Skip to main content

Towards Cancer Patients Classification Using Liquid Biopsy

  • Conference paper
  • First Online:
Predictive Intelligence in Medicine (PRIME 2021)

Abstract

Liquid biopsy is a useful, minimally invasive diagnostic and monitoring tool for cancer disease. Yet, developing accurate methods, given the potentially large number of input features, and usually small datasets size remains very challenging.

Recently, a novel feature parameterization based on the RNA-sequenced platelet data which uses the biological knowledge from the Kyoto Encyclopedia of Genes and Genomes, combined with a classifier based on the Convolutional Neural Network (CNN), allowed significantly improving the classification accuracy. In this work, we take a closer look at this approach and find that similar results can be obtained using significantly smaller models. Additionally, competitive results were achieved using gradient boosting. Since it has another advantage of adding interpretability to the model, we further analyze it in this work.

This work has been partially supported by Statutory Funds of Electronics, Telecommunications and Informatics Faculty, Gdansk University of Technology. This work was supported in part through the European Regional Development Fund as part of the Project entitled: Academy of Innovative Applications of Digital Technologies under Grant The Operational Programme “Digital Poland” 2014-2020 number POPC.03.02.00-00-0001/20-00. This research was supported by the SONATA grant of the National Science Centre (2018/31/D/NZ5/01263) and Medical University of Gdańsk statutory work (ST-23, 02-0023/07).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adler, A.S., et al.: An integrative analysis of colon cancer identifies an essential function for PRPF6 in tumor growth. Genes Dev. 28(10), 1068–1084 (2014)

    Article  Google Scholar 

  2. Best, M.G., In ’t Veld, S.G.J.G., Sol, N., Wurdinger, T.: RNA sequencing and swarm intelligence-enhanced classification algorithm development for blood-based disease diagnostics using spliced blood platelet RNA. Nat. Protoc. 14(4), 1206–1234 (2019)

    Google Scholar 

  3. Best, M.G., et al.: Swarm intelligence-enhanced detection of non-small-cell lung cancer using tumor-educated platelets. Cancer Cell 32(2), 238–252 (2017)

    Article  Google Scholar 

  4. Burges, C.J.: From ranknet to lambdarank to lambdamart: An overview. Technical report 23–581 (2010)

    Google Scholar 

  5. Cecotti, H., Graser, A.: Convolutional neural networks for p300 detection with application to brain-computer interfaces. IEEE Trans. Pattern Anal. Mach. Intell. 33(3), 433–445 (2010)

    Article  Google Scholar 

  6. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794. ACM (2016)

    Google Scholar 

  7. Conneau, A., Schwenk, H., Barrault, L., LeCun, Y.: Very deep convolutional networks for text classification. In: Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, EACL (2017)

    Google Scholar 

  8. Dasgupta, S., et al.: SH3GL2 is frequently deleted in non-small cell lung cancer and downregulates tumor growth by modulating EGFR signaling. J. Mol. Med. 91(3), 381–393 (2013)

    Article  Google Scholar 

  9. Dunne, M.R., et al.: HLA-DR expression in tumor epithelium is an independent prognostic indicator in esophageal adenocarcinoma patients. Cancer Immunol. Immunother. 66(7), 841–850 (2017). https://doi.org/10.1007/s00262-017-1983-1

    Article  Google Scholar 

  10. Frankish, A., et al.: GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 47(D1), D766–D773 (2019)

    Article  Google Scholar 

  11. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 1189–1232 (2001)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  13. Heinhuis, K.M., et al.: Rna-sequencing of tumor-educated platelets, a novel biomarker for blood-based sarcoma diagnostics. Cancers 12(6) (2020)

    Google Scholar 

  14. Huber, W., von Heydebreck, A., Sültmann, H., Poustka, A., Vingron, M.: Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 18(suppl\_1), S96–S104 (2002)

    Google Scholar 

  15. Kannan, A., et al.: Mitochondrial reprogramming regulates breast cancer progression. Clin. Cancer Res. 22(13), 3348–3360 (2016)

    Article  Google Scholar 

  16. Ke, G., et al.: Lightgbm: a highly efficient gradient boosting decision tree. Adv. Neural. Inf. Process. Syst. 30, 3146–3154 (2017)

    Google Scholar 

  17. Love, M.I., Huber, W., Anders, S.: Moderated estimation of fold change and dispersion for rna-seq data with deseq2. Genome Biol. 15(12), 1–21 (2014)

    Article  Google Scholar 

  18. Luo, W., Friedman, M.S., Shedden, K., Hankenson, K.D., Woolf, P.J.: Gage: generally applicable gene set enrichment for pathway analysis. BMC Bioinform. 10(1), 1–17 (2009)

    Article  Google Scholar 

  19. Olson, R.S., Cava, W.G.L., Mustahsan, Z., Varik, A., Moore, J.H.: Data-driven advice for applying machine learning to bioinformatics problems. In: Biocomputing 2018: Proceedings of the Pacific Symposium, pp. 192–203 (2018)

    Google Scholar 

  20. Pastuszak, K., et al.: Implatelet classifier: image-converted rna biomarker profiles enable blood-based cancer diagnostics. Molecular Oncology (2021)

    Google Scholar 

  21. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  22. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Poplin, R., et al.: A universal SNP and small-indel variant caller using deep neural networks. Nat. Biotechnol. 36(10), 983–987 (2018)

    Article  Google Scholar 

  24. Raghu, M., Zhang, C., Kleinberg, J.M., Bengio, S.: Transfusion: understanding transfer learning for medical imaging. In: Annual Conference on Neural Information Processing Systems, NeurIPS (2019)

    Google Scholar 

  25. Shamout, F.E., et al.: An artificial intelligence system for predicting the deterioration of COVID-19 patients in the emergency department. arXiv preprint (2020). https://arxiv.org/abs/2008.01774

  26. Shen, M.L., et al.: Associations between UGT2B7 polymorphisms and cancer susceptibility: a meta-analysis. Gene 706, 115–123 (2019)

    Article  Google Scholar 

  27. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  28. Zhang, H., Cissé, M., Dauphin, Y.N., Lopez-Paz, D.: Mixup: beyond empirical risk minimization. In: 6th International Conference on Learning Representations, ICLR (2018)

    Google Scholar 

  29. Zheng, S.E., et al.: Down-regulation of ribosomal protein L7A in human osteosarcoma. J. Cancer Res. Clin. Oncol. 135(8), 1025–1031 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to thank Tomasz Bączek, Myron Best, Jacek Bigda, Peter Grešner, Jacek Jassem, Tomasz Stokowy, Thomas Würdinger, Anna Żaczek for constant support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Cygert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cygert, S. et al. (2021). Towards Cancer Patients Classification Using Liquid Biopsy. In: Rekik, I., Adeli, E., Park, S.H., Schnabel, J. (eds) Predictive Intelligence in Medicine. PRIME 2021. Lecture Notes in Computer Science(), vol 12928. Springer, Cham. https://doi.org/10.1007/978-3-030-87602-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87602-9_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87601-2

  • Online ISBN: 978-3-030-87602-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics