Skip to main content

Diffusion, Pre-smoothing and Gradient Descent

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12679))

Abstract

Nonlinear diffusion of images, both isotropic and anisotropic, has become a well-established and well-understood denoising tool during the last three decades. Moreover, it is a component of partial differential equation methods for various further tasks in image analysis. For the analysis of such methods, their understanding as gradient descents of energy functionals often plays an important role. Often the diffusivity or diffusion tensor field for nonlinear diffusion is computed from pre-smoothed image gradients. What was not clear so far was whether nonlinear diffusion with this pre-smoothing step still is the gradient descent for some energy functional. This question is answered to the negative in the present paper. Triggered by this result, possible modifications of the pre-smoothing step to retain the gradient descent property of diffusion are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andreu-Vaillo, F., Caselles, V., Mazon, J.M.: Parabolic Quasilinear Equations Minimizing Linear Growth Functionals, Progress in Mathematics, vol. 223. Birkhäuser, Basel (2004)

    Book  Google Scholar 

  2. Bellettini, G., Caselles, V., Novaga, M.: The total variation flow in \(R^N\). J. Differ. Equ. 184(2), 475–525 (2002)

    Article  Google Scholar 

  3. Bellettini, G., Novaga, M., Paolini, M.: Convergence for long-times of a semidiscrete Perona-Malik equation in one dimension. Math. Models Methods Appl. Sci. 21(2), 241–265 (2011)

    Article  MathSciNet  Google Scholar 

  4. Bellettini, G., Novaga, M., Paolini, M., Tornese, C.: Convergence of discrete schemes for the Perona-Malik equation. J. Differ. Equ. 245, 892–924 (2008)

    Article  MathSciNet  Google Scholar 

  5. Catté, F., Lions, P.L., Morel, J.M., Coll, T.: Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal. 32, 1895–1909 (1992)

    Article  MathSciNet  Google Scholar 

  6. Dibos, F., Koepfler, G.: Global total variation minimization. SIAM J. Numer. Anal. 37(2), 646–664 (2000)

    Article  MathSciNet  Google Scholar 

  7. Ghisi, M., Gobbino, M.: A class of local classical solutions for the one-dimensional Perona-Malik equation. Trans. Am. Math. Soc. 361(12), 6429–6446 (2009)

    Article  MathSciNet  Google Scholar 

  8. Ghisi, M., Gobbino, M.: An example of global classical solution for the Perona-Malik equation. Commun. Partial. Differ. Equ. 36(8), 1318–1352 (2011)

    Article  MathSciNet  Google Scholar 

  9. Guidotti, P.: Anisotropic diffusions of image processing from Perona-Malik on. In: Ambrosio, L., Giga, Y., Rybka, P., Tonegawa, Y. (eds.) Variational Methods for Evolving Objects. Advanced Studies in Pure Mathematics, vol. 67, pp. 131–156. Mathematical Society of Japan, Tokyo (2015)

    Chapter  Google Scholar 

  10. Kawohl, B., Kutev, N.: Maximum and comparison principle for one-dimensional anisotropic diffusion. Mathematische Annalen 311, 107–123 (1998)

    Article  MathSciNet  Google Scholar 

  11. Nitzberg, M., Shiota, T.: Nonlinear image filtering with edge and corner enhancement. IEEE Trans. Pattern Anal. Mach. Intell. 14, 826–833 (1992)

    Article  Google Scholar 

  12. Nordström, N.: Biased anisotropic diffusion - a unified regularization and diffusion approach to edge detection. Image Vis. Comput. 8, 318–327 (1990)

    Article  Google Scholar 

  13. Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990)

    Article  Google Scholar 

  14. Weickert, J.: Theoretical foundations of anisotropic diffusion in image processing. Comput. Suppl. 11, 221–236 (1996)

    Article  Google Scholar 

  15. Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner, Stuttgart (1998)

    MATH  Google Scholar 

  16. Weickert, J.: Coherence-enhancing diffusion filtering. Int. J. Comput. Vis. 31(2/3), 111–127 (1999)

    Article  Google Scholar 

  17. Weickert, J., Benhamouda, B.: A semidiscrete nonlinear scale-space theory and its relation to the Perona-Malik paradox. In: Solina, F., Kropatsch, W.G., Klette, R., Bajcsy, R. (eds.) Advances in Computer Vision, pp. 1–10. Springer, Wien (1997). https://doi.org/10.1007/978-3-7091-6867-7

    Chapter  Google Scholar 

  18. Weickert, J., Schnörr, C.: A theoretical framework for convex regularizers in PDE-based computation of image motion. Int. J. Comput. Vis. 45(3), 245–264 (2001)

    Article  Google Scholar 

  19. Welk, M., Steidl, G., Weickert, J.: Locally analytic schemes: a link between diffusion filtering and wavelet shrinkage. Appl. Comput. Harmon. Anal. 24, 195–224 (2008)

    Article  MathSciNet  Google Scholar 

  20. Welk, M., Weickert, J.: PDE evolutions for M-smoothers: from common myths to robust numerics. In: Lellmann, J., Burger, M., Modersitzki, J. (eds.) SSVM 2019. LNCS, vol. 11603, pp. 236–248. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22368-7_19

    Chapter  Google Scholar 

  21. Welk, M., Weickert, J.: PDE evolutions for M-smoothers in one, two, and three dimensions. J. Math. Imaging Vis. 63(2), 157–185 (2021)

    Article  MathSciNet  Google Scholar 

  22. Welk, M., Weickert, J., Gilboa, G.: A discrete theory and efficient algorithms for forward-and-backward diffusion filtering. J. Math. Imaging Vis. 60(9), 1399–1426 (2018)

    Article  MathSciNet  Google Scholar 

  23. Zhang, K.: Existence of infinitely many solutions for the one-dimensional Perona-Malik model. Calc. Var. Partial. Differ. Equ. 26(2), 126–171 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Welk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Welk, M. (2021). Diffusion, Pre-smoothing and Gradient Descent. In: Elmoataz, A., Fadili, J., Quéau, Y., Rabin, J., Simon, L. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2021. Lecture Notes in Computer Science(), vol 12679. Springer, Cham. https://doi.org/10.1007/978-3-030-75549-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75549-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75548-5

  • Online ISBN: 978-3-030-75549-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics