Skip to main content

Cyanobacteria as Sustainable Microbiome for Agricultural Industries

  • Chapter
  • First Online:
Microbiota and Biofertilizers, Vol 2

Abstract

Cyanobacteria (blue-green algae) are the photosynthetic organisms that are widely grown in all sorts of habitats including aquatic and terrestrial environments. Today, the agricultural sector is highly dependent on chemical fertilizers to enhance the crop production in order to meet the demand for food around the globe which have severe negative effects on both mankind and environment. Due to its pool of properties that are beneficial for sustainable agroecosystem, cyanobacterial biofertilizers are eco-friendly and can be an effective and economical alternative for synthetic fertilizers with less input of cost and energy. They can be explored for producing natural fertilizers, which provide positive alterations for both biotic and abiotic components. Cyanobacteria are potential sources of nitrogen fixation, cost-effective, and a major component of the nitrogen-fixing biomass. They have become paramount microbes for producing natural fertilizers, plant growth-promoting hormones, bioactive compounds, etc. These properties enable them in boosting soil fertility, control the activity of other microorganisms, and also can play a role in bioremediation of pesticides, herbicides, and combating pollution attributed to heavy metals and other toxicants as well. The agricultural importance of cyanobacterial biofertilizers is directly related to their nitrogen fixation ability and other effects for plants and enhances soil fertility. This chapter emphasizes on the use of cyanobacteria as a sustainable microbiome and biofertilizer in agriculture sector to enhance crop production and yield.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abarzua S, Jakubowski S, Eckert S, Fuchs P (1999) Biotechnological investigation for the prevention of marine biofouling II. Blue-green algae as potential producers of biogenic agents for the growth inhibition of microfouling organisms. Bot Mar 42:459–465

    Article  CAS  Google Scholar 

  • Abdel-Raouf N (2012) Agricultural importance of algae. Afr J Biotechnol 11:11648–11658. https://doi.org/10.5897/AJB11.3983

    Article  Google Scholar 

  • Acharya C, Chandwadkar P, Apte SK (2012) Interaction of uranium with a filamentous, heterocystous, nitrogen-fixing cyanobacterium, Anabaena torulosa. Bioresour Technol 116:290–294

    Article  CAS  PubMed  Google Scholar 

  • Ahmad MH, Venkatraman GS (1973) Tolerance of Aulosira fertilissima to pesticides. Curr Sci 42:108

    Google Scholar 

  • Ahmad MR, Winter A (1968) Studies on the hormonal relationships of algae in pure culture. I. the effect of indole-3-acetic acid on the growth of blue-green and green algae. Planta 78:277–286

    Article  CAS  PubMed  Google Scholar 

  • Ahuja P, Gupta R, Saxena RK (1999) Zn2+ biosorption by Oscillatoria anguistissima. Process Biochem 34(1):77–85

    Article  CAS  Google Scholar 

  • Aislabie J, Deslippe JR (2013) Soil microbes and their contribution to soil services. In: Dymond JR (ed) Ecosystem services in New Zealand-conditions and trends. Manaaki Whenua Press, Lincoln, pp 143–161

    Google Scholar 

  • Aitken JB, Senn TL (1965) Seaweed products as a fertilizer and soil conditioner for horticultural crops. Bot Mar 8(1):144–147

    Article  CAS  Google Scholar 

  • Aiyer RS, Sulahudean S, Venkataraman GS (1972) Long-term algalization field trial with high yielding rice varieties. Indian J Agric Sci 42:380–383

    Google Scholar 

  • Aktar W, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2(1):1–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Al-Hasan RH, Al-Bader DA, Sorkhoh NA, Radwan SS (1998) Evidence for n-alkane consumption and oxidation by filamentous cyanobacteria from oil-contaminated coasts of the Arabian Gulf. Mar Biol 130:521–527

    Article  CAS  Google Scholar 

  • Al-Hasan RH, Khanafer M, Eliyas M, Radwan SS (2001) Hydrocarbon accumulation by picocyanobacteria from the Arabian Gulf. J Appl Microbiol 91(3):533–540

    Article  CAS  PubMed  Google Scholar 

  • Anderson RT, Lovley JR (1997) Ecology and biogeochemistry of in situ ground water bioremediation. Adv Microbial Ecol 15:289–350

    Article  CAS  Google Scholar 

  • Atlas RM (1995) Bioremediation. Chem Eng News 3:32–42. p 032

    Article  Google Scholar 

  • Babu S, Bidyarani N, Chopra P, Monga D, Kumar R, Prasanna R, Kranthi S, Saxena AK (2015) Evaluating microbe-plant interactions and varietal differences for enhancing biocontrol efficacy in root rot disease challenged cotton crop. Eur J Plant Pathol 142:345–362. https://doi.org/10.1007/s10658-015-0619-6

    Article  CAS  Google Scholar 

  • Benderliev K (1999) Algae and cyanobacteria release organic chelators in the presence of inorganic Fe(III) thus keeping iron dissolved. Bulgarian J Plant Physiol 25:65–75

    CAS  Google Scholar 

  • Bhat RA, Dervash MA, Mehmood MA, Bhat MS, Rashid A, Bhat JIA, Singh DV, Lone R (2017a) Mycorrhizae: a sustainable industry for plant and soil environment. In: Varma A et al (eds) Mycorrhiza-nutrient uptake, biocontrol, ecorestoration. Springer International Publishing, Cham, pp 473–502

    Chapter  Google Scholar 

  • Bhat RA, Shafiq-ur-Rehman MM, Dervash MA, Mushtaq N, Bhat JIA, Dar GH (2017b) Current status of nutrient load in Dal Lake of Kashmir Himalaya. J Pharmacogn Phytochem 6(6):165–169

    CAS  Google Scholar 

  • Bhat RA, Beigh BA, Mir SA, Dar SA, Dervash MA, Rashid A, Lone R (2018a) Biopesticide Techniques To Remediate Pesticides In Polluted Ecosystems. In: Wani KA (ed) Handbook of research on the adverse effects of pesticide pollution in aquatic ecosystems. IGI Global, Mamta, pp 387–407

    Google Scholar 

  • Bhat RA, Dervash MA, Qadri H, Mushtaq N, Dar GH (2018b) Macrophytes, the natural cleaners of toxic heavy metal (THM) pollution from aquatic ecosystems. In: Environmental contamination and remediation. Cambridge Scholars Publishing, Cambridge, pp 189–209

    Google Scholar 

  • Bhatti AA, Haq S, Bhat RA (2017) Actinomycetes benefaction role in soil and plant health. Microb Pathog 111:458–467

    Article  CAS  PubMed  Google Scholar 

  • Biondi N, Piccardi R, Margheri MC, Rodolfi L, Smith GD, Tredici MR (2004) Evaluation of Nostoc strain ATCC 53789 as a potential source of natural pesticides. Appl Environ Microbiol 70:3313–3320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boone DR, Castenholz RW (2001) The Archaea and the deeply branching and phototrophic bacteria. In: Garrity GM (ed) Bergey’s manual of systematic bacteriology, 2nd edn. Springer-Verlag, New York, pp 33–38

    Chapter  Google Scholar 

  • Burja AM, Banaigs B, Abou-Mansour E, Burgess JG, Wright PC (2001) Marine cyanobacteria – a prolific source of natural products. Tetrahedron 57:9347–9377

    Google Scholar 

  • Burlage RS, Kuo CT (1994) Living biosensors for the management and manipulation of microbial consortia. Ann Rev Microbiol 48:291–301

    Article  CAS  Google Scholar 

  • Castenholz RW (1978) The biogeography of hot spring algal through enrichment cultures. Mitt Int Ver Limnol 21:296–315

    Google Scholar 

  • Cerniglia CE, Gibson DT, Van Baalen C (1979) Algal oxidation of aromatic hydrocarbons: formation of 1-naphthol from naphthalene by Agmenellum quadruplicatum, strain PR-6. Biochem Biophys Res Commun 88(1):50–58

    Article  CAS  PubMed  Google Scholar 

  • Cerniglia CE, Gibson DT, Baalen CV (1980a) Oxidation of naphthalene by cyanobacteria and microalgae. J Gen Microbiol 116:495–500

    CAS  Google Scholar 

  • Cerniglia CE, Van Baalen C, Gibson DT (1980b) Oxidation of biphenyl by the cyanobacterium, Oscillatoria sp., strain JCM. Arch Microbiol 125(3):203–207

    Article  CAS  PubMed  Google Scholar 

  • Cohen Y (2002) Bioremediation of oil by marine microbial mats. Int Microbiol 5(4):189–193

    Article  CAS  PubMed  Google Scholar 

  • Dar S, Bhat RA (2020) Aquatic pollution stress and role of biofilms as environment cleanup technology. In: Qadri H, Bhat RA, Dar GH, Mehmood MA (eds) Freshwater pollution dynamics and remediation. Springer Nature, Singapore, pp 293–318

    Chapter  Google Scholar 

  • Dar GH, Bandh SA, Kamili AN, Nazir R, Bhat RA (2013) Comparative analysis of different types of bacterial colonies from the soils of Yusmarg Forest, Kashmir valley India. Ecologia Balkanica 5(1):31–35

    Google Scholar 

  • Dar GH, Kamili AN, Chishti MZ, Dar SA, Tantry TA, Ahmad F (2016) Characterization of Aeromonas sobria isolated from fish Rohu (Labeo rohita) collected from polluted pond. J Bacteriol Parasitol 7(3):1–5. https://doi.org/10.4172/2155-9597.1000273

    Article  CAS  Google Scholar 

  • Dar GH, Bhat RA, Kamili AN, Chishti MZ, Qadri H, Dar R, Mehmood MA (2020) Correlation between pollution trends of fresh water bodies and bacterial disease of fish fuana. In: Qadri H, Bhat RA, Dar GH, Mehmood MA (eds) Freshwater pollution dynamics and remediation. Springer Nature, Singapore, pp 51–68

    Chapter  Google Scholar 

  • Das SC, Mandal B, Mandal LN (1991) Effect of growth and subsequent decomposition of bluegreen algae on the transformation of iron and manganese in submerged soils. Plant Soil 138:75–84. https://doi.org/10.1007/BF00011810

    Article  CAS  Google Scholar 

  • De Caire GZ, De Cano MS, De Mule MCZ, De Halperin DR (1990) Antimycotic products from the cyanobacterium Nostoc muscorum against Rhizoctonia solani. Phyton 51:1–4

    Google Scholar 

  • De Ruyter YS, Fromme P (2008) Molecular structure of the photosynthetic apparatus. In: Herrero A, Flores E (eds) The cyanobacteria, molecular biology, genomics and evolution. Caister Academic Press, Norfolk, pp 217–269

    Google Scholar 

  • Dellamatrice PM, Silva-Stenico ME, de Moraes LAB, Fiore MF, Monteiro RTR (2017) Degradation of textile dyes by cyanobacteria. Braz J Microbiol 48(1):25–31

    Article  PubMed  Google Scholar 

  • Dervash MA, Bhat RA, Shafiq S, Singh DV, Mushtaq N (2020) Biotechnological intervention as an aquatic clean up tool. In: Qadri H, Bhat RA, Mehmood MA, Dar GH (eds) Freshwater pollution dynamics and remediation. Springer Nature, Singapore, pp 183–196

    Chapter  Google Scholar 

  • Dewi IC, Falaise C, Hellio C, Bourgougnon N, Mouget J-L (2018) Chapter 12 – anticancer, antiviral, antibacterial, and antifungal properties in microalgae. In: Levine IA, Fleurence J (eds) Microalgae in health and disease prevention. Academic Press, London, pp 235–261

    Chapter  Google Scholar 

  • Dong W, Zhang X, Wang H, Dai X, Sun X, Qiu W, Yang F (2012) Effect of different fertilizer application on the soil fertility of paddy soils in red soil region of southern China. PLoS One 7(9):e44504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du Jardin P (2015) Plant biostimulants: definition, concept, main categories and regulation. Sci Hort 196:3–14

    Article  CAS  Google Scholar 

  • El-Bestawy EA, Abd El-Salam AZ, Mansy AERH (2007) Potential use of environmental cyanobacterial species in bioremediation on lindane-contaminated effluents. Int Biodeterior Biodegrad 59:180–192

    Article  CAS  Google Scholar 

  • Ernst B, Neser S, O’Brien E, Hoeger SJ, Dietrich DR (2006) Determination of the filamentous Cyanobacteria Planktothrix rubescens in environmental water samples using an image processing system. Harmful Algae 5(3):281–289

    Article  Google Scholar 

  • Finkelstein R (2013) Abscisic acid synthesis and response. Arabidopsis Book/American Society of Plant Biologists 11:e0166

    Google Scholar 

  • Flaibani A, Olsen Y, Painter TJ (1989) Polysaccharides in desert reclamation: composition of exocellular proteoglycan complexes produced by filamentous blue-green and unicellular green edaphic algae. Carbohydr Res 190:235–248

    Article  CAS  Google Scholar 

  • Fogg GE (1956) The comparative physiology and biochemistry of the blue-green algae. Bacteriol Rev 20:148–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forlani G, Pavan M, Gramek M, Kafarski P, Lipok J (2008) Biochemical bases for a widespread tolerance of cyanobacteria to the phosphonate herbicide glyphosate. Plant Cell Physiol 49(3):443–456

    Article  CAS  PubMed  Google Scholar 

  • Gantar M, Kerby NW, Rowell P, Obreht Z, Scrimgeour R (1995a) Colonization of wheat (Triticum vulgare L.) by N2-fixing cyanobacteria. IV. Dark nitrogenase activity and effects of cyanobacteria on natural 15N abundance on plants. New Phytol 129:337–343

    Article  CAS  PubMed  Google Scholar 

  • Gantar M, Rowell P, Kerby NW, Sutherland IW (1995b) Role of extracellular polysaccharide in the colonization of wheat (Triticum vulgare L.) roots by N2- fixing cyanobacteria. Biol Fertil Soils 19:41–48

    Article  CAS  Google Scholar 

  • Giovannoni SJ, Turner S, Olsen GJ, Barnes S, Lane DJ, Pace NR (1988) Evolutionary relationships among cyanobacteria and green chloroplast. J Bacteriol 170:3584–3592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374

    Article  CAS  PubMed  Google Scholar 

  • Gol’din E (2012) Biologically active microalgae and cyanobacteria in nature and marine biotechnology. Turk J Fish Aquat Sci 12:423–427

    Google Scholar 

  • Greene B, McPherson R, Darnall D (1987) Algal sorbents for selective metal ion recovery. In: Metals speciation, separation, and recovery. Lewis Publishers, Chelsea, pp 315–332, 12 fig, 1 tab, 13 ref.

    Google Scholar 

  • Grieco E, Desrochers R (1978) Production de vitamine B12 par une algae blue. Can J Microbiol 24:1562–1566

    Article  CAS  PubMed  Google Scholar 

  • Grobbelaar JU (1983) Availability to algae of N and P adsorbed on suspended solids in turbid waters of the Amazon River. Arch Hydrobiol 96:302–316

    CAS  Google Scholar 

  • Guerrero MG, Vega JM, Losada M (1981) The assimilatory nitrate reducing system and its regulation. Annu Rev Plant Physiol 32:168–204

    Article  Google Scholar 

  • Gupta AB, Agarwal PR (1973) Extraction, isolation and bioassay of a gibberellin-like substance from Phormidium foveolarum. Ann Bot 37(152):737–741

    Article  CAS  Google Scholar 

  • Gupta R, Chakrabarty SK (2013) Gibberellic acid in plant: still a mystery unresolved. Plant Signal Behav 8(9):e25504

    Article  PubMed  PubMed Central  Google Scholar 

  • Habib MAB, Parvin M, Huntington TC, Hasan MR (2008) A review on culture, production and use of Spirulina as food for humans and feeds for domestic animals and fish. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Hagmann L, Juttner F (1996) Fischerellin A, a novel photosystem-II inhibiting allelochemical of the cyanobacterium Fischerella muscicola with antifungal and herbicidal activity. Tetrahedron Lett 37:6539–6542

    Article  CAS  Google Scholar 

  • Hamouda RA, El-Ansary MSM (2017) Potential of plant-parasitic nematode control in banana plants by microalgae as a new approach towards resistance. Egypt J Biol Pest Control 27:165–172

    Google Scholar 

  • Hamouda RAEF, Sorour NM, Yeheia DS (2016) Biodegradation of crude oil by Anabaena oryzae, Chlorella kessleri and its consortium under mixotrophic conditions. Int Biodeterior Biodegrad 112:128–134

    Article  CAS  Google Scholar 

  • Hanson D (1996) Biotechnology is future path for crop protection. Chem Eng News 74(20):22–22

    Article  Google Scholar 

  • Healy FP (1973) Characteristics of phosphorus deficiency in Anabaena. J Phycol 9:383–394

    Google Scholar 

  • Hegde DM, Dwiwedi BS, Babu SNS (1999) Biofertilizers for cereal production in India: a review. Indian J Agric Sci 69:73–83

    Google Scholar 

  • Hitzfeld BC, Höger SJ, Dietrich DR (2000) Cyanobacterial toxins: removal during drinking water treatment, and human risk assessment. Environ Health Perspect 108:113–122

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ibrahim W, Karam M, El-Shahat RM, Adway AA (2014) Biodegradation and utilization of organophosphorus pesticide malathion by Cyanobacteria. Biomed Res Int 2014:392682

    Article  PubMed  PubMed Central  Google Scholar 

  • Issa AA, Abd-Alla MH, Ohyama T (2014) Nitrogen fixing cyanobacteria: future prospect. Adv Biol Ecol Nitrogen Fixation 2:23

    Google Scholar 

  • Kaplan A, Schwarz R, Lieman-Herwitz J, Reinhold L (1994) Physiological and molecular studies on the response of cyanobacteria to changes in the ambient inorganic carbon concentration. In: Bryant DA (ed) The molecular biology of cyanobacteria. Advances in photosynthesis, vol 1. Springer, Dordrecht, pp 469–485

    Chapter  Google Scholar 

  • Karl D, Michaels A, Bergman B, Capone D, Carpenter E, Letelier R, Stal L (2002) Dinitrogen fixation in the world’s oceans. In: The nitrogen cycle at regional to global scales. Springer, Dordrecht, pp 47–98

    Chapter  Google Scholar 

  • Khanday M, Bhat RA, Haq S, Dervash MA, Bhatti AA, Nissa M, Mir MR (2016) Arbuscular mycorrhizal fungi boon for plant nutrition and soil health. In: Hakeem KR, Akhtar J, Sabir M (eds) Soil science: agricultural and environmental prospectives. Springer International Publishing, Cham, pp 317–332

    Chapter  Google Scholar 

  • Kim J-D (2006) Screening of Cyanobacteria (Blue-Green algae) from rice paddy soil for antifungal activity against plant pathogenic fungi. Mycobiology 34:138–142. https://doi.org/10.4489/MYCO.2006.34.3.138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulik MM (1995) The potential for using cyanobacteria (blue-green algae) and algae in the biological control of plant pathogenic bacteria and fungi. Eur J Plant Path 101:585–599

    Article  Google Scholar 

  • Kumar G, Bawaja P (2018) Biofertilizer: a tool for sustainable agriculture in changing environment. In: Ansari MW, Kumar S, Kaula BC, Wattal RK (eds) Introduction to challenges and strategies to improve crop productivity in changing environment. R.K. Enriched Public Pvt. Ltd, Dwarka, pp 83–92

    Google Scholar 

  • Kumar D, Gaur JP (2014) Growth and metal removal potential of a Phormidium bigranulatum- dominated mat following long-term exposure to elevated levels of copper. Environ Sci Pollut Res 21:10279–10285

    Article  CAS  Google Scholar 

  • Kumar D, Prakash B, Pandey LK, Gaur JP (2010a) Sorption of paraquat and 2,4-D by Oscillatoria sp.-dominated cyanobacterial mat. Appl Biochem Biotechnol 160:2475–2485

    Article  CAS  PubMed  Google Scholar 

  • Kumar K, Mella-Herrera RA, Golden JW (2010b) Cyanobacterial heterocyst. Cold Spring Harb Perspect Biol 2(4):a000315

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar G, Baweja P, Sahoo D (2012a) Seaweeds: a potential source of biofertilizer. In: Sahoo DB, Kaushik BD (eds) Algal biotechnology and environment. I.K. International, New Delhi, pp 43–52

    Google Scholar 

  • Kumar M, Bauddh K, Sainger M, Sainger PA, Singh JS, Singh RP (2012b) Increase in growth, productivity and nutritional status of rice (Oryza sativa L. cv. Basmati) and enrichment in soil fertility applied with an organic matrix entrapped urea. J Crop Sci Biotechnol 15:137–144

    Article  Google Scholar 

  • Kumar D, Rai J, Gaur JP (2012c) Removal of metal ions by Phormidium bigranulatum (Cyanobacteria)-dominated mat in batch and continuous flow systems. Bioresour Technol 104:202–207

    Article  CAS  PubMed  Google Scholar 

  • Kumar D, Singh A, Pandey LK, Gaur JP (2012d) Sorption of methylene blue by an Oscillatoria sp.-dominated cyanobacterial mat. Biorem J 16(1):48–56

    Article  CAS  Google Scholar 

  • Kumar D, Yadav A, Gaur JP (2012e) Growth, composition and metal removal potential of a Phormidium bigranulatum dominated mat at elevated levels of cadmium. Aquat Toxicol 116:24–33

    Article  PubMed  CAS  Google Scholar 

  • Kuritz T (1998) Cyanobacteria as agents for the control of pollution by pesticides and chlorinated organic compounds. J Appl Microbiol 85:186S–192S. https://doi.org/10.1111/j.1365-2672.1998.tb05298.x

    Article  PubMed  Google Scholar 

  • Kuritz T, Wolk CP (1995) Use of filamentous cyanobacteria for biodegradation of organic pollutants. Appl Environ Microbiol 61(3):1169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lange W (1976) Speculations on a possible essential function of the gelatinous sheath of blue-green algae. Can J Microbiol 22:1181–1185

    Article  CAS  PubMed  Google Scholar 

  • Lau NS, Matsui M, Abdullah AAA (2015) Cyanobacteria: photoautotrophic microbial factories for the sustainable synthesis of industrial products. BioMed Res Int 2015:1–9

    Article  CAS  Google Scholar 

  • Li SW, Zeng XY, Leng Y, Feng L, Kang XH (2018) Indole-3-butyric acid mediates antioxidative defense systems to promote adventitious rooting in mung bean seedlings under cadmium and drought stresses. Ecotoxicol Environ Saf 161:332–341. https://doi.org/10.1016/j.ecoenv.2018.06.003

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Oliveira RS, Freitas H, Zhang C (2016) Biochemical and molecular mechanisms of plant-microbe-metal interactions: relevance for phytoremediation. Front Plant Sci 10(3389):00918

    Google Scholar 

  • Mahanty T, Bhattacharjee S, Goswami M, Bhattacharyya P, Das B, Ghosh A, Tribedi P (2017) Biofertilizers: a potential approach for sustainable agriculture development. Environ Sci Pollut Res 24(4):3315–3335

    Article  CAS  Google Scholar 

  • Malamlssa OL, Bissonnais Y, Defarge C, Trichet J (2001) Role of a cyanobacterial cover on structural stability of sandy soils in the Sahelian part of western Niger. Geoderma 101:15–30

    Article  Google Scholar 

  • Malik FR, Ahmed S, Rizki YM (2001) Utilization of lignocellulosic waste for the preparation of nitrogenous biofertilizer. Pak J Biol Sci 4(4):1217–1220

    Google Scholar 

  • Mallick N (2002) Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. Biometals 15:377–390

    Article  CAS  PubMed  Google Scholar 

  • Manjunath M, Prasanna R, Nain L, Dureja P, Singh R, Kumar A, Jaggi S, Kaushik BD (2010) Biocontrol potential of cyanobacterial metabolites against damping off disease caused by Pythium aphanidermatum in solanaceous vegetables. Arch Phytopathol Plant Prot 43:666–677. https://doi.org/10.1080/03235400802075815

    Article  Google Scholar 

  • Marsalek B, Zahradnickova H, Hronkova M (1992) Extracellular abscisic acid produced by cyanobacteria under salt stress. J Plant Physiol 139:506–508

    Article  CAS  Google Scholar 

  • Megharaj M, Venkateswarlu K, Rao AS (1987) Metabolism of monocrotophos and quinalphos by algae isolated from soil. Bull Environ Contam Toxicol 39(2):251–256

    Article  CAS  PubMed  Google Scholar 

  • Megharaj M, Madhavi DR, Sreenivasulu C, Umamaheswari A, Venkateswarlu K (1994) Biodegradation of methyl parathion by soil isolates of microalgae and cyanobacteria. Bull Environ Contam Toxicol 53(2):292–297

    Article  CAS  PubMed  Google Scholar 

  • Mehmood MA, Qadri H, Bhat RA, Rashid A, Ganie SA, Dar GH (2019) Heavy metal contamination in two commercial fish species of a trans-Himalayan freshwater ecosystem. Environ Monit Assess 191:104. https://doi.org/10.1007/s10661-019-7245-2

    Article  CAS  PubMed  Google Scholar 

  • Metting B (1988) Microalgae in agriculture. In: Borowitzka MA, Borowitzka LJ (eds) Micro-Algal biotechnology. Cambridge University Press, Cambridge, pp 288–304

    Google Scholar 

  • Misra S, Kaushik BD (1989a) Growth promoting substances of cyanobacteria. I. Vitamins and their influence on rice plant. Proc Indian Sci Acad 55:295–300

    CAS  Google Scholar 

  • Misra S, Kaushik BD (1989b) Growth promoting substances of cyanobacteria II: detection of amino acids, sugars and auxins. Proc Ind Natl Sci Acad 6:499–504

    Google Scholar 

  • Mohamed AMA (2001) Studies on some factors affecting production of algal biofertilizers. MSc thesis, Faculty of Agriculture Engineering, Al-Azhar University, Cairo, Egypt

    Google Scholar 

  • Mushtaq N, Bhat RA, Dervash MA, Qadri H, Dar GH (2018) Biopesticides: the key component to remediate pesticide contamination in an ecosystem. In: Environmental contamination and remediation. Cambridge Scholars Publishing, Cambridge, pp 152–178

    Google Scholar 

  • Narro ML, Cerniglia CE, Van BC, Gibson DT (1992) Metabolism of phenanthrene by the marine cyanobacterium Agmenellum quadruplicate PR-6. Appl Environ Microbiol 58:1351–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nassar MM, Hafez ST, Nagaty IM, Khalaf SA (1999) The insecticidal activity of cyanobacteria against four insects, two of medical importance and two agricultural pests with reference to the action on albino mice. J Egypt Soc Parasitol 29:939–949

    CAS  PubMed  Google Scholar 

  • Nisha R, Kaushik A, Kaushik CP (2007) Effect of indigenous cyanobacterial application on structural stability and productivity of an organically poor semi-arid soil. Geoderma 138:49–56

    Article  CAS  Google Scholar 

  • Obreht Z, Kerby NW, Gantar M, Rowell P (1993) Effects of root associated N2-fixing cyanobacteria on the growth and nitrogen content of wheat (Triticum vulgare L.) seedlings. Biol Fertil Soils 15:68–72

    Article  CAS  Google Scholar 

  • Olson JM (2006) Photosynthesis in the Archean era. Photosynth Res 88:109–117

    Article  CAS  PubMed  Google Scholar 

  • Osman MEH, El-Sheekh MM, El-Naggar AH, Gheda SF (2010) Effect of two species of cyanobacteria as biofertilizers on some metabolic activities, growth, and yield of pea plant. Biol Fertil Soils 46:861–875. https://doi.org/10.1007/s00374-010-0491-7

    Article  Google Scholar 

  • Pabbi S, Vaishya AK (1992) Effect of insecticides on cyanobacterial growth and nitrogen fixation. In: Kaushik BD (ed) Proceeding of the 1992 National Symposium on cyanobacterial nitrogen fixation. Indian Agriculture Research Institute, New Delhi, pp 389–493

    Google Scholar 

  • Papke U, Gross EM, Francke W (1997) Isolation, identification and determination of the absolute configuration of Fischerellin B. a new algicide from the freshwater cyanobacterium Fischerellin muscicola (Thuret). Tetrahedron Lett 38:379–382

    Article  CAS  Google Scholar 

  • Paracer S (1987) Effective use of marine algal products in the management of plant-parasitic nematodes. J Nematol 19:194

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paul D, Nair S (2008) Stress adaptations in a plant growth promoting rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils. J Basic Microbiol 48:378–384

    Article  CAS  PubMed  Google Scholar 

  • Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14(3):290–295

    Article  CAS  PubMed  Google Scholar 

  • Pfennig N (1969) Rhodopseudomonas acidophila, sp. n., a new species of the budding purple non sulfur bacteria. J Bacteriol 99:597–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfennig N (1974) Rhodopseudomonas globformis, sp. n., a new species of the Rhodospirillaceae. Arch Microbiol 100:197–206

    Article  CAS  Google Scholar 

  • Pohl P, Schimmack W (2006) Adsorption of radionuclides (134Cs, 85Sr, 226Ra, 241Am) by extracted biomasses of cyanobacteria (Nostoc carneum, N. insulare, Oscillatoria geminata and Spirulina laxissima) and Phaeophyceae (Laminaria digitata and L. japonica; waste products from alginate production) at different pH. J Appl Phycol 18:135–143

    Article  CAS  Google Scholar 

  • Pradhan S, Rai LC (2000) Optimization of flow rate, initial metal ion concentration and biomass density for maximum removal of Cu2+ by immobilized Microcystis. World J Microbiol Biotechnol 16:579–584

    Article  CAS  Google Scholar 

  • Prasanna R, Sharma E, Sharma P, Kumar A, Kumar R, Gupta V, Pal RK, Shivay YS, Nain L (2013) Soil fertility and establishment potential of inoculated cyanobacteria in rice crop grown under non flooded conditions. Paddy Water Environ 11(1–4):175–183

    Article  Google Scholar 

  • Radwan SS, Al-Hasan RH (2000) Oil pollution and cyanobacteria. In: The ecology of cyanobacteria. Kluwer Academic Publishers, New York, pp 307–319

    Google Scholar 

  • Rai LC, Singh S, Pradhan S (1998) Biotechnological potential of naturally occurring and laboratory grown Microcystis in biosorption of Ni2+ and Cd2+. Curr Sci 74:461–463

    CAS  Google Scholar 

  • Rai AN, Söderbäck E, Bergman B (2000) Cyanobacterium-plant symbioses. New Phytol 147:449–481

    Article  CAS  PubMed  Google Scholar 

  • Rashid A, Bhat RA, Qadri H, Mehmood MA (2019) Environmental and socioeconomic factors induced blood lead in children: an investigation from Kashmir, India. Environ Monit Assess 191(2):76. https://doi.org/10.1007/s10661-019-7220-y

    Article  PubMed  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Rodgers GA, Bergman B, Henriksson E, Udris M (1979) Utilization of blue-green algae as bio-fertilizers. Plant Soil 52:99–107

    Article  CAS  Google Scholar 

  • Rogers SL, Burns RG (1994) Changes in aggregate stability, nutrient status, indigenous microbial populations and seedling emergence following inoculation of soil with Nostoc muscorum. Biol Fertil Soils 18:209–215

    Article  Google Scholar 

  • Ruffng AM (2011) Engineered cyanobacteria: teaching an old bug new tricks. Bioeng Bugs 2(3):136–149

    Article  Google Scholar 

  • Saddler JN (1993) Bioconversion of forest and agricultural plant residues. CAB International, Wallingford, p 394

    Google Scholar 

  • Sánchez-Baracaldo P, Hayes PK, Blank CE (2005) Morphological and habitat evolution in the Cyanobacteria using a compartmentalization approach. Geobiology 3:145–166

    Article  Google Scholar 

  • Sarma MK, Kaushik S, Goswami P (2016) Cyanobacteria: a metabolic power house for harvesting solar energy to produce bio-electricity and biofuels. Biomass Bioenergy 90:187–201

    Article  CAS  Google Scholar 

  • Sarsekeyeva F, Zayadan BK, Usserbaeva A, Bedbenov VS, Sinetova MA, Los DA (2015) Cyanofuels: biofuels from cyanobacteria. Reality and perspectives. Photosynth Res 125:329–340

    Article  CAS  PubMed  Google Scholar 

  • Sathiyamoorthy P, Shanmugasundaram S (1996) Preparation of cyanobacterial peptide toxin as a biopesticide against cotton pests. Appl Microbiol Biotechnol 46:511–513. https://doi.org/10.1007/s002530050852

    Article  CAS  Google Scholar 

  • Savci S (2012) An agricultural pollutant: chemical fertilizer. Int J Environ Sci Dev 3(1):73

    Article  Google Scholar 

  • Schrader KK, Nagle DG, Wedge DE (2002) Algal and cyanobacterial metabolites as agents for pest management. In: Upadhyay RK (ed) Advances in microbial toxin research and its biotechnological exploitation. Springer, Boston, pp 171–195

    Chapter  Google Scholar 

  • Semple KT, Cain RB, Schmidt S (1999) Biodegradation of aromatic compounds by microalgae. FEMS Microbiol Lett 170(2):291–300

    Article  CAS  Google Scholar 

  • Sergeeva E, Liaimer A, Bergman B (2002) Evidence for production of the phytohormone indole-3-acetic acid by cyanobacteria. Planta 215:229–238

    Article  CAS  PubMed  Google Scholar 

  • Shashirekha S, Uma L, Subramanian G (1997) Phenol degradation by the marine cyanobacterium Phormidium valderianum BDU-30501. J Ind Microbiol Biotechnol 19:130–133

    Article  CAS  Google Scholar 

  • Shukia SP, Singh JS, Kashyap S, Giri DD, Kashyap AK (2008) Antarctic cyanobacteria as a source of phycocyanin: an assessment. Ind J Marine Sci 37:446–449

    CAS  Google Scholar 

  • Singh JS (2014) Cyanobacteria: a vital bio-agent in eco-restoration of degraded lands and sustainable agriculture. Clim Change Environ Sustain 2:133–137

    Google Scholar 

  • Singh SP, Montgomery BL (2011) Determining cell shape: adaptive regulation of cyanobacterial cellular differentiation and morphology. Trends Microbiol 19(6):278–285

    Article  CAS  PubMed  Google Scholar 

  • Singh VP, Trehan T (1973) Effects of extracellular products of Aulosira fertilissuna on the growth of rice seedlings. Plant Soil 38:457–464

    Article  Google Scholar 

  • Singh JS, Pandey VC, Singh DP (2011a) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecol Environ 140:339–353

    Article  Google Scholar 

  • Singh RP, Bauddh K, Sainger M, Singh JS, Jaiwal PK (2011b) Nitrogen use efficiency in higher plants under drought, high temperature, salinity and heavy metal contaminations. In: Jain V, Kumar AP (eds) Nitrogen use efficiency in higher plants. New Delhi Publishing Agency, New Delhi, pp 99–123

    Google Scholar 

  • Singh H, Ahluwalia AS, Khattar JS (2013) Induction of sporulation by different nitrogen sources in Anabaena naviculoides, a Diazotrophic strain capable of colonizing paddy field soil of Punjab (India). Vegetos 26(1):283–292

    Article  Google Scholar 

  • Singh N, Dhar DW, Tabassum R (2014) Review: role of cyanobacteria in crop protection. Proc Natl Acad Sci U S A. https://doi.org/10.1007/s40011-014-0445-1

  • Singh JS, Kumar A, Rai AN, Singh DP (2016) Cyanobacteria: a precious bio-resource in agriculture, ecosystem, and environmental sustainability. Front Microbiol 7:529

    Article  PubMed  PubMed Central  Google Scholar 

  • Sofi NA, Bhat RA, Rashid A, Mir NA, Mir SA, Lone R (2017) Rhizosphere mycorrhizae communities an input for organic agriculture. In: Varma A et al (eds) Mycorrhiza-nutrient uptake, biocontrol, ecorestoration. Springer International Publishing, Cham, pp 387–413

    Chapter  Google Scholar 

  • Song T, Martensson L, Eriksson T, Zheng W, Rasmussen U (2005) Biodiversity and seasonal variation of the cyanobacterial assemblage in a rice paddy field in Fujian, China. FEMS Microbiol Ecol 54:131–140

    Article  CAS  PubMed  Google Scholar 

  • Spaepen S, Vanderkyden J, Remans R (2007) Indole-3- acetic acid in microbial and microorganism – plant signaling. FEMS Microbiol Rev 31:425–448

    Google Scholar 

  • Strick WA, Staden JV, Van-Staden J (1997) Screening of some South African seaweeds for cytokinin-like activity. South Afr J Bot 63(3):161–164

    Article  Google Scholar 

  • Subramanian G, Sundaram SS (1986) Induced ammonia release by the nitrogen fixing cyanobacterium Anabaena. FEMS Microbiol Lett 37:151–154

    Article  CAS  Google Scholar 

  • Subramanian G, Sekar S, Sampoornam S (1994) Biodegradation and utilization of organophosphorus pesticides by cyanobacteria. Int Biodeterior Biodegradation 33:129–143. https://doi.org/10.1016/0964-8305(94)90032-9

    Article  Google Scholar 

  • Tassara C, Zaccaro MC, Storni MM, Palma M, Zulpa G (2008) Biological control of lettuce white mold with cyanobacteria. Int J Agric Biol 10:487–492

    Google Scholar 

  • Tiedje JM (1997) Environmental biotechnology. Curr Opin Biotechnol 8:267

    Article  CAS  PubMed  Google Scholar 

  • Tomitani A, Knoll AH, Cavanaugh CM, Ohno T (2006) The evolutionary diversification of cyanobacteria: molecular phylogenetic and paleontological perspectives. Proc Natl Acad Sci U S A 103:5442–5447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner S (1997) Molecular systematics of oxygenic photosynthetic bacteria. Plant Systemat Evol 11:13–52

    Article  CAS  Google Scholar 

  • Turner S, Pryer KM, Miao VPW, Palmer JD (1999) Investigating deep phylogenetic relationships among cyanobacteria and plastids by small submit rRNA sequence analysis. J Euk Microbiol 46:327–338

    Article  CAS  PubMed  Google Scholar 

  • Vaishampayan A, Sinha RP, Hader DP, Dey T, Gupta AK, Bhan U, Rao AL (2001) Cyanobacterial biofertilizers in rice agriculture. Bot Rev 67(4):453–516

    Article  Google Scholar 

  • Verma SK, Singh SP (1990) Factors regulating copper uptake in cyanobacteria. Curr Microbiol 21:33–37

    Article  CAS  Google Scholar 

  • Victor TJ, Reuben R (2000) Effects of organic and inorganic fertilisers on mosquito populations in rice fields of southern India. Med Vet Entomol 14:361–368

    Article  CAS  PubMed  Google Scholar 

  • Vilchez C, Garbayo I, Lobato MV, Vega J (1997) Microalgae-mediated chemicals production and wastes removal. Enzym Microb Technol 20(8):562–572

    Article  CAS  Google Scholar 

  • Vorontsova GV, Romansova NI, Postnova TI, Selykh IO, Gusev MV (1988) Bio-stimulating effect of cyanobacteria and ways to increase it. I. Use of nutrients – super products of amino acids. Moscow Univer Bio. Sci Bull 43:14–19

    Google Scholar 

  • Werner T, Nehnevajova E, Kollmer I, Novak O, Strnd M, Kramer U, Schmulling T (2010) Root- specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and Tobacco. Plant Cell 22:3905–3920

    Article  PubMed  PubMed Central  Google Scholar 

  • Yee N, Benning LG, Phoenix VR, Ferris FG (2004) Characterization of metal-cyanobacteria sorption reactions: a combined macroscopic and infrared spectroscopic investigation. Environ Sci Technol 38:775–782

    Article  CAS  PubMed  Google Scholar 

  • Youssef MMA, Ali MS (1998) Management of Meloidogyne incognita infecting cowpea by using some native blue-green algae. Anz Schädlingskunde, Pflanzenschutz, Umweltschutz 71(1):15–16

    Article  Google Scholar 

  • Zhao Y (2012) Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Mol Plant 5:334–338

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283–333

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, C. et al. (2021). Cyanobacteria as Sustainable Microbiome for Agricultural Industries. In: Dar, G.H., Bhat, R.A., Mehmood, M.A., Hakeem, K.R. (eds) Microbiota and Biofertilizers, Vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-61010-4_13

Download citation

Publish with us

Policies and ethics