Skip to main content
Log in

A Discrete Theory and Efficient Algorithms for Forward-and-Backward Diffusion Filtering

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Image enhancement with forward-and-backward (FAB) diffusion lacks a sound theory and is numerically very challenging due to its diffusivities that are negative within a certain gradient range. In our paper, we address both problems. First we establish a comprehensive theory for space-discrete and time-continuous FAB diffusion processes. It requires approximating the gradient magnitude with a non-standard discretisation. Then, we show that this theory carries over to the fully discrete case, when an explicit time discretisation with a fairly restrictive step-size limit is applied. To come up with more efficient algorithms, we propose three accelerated schemes: (i) an explicit scheme with global time step size adaptation that is also well suited for parallel implementations on GPUs, (ii) a randomised two-pixel scheme that offers optimal adaptivity of the time step size, (iii) a deterministic two-pixel scheme which benefits from less restrictive consistency bounds. Our experiments demonstrate that these algorithms allow speed-ups by up to three orders of magnitude without compromising stability or introducing visual artefacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, Applied Mathematical Sciences, vol. 147, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  2. Babaud, J., Witkin, A.P., Baudin, M., Duda, R.O.: Uniqueness of the Gaussian kernel for scale space filtering. IEEE Trans. Pattern Anal. Mach. Intell. 8, 26–33 (1986)

    Article  Google Scholar 

  3. Breuß, M., Welk, M.: Staircasing in semidiscrete stabilised inverse diffusion algorithms. J. Comput. Appl. Math. 206(1), 520–533 (2007)

    Article  MathSciNet  Google Scholar 

  4. Burgeth, B., Weickert, J., Tari, S.: Minimally stochastic schemes for singular diffusion equations. In: Tai, X.C., Lie, K.A., Chan, T.F., Osher, S. (eds.) Image Processing Based on Partial Differential Equations, pp. 325–339. Springer, Berlin (2007)

    Chapter  Google Scholar 

  5. Carasso, A.S.: Stable explicit time marching in well-posed or ill-posed nonlinear parabolic equations. Inverse Probl. Sci. Eng. 24(8), 1364–1384 (2016)

    Article  MathSciNet  Google Scholar 

  6. Carasso, A.S.: Stabilized Richardson leapfrog scheme in explicit stepwise computation of forward or backward nonlinear parabolic equations. Inverse Probl. Sci. Eng. 25(12), 1719–1742 (2017)

    Article  MathSciNet  Google Scholar 

  7. Elmoataz, A., Lezoray, O., Ta, V.T., Bougleux, S.: Partial difference equations on graphs for local and nonlocal image processing, Chap. 7. In: Lezoray, O., Grady, L. (eds.) Image Processing and Analysis with Graphs: Theory and Practice, pp. 174–206. CRC Press, Boca Raton (2012)

    MATH  Google Scholar 

  8. Gabor, D.: Information theory in electron microscopy. Lab. Investig. 14, 801–807 (1965)

    Google Scholar 

  9. Gilboa, G., Sochen, N., Zeevi, Y.Y.: Image sharpening by flows based on triple well potentials. J. Math. Imaging Vis. 20, 121–131 (2004)

    Article  MathSciNet  Google Scholar 

  10. Gilboa, G., Sochen, N.A., Zeevi, Y.Y.: Forward-and-backward diffusion processes for adaptive image enhancement and denoising. IEEE Trans. Image Process. 11(7), 689–703 (2002)

    Article  Google Scholar 

  11. Iijima, T.: Basic theory on normalization of pattern (in case of typical one-dimensional pattern). Bull. Electrotech. Lab. 26, 368–388 (1962). In Japanese

    Google Scholar 

  12. Kovasznay, L.S.G., Joseph, H.M.: Image processing. Proc. IRE 43(5), 560–570 (1955)

    Article  Google Scholar 

  13. Kramer, H.P., Bruckner, J.B.: Iterations of a non-linear transformation for enhancement of digital images. Pattern Recogn. 7, 53–58 (1975)

    Article  MathSciNet  Google Scholar 

  14. Lindeberg, T.: Scale-Space Theory in Computer Vision. Kluwer, Boston (1994)

    Book  Google Scholar 

  15. Lindenbaum, M., Fischer, M., Bruckstein, A.: On Gabor’s contribution to image enhancement. Pattern Recogn. 27, 1–8 (1994)

    Article  Google Scholar 

  16. Mehlhorn, K., Sanders, P.: Algorithms and Data Structures—The Basic Toolbox. Springer, Berlin (2008)

    MATH  Google Scholar 

  17. Mickens, R.E.: Nonstandard Finite Difference Models of Differential Equations. World Scientific, Singapore (1994)

    MATH  Google Scholar 

  18. Mrázek, P., Weickert, J., Steidl, G.: Diffusion-inspired shrinkage functions and stability results for wavelet denoising. Int. J. Comput. Vis. 64(2/3), 171–186 (2005)

    Article  Google Scholar 

  19. Nikolova, M.: Local strong homogeneity of a regularized estimator. SIAM J. Appl. Math. 61(2), 633–658 (2000)

    Article  MathSciNet  Google Scholar 

  20. Nikolova, M.: Minimizers of cost-functions involving nonsmooth data fidelity terms. Application to the processing of outliers. SIAM J. Numer. Anal. 40(3), 965–994 (2002)

    Article  MathSciNet  Google Scholar 

  21. Osher, S., Rudin, L.: Shocks and other nonlinear filtering applied to image processing. In: Tescher, A.G. (ed.) Applications of Digital Image Processing XIV, Proceedings of SPIE, vol. 1567, pp. 414–431. SPIE Press, Bellingham (1991)

    Chapter  Google Scholar 

  22. Osher, S., Rudin, L.I.: Feature-oriented image enhancement using shock filters. SIAM J. Numer. Anal. 27, 919–940 (1990)

    Article  Google Scholar 

  23. Perko, L.: Differential Equations and Dynamical Systems, 3rd edn. Springer, New York (2001)

    Book  Google Scholar 

  24. Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990)

    Article  Google Scholar 

  25. Pollak, I., Willsky, A.S., Krim, H.: Image segmentation and edge enhancement with stabilized inverse diffusion equations. IEEE Trans. Image Process. 9(2), 256–266 (2000)

    Article  Google Scholar 

  26. Smolka, B.: Combined forward and backward anisotropic diffusion filtering of color images. In: Van Gool, L. (ed.) Pattern Recognition. Lecture Notes in Computer Science, vol. 2449, pp. 314–320. Springer, Berlin (2002)

    Google Scholar 

  27. Smolka, B., Plataniotis, K.N.: On the coupled forward and backward anistropic diffusion scheme for color image enhancement. In: Lew, M.S., Sebe, N., Eakins, J.P. (eds.) Image and Video Retrieval. Lecture Notes in Computer Science, vol. 2383, pp. 70–80. Springer, Berlin (2002)

    Chapter  Google Scholar 

  28. Steidl, G., Weickert, J., Brox, T., Mrázek, P., Welk, M.: On the equivalence of soft wavelet shrinkage, total variation diffusion, total variation regularization, and SIDEs. SIAM J. Numer. Anal. 42(2), 686–713 (2004)

    Article  MathSciNet  Google Scholar 

  29. Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-Posed Problems. Wiley, Washington, DC (1977)

    MATH  Google Scholar 

  30. Wang, Y., Niu, R., Shen, H., Yu, X.: Forward-and-backward diffusion for hyperspectral remote sensing image smoothing and enhancement. In: Li, D., Gong, J., Wu, H. (eds.) International Conference on Earth Observation Data Processing and Analysis (ICEODPA), Proceedings of SPIE, vol. 7285. SPIE Press, Bellingham (2008)

    Google Scholar 

  31. Wang, Y., Niu, R., Zhang, L., Wu, K., Sahli, H.: A scale-based forward-and-backward diffusion process for adaptive image enhancement and denoising. EURASIP J. Adv. Signal Process. 2011, 22 (2011)

    Article  Google Scholar 

  32. Wang, Y., Zhang, L., Li, P.: Local variance-controlled forward-and-backward diffusion for image enhancement and noise reduction. IEEE Trans. Image Process. 16(7), 1854–1864 (2007)

    Article  MathSciNet  Google Scholar 

  33. Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner, Stuttgart (1998)

    MATH  Google Scholar 

  34. Weickert, J., Benhamouda, B.: A semidiscrete nonlinear scale-space theory and its relation to the Perona-Malik paradox. In: Solina, F., Kropatsch, W.G., Klette, R., Bajcsy, R. (eds.) Advances in Computer Vision, pp. 1–10. Springer, Wien (1997)

    Google Scholar 

  35. Welk, M., Gilboa, G., Weickert, J.: Theoretical foundations for discrete forward-and-backward diffusion filtering. In: Tai, X.C., Mørken, K., Lysaker, M., Lie, K.A. (eds.) Scale Space and Variational Methods in Computer Vision. Lecture Notes in Computer Science, vol. 5567, pp. 527–538. Springer, Berlin (2009)

    Chapter  Google Scholar 

  36. Welk, M., Steidl, G., Weickert, J.: Locally analytic schemes: a link between diffusion filtering and wavelet shrinkage. Appl. Comput. Harm. Anal. 24, 195–224 (2008)

    Article  MathSciNet  Google Scholar 

  37. Welk, M., Weickert, J.: An efficient and stable two-pixel scheme for 2D forward-and-backward diffusion. In: Lauze, F., Dong, Y., Dahl, A.B. (eds.) Scale Space and Variational Methods in Computer Vision. Lecture Notes in Computer Science, vol. 10302, pp. 94–106. Springer, Cham (2017)

    Chapter  Google Scholar 

  38. Welk, M., Weickert, J., Galić, I.: Theoretical foundations for spatially discrete 1-D shock filtering. Image Vis. Comput. 25(4), 455–463 (2007)

    Article  Google Scholar 

  39. Witkin, A.P.: Scale-space filtering. In: Proceedings of Eighth International Joint Conference on Artificial Intelligence, vol. 2, pp. 945–951. Karlsruhe, West Germany (1983)

  40. Zakeri, A., Jannati, Q., Amiri, A.: A numerical scheme for solving nonlinear backward parabolic problems. Bull. Iran. Math. Soc. 41(6), 1453–1464 (2015)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

J.W. and G.G. would like to thank the Isaac Newton Institute for Mathematical Sciences for support and hospitality during the programme Variational Methods and Effective Algorithms for Imaging and Vision, when final work on this paper was undertaken. This work was supported by EPSRC Grant Number EP/K032208/1 and by a Rothschild Distinguished Visiting Fellowship for J.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Welk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Welk, M., Weickert, J. & Gilboa, G. A Discrete Theory and Efficient Algorithms for Forward-and-Backward Diffusion Filtering. J Math Imaging Vis 60, 1399–1426 (2018). https://doi.org/10.1007/s10851-018-0847-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-018-0847-4

Keywords

Navigation