubMed  CAS  Google Scholar 

  39. Krogsgaard-Larsen P, Frølund B, Liljefors T, Ebert B (2004) GABA(A) agonists and partial agonists: THiP (Gaboxadol) as a non-opioid analgesic and a novel type of hypnotic. Biochem Pharmacol 68:1573–1580

    Article  PubMed  CAS  Google Scholar 

  40. Haefely W, Martin JR, Schoch P (1990) Novel anxiolytics that act as partial agonists at benzodiazepine receptors. Trends Pharmacol Sci 11:452–456

    Article  PubMed  Google Scholar 

  41. Atack JR, Pike A, Marshall G, Stanley J, Lincoln R, Cook SM, Lewis RT, Blackaby WP, Goodacre SC, McKernan RM (2006) The in vivo properties of pagoclone in rat are most likely mediated by 5'-hydroxy pagoclone. Neuropharmacology 50:677–689

    Article  PubMed  CAS  Google Scholar 

  42. Bianchi MT, McDonald RL (2003) Neurosteroids shift partial agonist activation of GABA(A) receptor channels from low- to high-efficacy gating patterns. J Neurosci 23:10934–10943

    PubMed  CAS  Google Scholar 

  43. Gao B, Fritschy JM, Benke D, Möhler H (1993) Neuron-specific expression of GABAA receptor subtypes: differential associations of the α1- and α3-subunits with serotonergic and GABAergic neurons. Neuroscience 54:881–892

    Article  PubMed  CAS  Google Scholar 

  44. Sohal VS, Keist R, Rudolph U, Huguenard JR (2003) Dynamic GABAA receptor subtype-specific modulation of the synchrony and duration of thalamic oscillations. J Neurosci 23:3649–3657

    PubMed  CAS  Google Scholar 

  45. Jacob TC, Moss SJ, Jurd R (2008) GABAA receptor trafficking and its role in the dynamic modulation of neuronal inhibition. Nat Rev Neurosci 9:331–343

    Article  PubMed  CAS  Google Scholar 

  46. van Rijnsoever et al (2004) Requirement of α5 GABAA receptors for the development of tolerance to the sedative action of diazepam in mice. J Neurosci 24:6785–6790

    Article  Google Scholar 

  47. Vyazosvskiy VV, Tobler I (2005) Theta activity in the waking EEG is a marker of sleep propensity in the rat. Brain Res 1050:64–71

    Article  Google Scholar 

  48. Rudolph U, Crestani F, Benke D, Brünig I, Benson JA, Fritschy JM, Martin JR, Bluethmann H, Möhler H (1999) Benzodiazepine actions mediated by specific γ-aminobutyric acidA receptor subtypes. Nature 401:796–800

    Article  PubMed  CAS  Google Scholar 

  49. Crestani F, Martin JR, Möhler H, Rudolph U (2000) Mechanism of action of the hypnotic zolpidem in vivo. Br J Pharmacol 131:1251–1254

    Article  PubMed  CAS  Google Scholar 

  50. Huckle R (2004) Gaboxadol. Curr Opin Investig Drugs 5:766–773

    PubMed  CAS  Google Scholar 

  51. Tobler I, Kopp C, Deboer T, Rudolph U (2001) Diazepam-induced changes in sleep: role of the α1GABAA receptor subtype. Proc Natl Acad Sci USA 98:6464–6469

    Article  PubMed  CAS  Google Scholar 

  52. Kopp C, Rudolph U, Löw K, Tobler I (2004) Modulation of rhythmic brain activity by diazepam: GABA(A) receptor subtype and state specificity. Proc Natl Acad Sci USA 101: 3674–3679

    Article  PubMed  CAS  Google Scholar 

  53. Kopp C, Rudolph U, Tobler I (2004) Sleep EEG changes after zolpidem in mice. Neuroreport 15:2299–2302

    Article  PubMed  CAS  Google Scholar 

  54. Fritschy JM, Möhler H (1995) GABAA receptor heterogeneity in the adult rat brain: differential regional and cellular distribution of seven major subunits. J Comp Neurol 359:154–194

    Article  PubMed  CAS  Google Scholar 

  55. Pirker S, Schwarzer C, Wieselthaler A, Sieghart W, Sperk G (2000) GABAA receptors: Immunocytochemical distribution of 13 subunits in the adult rat brain. Neuroscience 101: 815–850

    Article  PubMed  CAS  Google Scholar 

  56. Kopp C, Rudolph U, Keist R (2003) Diazepam-induced changes on sleep and the EEG spectrum in mice: role of the alpha3-GABA(A) receptor subtype. Eur J Neurosci 17:2226–2230

    Article  PubMed  CAS  Google Scholar 

  57. Yee BK, Keist R, von Böhmer L, Studer R, Benke D, Hagenbuch N, Dong Y, Malenka RC, Fritschy JM, Bluethmann H (2005) A schizophrenia-related sensorimotor deficit links α3-containing GABAA receptors to a dopamine hyperfunction. Proc Natl Acad Sci USA 102: 17154–17159

    Article  PubMed  CAS  Google Scholar 

  58. Wafford KA, Ebert B (2006) Gaboxadol – a new awakening in sleep. Curr Opin Pharmacol 6:30–36

    Article  PubMed  CAS  Google Scholar 

  59. Lancel M, Steiger A (1999) Sleep and its modulation by drugs that affect GABAA receptor function. Angew Chem Int Ed Engl 111:2852–2864

    Article  Google Scholar 

  60. Winsky-Sommerer R, Vyazovskiy VV, Homanics GE, Tobler I (2007) The EEG effects of THIP (Gaboxadol) on sleep and waking are mediated by the GABA (A)delta-subunit-containing receptors. Eur J Neurosci 25:1893–1899

    Article  PubMed  Google Scholar 

  61. Vyazovskiy VV, Kopp C, Bösch G, Tobler I (2005) The GABAA receptor agonist ThiP alters the EEG in waking and sleep of mice. Neuropharmacology 48:617–626

    Article  PubMed  CAS  Google Scholar 

  62. Löw K, Crestani F, Keist R, Benke D, Brünig I, Benson JA, Fritschy JM, Rülicke T, Bluethmann H, Möhler H et al (2000) Molecular and neuronal substrate for the selective attenuation of anxiety. Science 290:131–134

    Article  PubMed  Google Scholar 

  63. Crestani F, Keist R, Fritschy JM, Benke D, Vogt K, Prut L, Bluethmann H, Möhler H, Rudolph U (2002) Trace fear conditioning involves hippocampal α5 GABAA receptors. Proc Natl Acad Sci USA 99:8980–8985

    Article  PubMed  CAS  Google Scholar 

  64. Collins I, Moyes C, Davey WB, Rowley M, Bromidge FA, Quirk K, Atack JR, McKernan RM, Thompson SA, Wafford K et al (2002) 3-Heteroaryl-2-pyridones: benzodiazepine site ligands with functional delectivity for alpha 2/alpha 3-subtypes of human GABA(A) receptor-ion channels. J Med Chem 45:1887–900

    Article  PubMed  CAS  Google Scholar 

  65. Dawson GR, Collinson N, Atack JR (2005) Development of subtype selective GABAA modulators. CNS Spectr 10:21–27

    PubMed  Google Scholar 

  66. Rudolph U, Möhler H (2006) GABA-based therapeutic approaches: GABAA receptor subtype functions. Curr Opin Pharmacol 6:18–23

    Article  PubMed  CAS  Google Scholar 

  67. Atack JR (2008) GABAA receptor subtype-selective efficacy: TPA023, an alpha2/ alpha3 selective non-sedating anxiolytic and alpha5 IA, an alpha5 selective cognition enhancer. CNS Neurosci Ther 14:25–35

    Article  PubMed  CAS  Google Scholar 

  68. Zeilhofer HU, Möhler H, Di Lio A (2009) GABAergic analgesia – new insights from mutant mice and subtype-s selective agonists. Trends Pharmacol Sci 30:397–402

    Article  PubMed  CAS  Google Scholar 

  69. Collinson N, Kuenzi FM, Jarolimek W, Maubach KA, Cothliff R, Sur C, Smith A, Out FM, Howell O, Atack JR et al (2002) Enhanced learning and memory and altered GABAergic synaptic transmission in mice lacking the α5 subunit of the GABAA receptor. J Neurosci 22:5572–5580

    PubMed  CAS  Google Scholar 

  70. Stephan KE, Friston KJ, Frith CD (2009) Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring schizophrenia. Schizophr Bull 35:509–527

    Article  PubMed  Google Scholar 

  71. Lewis DA, Hashimoto T, Volk DW (2005) Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 6:312–324

    Article  PubMed  CAS  Google Scholar 

  72. Fritschy JM, Johnson DK, Möhler H, Rudolph U (1998) Independent assembly and subcellular targeting of GABAA receptor subtypes demonstrated in hippocampal and olfactory neurons in vivo. Neurosci Lett 249:99–102

    Article  PubMed  CAS  Google Scholar 

  73. Lewis DA, Cho RY, Carter CS, Erklund K, Forster S, Kelly MA, Montrose D (2008) Subunit-selective modulation of GABA type A receptor neurotransmission and cognition in schizophrenia. Am J Psychiatry 165:1585–1593

    Article  PubMed  Google Scholar 

  74. Ator N, Weerts EM, Kaminski BJ, Kautz MA, Griffiths RR (2000) Zaleplon and triazolam physical dependence assessed across increasing doses under a once-daily dosing regimen in baboons. Drug Alcohol Depend 61:69–84

    Article  PubMed  CAS  Google Scholar 

  75. Rowlett JK, Platt DM, Lelas S, Atack JR, Dawson GR (2005) Different GABAA receptor subtypes mediate the anxiolytic, abuse-related and motor effects of benzodiazepine-like drugs in primates. Proc Natl Acad Sci USA 102:915–920

    Article  PubMed  CAS  Google Scholar 

  76. Ator N (2005) Contribution of GABAA receptor subtype selectivity to abuse liability and dependence potential of pharmacological treatments for anxiety and sleep disorders. CNS Spectr 10:31–39

    PubMed  Google Scholar 

  77. Licata SC, Platt DM, Cook JM, Sarma PV, Griebel G, Rowlett JK (2005) Contribution of GABAA receptor subtypes to the anxiolytic-like, motor and discriminative stimulus effects of benzodiazepines: studies with the functionally selective ligand SL 651 498. J Pharmacol Exp Ther 313:1118–1125

    Article  PubMed  CAS  Google Scholar 

  78. Ulrich D, Bettler B (2007) GABAB receptors: synaptic functions and mechanisms of diversity. Curr Opin Neurobiol 17:298–303

    Article  PubMed  CAS  Google Scholar 

  79. Perez-Garci E, Gassmann M, Bettler B, Larkum ME (2006) The GABAB1b isoform mediates long-lasting inhibition of dendritic Ca2+ spikes in layer 5 somatosensory pyramidal neurons. Neuron 50:603–616

    Article  PubMed  CAS  Google Scholar 

  80. Scanziani M (2000) GABA spillover activates postsynaptic GABAB receptors to control rhythmic hippocampal activity. Neuron 25:673–681

    Article  PubMed  CAS  Google Scholar 

  81. Matsuki T, Nomiyama M, Takahira H, Hirashima N, Kunita S, Takahashi S, Yagami K, Kilduff TS, Bettler B, Yanagisawa M, Sakurai T (2009) Selective loss of GABAB receptors in orexin-producing neurons results in disrupted sleep/wakefulness architecture. Proc Natl Acad Sci USA 106:4459–4464

    Article  PubMed  CAS  Google Scholar 

  82. Kaupman K, Cryan JF (2003) Specific GHB binding sites but loss of pharmacological effects of GHB in GABAB(1)-deficit mice. Eur J Neurosci 18:2722–2730

    Article  Google Scholar 

  83. Lingenhoel K, Brom R, Heid J, Beck P, Froestl W, Kaupmann K, Bettler B, Mosbacher J (1999) γ-Hydroxybutyrate is a weak agonist at recombinant GABAB receptors. Neuropharmacology 38:1667–1673

    Article  Google Scholar 

  84. Feldman NT (2009) Xyrem safety. The debate continues. Sleep Med 10:405–406

    Article  PubMed  Google Scholar 

  85. Crunelli V, Emri Z, Leresche N (2006) Unravelling the brain targets of γ-hydroxybutyric acid. Curr Opin Pharmacol 6:44–52

    Article  PubMed  CAS  Google Scholar 

  86. Carter LP, Koek W, France CP (2009) Behavioral analyses of GHB: receptor mechanisms. Pharmacol Ther 121:100–111

    Article  PubMed  CAS  Google Scholar 

  87. Bowery NG (2006) GABAB receptor: a site of therapeutic benefit. Curr Opin Pharmacol 6:37–47

    Article  PubMed  CAS  Google Scholar 

  88. Cyran JF, Kaupman K (2005) Don’t worry “B” happy: a role for GABAB receptors in anxiety and depression. Trends Pharamcol Sci 26:36–43

    Article  Google Scholar 

  89. Jacobson LH, Kelly PH (2007) Specific roles of GABAB(1) receptor isoforms in cognition. Behav Brain Res 181:158–162

    Article  PubMed  CAS  Google Scholar 

  90. Tan KR, Brown M, Labouèbe G, Yvon C, Creton C, Fritschy JM, Rudolph U, Lüscher C (2010) Neural bases for addictive properties of benzodiazepines. Nature 463:769–774

    Google Scholar 

  91. Jacobson LH, Cryan JF (2008) Evaluation of the anxiolytic-like profile of the GABAB receptor positive modulator CGP7930 in rodents. Neuropharmacol 54:854–862

    Google Scholar 

  92. Möhler H (2009) GABAA benzodiazepine receptors as targets for new hypnotics In: Pandi-Perumal, Verster, Monit, Lader, Langer (eds) Sleep Pharmacology, basic science and clinical applications. pp 206–219

    Google Scholar 

  93. Spencer KM, Nestor PG, Perlmutter R et al (2004) Neural synchrony indexes disordered perception and cognition in schizophrenia. Proc Natl Acad Sci USA 101:17288–17293

    Article  PubMed  CAS  Google Scholar 

  94. Cho RY, Konecky RO, Carter CS (2006) Impairments in frontal cortical g-synchrony and cognitive control in schizophrenia. Proc Natl Acad Sci USA 103:19878–19883

    Article  PubMed  CAS  Google Scholar 

  95. Tan KR, Brown M, Labouèbe G, Yvon C, Fritschy JM, Rudolph U, Lüscher C (2010) Neural bases for addictive properties of benzodiazepines. Nature 463:769–774

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanns Möhler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Birkhäuser Basel

About this chapter

Cite this chapter

Möhler, H. (2010). Physiology and Pharmacology of the GABA System: Focus on GABA Receptors. In: Monti, J., Pandi-Perumal, S., Möhler, H. (eds) GABA and Sleep. Springer, Basel. https://doi.org/10.1007/978-3-0346-0226-6_1

Download citation

Publish with us

Policies and ethics