Skip to main content

XOR Local Search for Boolean Brent Equations

  • Conference paper
  • First Online:
Theory and Applications of Satisfiability Testing – SAT 2021 (SAT 2021)

Abstract

Combining clausal and XOR reasoning has been studied for almost two decades, in particular in the context of CDCL and look-ahead, but not in classical local search. To stimulate research in this direction, we propose to standardize a hybrid format, called XNF, which allows both clauses and XORs. We implemented a tool to extract XOR constraints from a CNF, simplify them, and produce an XNF formula. The usefulness of XNF formulas is demonstrated by focusing on the impact of combined clausal and XOR reasoning on local search. Native support for XOR facilitates satisfying any falsified long XOR using a single flip, similarly to satisfying a falsified clause. When combined with XOR-based heuristics, local search performance is significantly improved on matrix multiplication challenges which are hard for CDCL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/marijnheule/matrix-challenges.

  2. 2.

    https://www.msoos.org/xor-clauses/.

  3. 3.

    We are not aware of any formal publication about this format.

  4. 4.

    https://github.com/arminbiere/satch.

  5. 5.

    https://github.com/arminbiere/cnf2xnf.

  6. 6.

    also available at https://github.com/arminbiere/cnf2xnf.

  7. 7.

    https://github.com/Vtec234/xnfsat.

  8. 8.

    A detailed explanation of strategies in YalSAT is out of the scope of this paper.

  9. 9.

    The CNF encoding was generated by using XOR_p_4 on the handcrafted XNF.

  10. 10.

    In the final version, we will replace this note by a link to the full experimental data.

References

  1. Balint, A., Biere, A., Fröhlich, A., Schöning, U.: Improving implementation of SLS solvers for SAT and new heuristics for k-SAT with long clauses. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 302–316. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09284-3_23

    Chapter  MATH  Google Scholar 

  2. Balint, A., Fröhlich, A.: Improving stochastic local search for SAT with a new probability distribution. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 10–15. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14186-7_3

    Chapter  MATH  Google Scholar 

  3. Balint, A., Schöning, U.: Choosing probability distributions for stochastic local search and the role of make versus break. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 16–29. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31612-8_3

    Chapter  MATH  Google Scholar 

  4. Bard, G.V.: Introduction: How to Use this Book, pp. 1–6. Springer, US, Boston, MA (2009). https://doi.org/10.1007/978-0-387-88757-9_1

  5. Bard, G.V., Courtois, N.T., Jefferson., C.: Efficient methods for conversion and solution of sparse systems of low-degree multivariate polynomials over GF(2) via SAT-solvers. Cryptology ePrint Archive, Report 2007/024 (2007), https://eprint.iacr.org/2007/024

  6. Belov, A., Järvisalo, M., Stachniak, Z.: Depth-driven circuit-level stochastic local search for SAT, pp. 504–509 (2011)

    Google Scholar 

  7. Biere, A.: Lingeling and friends entering the SAT challenge 2012. In: Balint, A., Belov, A., Diepold, D., Gerber, S., Järvisalo, M., Sinz, C. (eds.) Proceedings of SAT Challenge 2012: Solver and Benchmark Descriptions. Department of Computer Science Series of Publications B, vol. B-2012-2, pp. 33–34. University of Helsinki (2012)

    Google Scholar 

  8. Biere, A.: CaDiCaL, Lingeling, Plingeling, Treengeling, YalSAT entering the SAT competition 2017. In: Balyo, T., Heule, M., Järvisalo, M. (eds.) Proceedings of SAT Competition 2017 - Solver and Benchmark Descriptions. Department of Computer Science Series of Publications B, vol. B-2017-1, pp. 14–15. University of Helsinki (2017)

    Google Scholar 

  9. Biere, A.: CaDiCaL at the SAT Race 2019. In: Heule, M., Järvisalo, M., Suda, M. (eds.) Proceedings of SAT Race 2019 - Solver and Benchmark Descriptions. Department of Computer Science Series of Publications B, vol. B-2019-1, pp. 8–9. University of Helsinki (2019)

    Google Scholar 

  10. Bulygin, S., Buchmann, J.: Algebraic cryptanalysis of the round-reduced and side channel analysis of the Full PRINTCipher-48. In: Lin, D., Tsudik, G., Wang, X. (eds.) CANS 2011. LNCS, vol. 7092, pp. 54–75. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25513-7_6

    Chapter  MATH  Google Scholar 

  11. Cai, S., Luo, C., Su, K.: CCAnr: a configuration checking based local search solver for non-random satisfiability. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 1–8. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24318-4_1

    Chapter  Google Scholar 

  12. Cai, S., Su, K.: Local search for Boolean satisfiability with configuration checking and subscore. Artif. Intell. 204, 75–98 (2013)

    Article  Google Scholar 

  13. Chakraborty, S., Meel, K.S., Vardi, M.Y.: A scalable approximate model counter. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 200–216. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40627-0_18

    Chapter  Google Scholar 

  14. Chen, J.: Building a Hybrid SAT solver via conflict-driven, look-ahead and XOR reasoning techniques. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 298–311. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2_29

    Chapter  Google Scholar 

  15. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidelberg (2005). https://doi.org/10.1007/11499107_5

    Chapter  MATH  Google Scholar 

  16. Fazekas, K., Biere, A., Scholl, C.: Incremental inprocessing in SAT solving. In: Janota, M., Lynce, I. (eds.) SAT 2019. LNCS, vol. 11628, pp. 136–154. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24258-9_9

    Chapter  MATH  Google Scholar 

  17. Fröhlich, A., Biere, A., Wintersteiger, C.M., Hamadi, Y.: Stochastic local search for satisfiability modulo theories. In: Proceedings of AAAI. AAAI, January 2015. https://www.microsoft.com/en-us/research/publication/stochastic-local-search-for-satisfiability-modulo-theories/

  18. Gwynne, M., Kullmann, O.: On SAT representations of XOR constraints. In: Dediu, A.-H., Martín-Vide, C., Sierra-Rodríguez, J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370, pp. 409–420. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04921-2_33

    Chapter  MATH  Google Scholar 

  19. Heule, M.J.H.: SmArT solving: tools and techniques for satisfiability solvers. Ph.D. thesis, Delft University of Technology, Netherlands (2008). http://resolver.tudelft.nl/uuid:d41522e3-690a-4eb7-a352-652d39d7ac81

  20. Heule, M., van Maaren, H.: Aligning CNF- and equivalence-reasoning. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 145–156. Springer, Heidelberg (2005). https://doi.org/10.1007/11527695_12

    Chapter  MATH  Google Scholar 

  21. Heule, M.J.H., Kauers, M., Seidl, M.: Local search for fast matrix multiplication. CoRR abs/1903.11391 (2019). http://arxiv.org/abs/1903.11391

  22. Heule, M.J.H., Kauers, M., Seidl, M.: New ways to multiply 3 \(\times \) 3-matrices. J. Symb. Comput. 104, 899–916 (2021). https://doi.org/10.1016/j.jsc.2020.10.003

    Article  MathSciNet  MATH  Google Scholar 

  23. Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the Boolean Pythagorean triples problem via cube-and-conquer. CoRR abs/1605.00723 (2016). http://arxiv.org/abs/1605.00723

  24. Ishtaiwi, A., Thornton, J., Sattar, A., Pham, D.N.: Neighbourhood clause weight redistribution in local search for SAT. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 772–776. Springer, Heidelberg (2005). https://doi.org/10.1007/11564751_62

    Chapter  Google Scholar 

  25. Järvisalo, M., Biere, A.: Reconstructing solutions after blocked clause elimination. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 340–345. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14186-7_30

    Chapter  Google Scholar 

  26. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 355–370. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3_28

    Chapter  Google Scholar 

  27. Knuth, D.E.: The Art of Computer Programming, vol. 4, Fascicle 6: Satisfiability. Addison-Wesley Professional, 1st edn. (2015)

    Google Scholar 

  28. Kuehlmann, A., Paruthi, V., Krohm, F., Ganai, M.K.: Robust Boolean reasoning for equivalence checking and functional property verification. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 21(12), 1377–1394 (2002)

    Google Scholar 

  29. Kyrillidis, A., Shrivastava, A., Vardi, M.Y., Zhang, Z.: FourierSAT: a Fourier expansion-based algebraic framework for solving hybrid Boolean constraints (2020)

    Google Scholar 

  30. Kyrillidis, A., Vardi, M.Y., Zhang, Z.: On continuous local BDD-based search for hybrid SAT solving (2020)

    Google Scholar 

  31. Leventi-Peetz, A., Zendel, O., Lennartz, W., Weber, K.: CryptoMiniSat switches-optimization for solving cryptographic instances. In: Berre, D.L., Järvisalo, M. (eds.) Proceedings of Pragmatics of SAT 2015 and 2018. EPiC Series in Computing, vol. 59, pp. 79–93. EasyChair (2019). https://easychair.org/publications/paper/5g6S

  32. Luo, C., Cai, S., Wu, W., Su, K.: Double configuration checking in stochastic local search for satisfiability, pp. 2703–2709 (2014)

    Google Scholar 

  33. Pham, D.N., Thornton, J., Sattar, A.: Building structure into local search for SAT. In: Veloso, M.M. (ed.) IJCAI 2007, Proceedings of the 20th International Joint Conference on Artificial Intelligence, 6–12 January 2007, Hyderabad, India, pp. 2359–2364 (2007). http://ijcai.org/Proceedings/07/Papers/380.pdf

  34. Selman, B., Kautz, H., Cohen, B.: Local search strategies for satisfiability testing. Cliques, Coloring, and Satisfiability DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pp. 521–531 (1996). https://doi.org/10.1090/dimacs/026/25

  35. Soos, M., Gocht, S., Meel, K.S.: Tinted, detached, and lazy CNF-XOR solving and its applications to counting and sampling. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12224, pp. 463–484. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53288-8_22

    Chapter  Google Scholar 

  36. Soos, Mate, Kulkarni, Raghav, Meel, Kuldeep S..: \(\sf CrystalBall\): gazing in the black box of SAT solving. In: Janota, Mikoláš, Lynce, Inês. (eds.) SAT 2019. LNCS, vol. 11628, pp. 371–387. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24258-9_26

    Chapter  MATH  Google Scholar 

  37. Soos, M., Meel, K.S.: BIRD: engineering an efficient CNF-XOR SAT solver and its applications to approximate model counting. In: AAAI, pp. 1592–1599. AAAI Press (2019). http://dblp.uni-trier.de/db/conf/aaai/aaai2019.html#SoosM19

  38. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic problems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2_24

    Chapter  Google Scholar 

  39. Thornton, J., Pham, D.N., Bain, S., Jr, V.F.: Additive versus multiplicative clause weighting for SAT. In: McGuinness, D.L., Ferguson, G. (eds.) Proceedings of the Nineteenth National Conference on Artificial Intelligence, Sixteenth Conference on Innovative Applications of Artificial Intelligence, 25–29 July 2004, San Jose, California, USA, pp. 191–196. AAAI Press/The MIT Press (2004). http://www.aaai.org/Library/AAAI/2004/aaai04-031.php

  40. Tseitin, G.S.: On the complexity of derivation in propositional calculus. Automation of Reasoning, pp. 466–483 (1983)

    Google Scholar 

  41. Zhang, W., Sun, Z., Zhu, Q., Li, G., Cai, S., Xiong, Y., Zhang, L.: NLocalSAT: boosting local search with solution prediction. In: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, July 2020

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing HPC resources that have contributed to the research results reported within this paper. The work is also supported by the National Science Foundation (NSF) under grant CCF-2010951, Austrian Science Fund (FWF), NFN S11408-N23 (RiSE), and the LIT AI Lab funded by the State of Upper Austria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Nawrocki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nawrocki, W., Liu, Z., Fröhlich, A., Heule, M.J.H., Biere, A. (2021). XOR Local Search for Boolean Brent Equations. In: Li, CM., Manyà, F. (eds) Theory and Applications of Satisfiability Testing – SAT 2021. SAT 2021. Lecture Notes in Computer Science(), vol 12831. Springer, Cham. https://doi.org/10.1007/978-3-030-80223-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80223-3_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80222-6

  • Online ISBN: 978-3-030-80223-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics