Skip to main content

Many-Particle Schrödinger Type Finitely Factorized Quantum Hamiltonian Systems and Their Integrability

  • Conference paper
  • First Online:
Geometric Methods in Physics XXXVIII

Part of the book series: Trends in Mathematics ((TM))

  • 441 Accesses

Abstract

We develop G. A. Goldin and D. H. Sharp’s quantum current algebra approach to many-particle Hamiltonian operators. We demonstrate its deep relationship to the Hamiltonian operators’ factorized structure. We investigate this for completely integrable spinless systems, showing the connection with the classical Bethe ansatz ground state representation. The quantum Hamilton operators are considered for integrable delta-potential and oscillatory Caloger-Moser-Sutherland models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aniceto, I., Avan, J., Jevicki, A.: Poisson structures of Calogero-Moser and Ruijsenaars-Schneider models. J. Phys. A43, 185201 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Aref’eva, I.Ja.: Current formalism in nonrelativistic quantum mechanics. Teoret. Mat. Fiz. 10(2), 146–155 (1972)

    Google Scholar 

  3. Berezans’kiı̆, Ju.M.: Expansions in eigenfunctions of selfadjoint operators. Translated from the Russian by R. Bolstein, J. M. Danskin, J. Rovnyak and L. Shulman. In: Translations of Mathematical Monographs, Vol. 17. American Mathematical Society, Providence, RI (1968). MR 0222718

    Google Scholar 

  4. Berezansky, Y.M., Kondratiev, Y.G.: Spectral methods in infinite-dimensional analysis, Vol. 1. In: Mathematical Physics and Applied Mathematics, vol. 12/1. Kluwer Academic Publishers, Dordrecht (1995). Translated from the 1988 Russian original by P. V. Malyshev and D. V. Malyshev and revised by the authors. MR 1340626

    Google Scholar 

  5. Berezansky, Y.M., Kondratiev, Y.G.: Spectral methods in infinite-dimensional analysis. Vol. 2. In: Mathematical Physics and Applied Mathematics, vol. 12/2. Kluwer Academic Publishers, Dordrecht (1995). Translated from the 1988 Russian original by P. V. Malyshev and D. V. Malyshev and revised by the authors. MR 1340627

    Google Scholar 

  6. Berezin, F.A.: The method of second quantization. Translated from the Russian by Nobumichi Mugibayashi and Alan Jeffrey. In: Pure and Applied Physics, Vol. 24. Academic Press, New York-London (1966). MR 0208930

    Google Scholar 

  7. Berezin, F.A., Shubin, M.A.: The Schrödinger equation. In: Mathematics and Its Applications (Soviet Series), vol. 66. Kluwer Academic Publishers, Dordrecht (1991). Translated from the 1983 Russian edition by Yu. Rajabov, D. A. Leı̆tes and N. A. Sakharova and revised by Shubin, With contributions by G. L. Litvinov and Leı̆tes. MR 1186643

    Google Scholar 

  8. Blackmore, D., Prykarpatsky, A.K., Samoylenko, V.Hr.: Nonlinear Dynamical Systems of Mathematical Physics. World Scientific Publishing, Hackensack, NJ (2011). Spectral and Symplectic Integrability Analysis. MR 2798775

    Google Scholar 

  9. Bogolubov, N.N., Bogolubov, Jr., N.N.: Introduction to Quantum Statistical Mechanics. World Scientific Publishing, Singapore (1982). Translated from the Russian by V. P. Gupta, Edited by C. J. H. Lee. MR 681288

    Google Scholar 

  10. Bogolubov, Jr., N.N., Prykarpatsky, A.K.: Bogoliubov quantum generating functional method in statistical physics: Lie algebra of currents, its representations and functional equations. Phys. Elementary Part. At. Nucl. 17(4), 789–827 (1986). In Russian

    Google Scholar 

  11. Campbell, C.E.: Extended Jastrow functions. Phys. Lett. A 44(7), 471–473 (1973)

    Article  Google Scholar 

  12. Dirac, P.A.M.: The Principles of Quantum Mechanics, 2nd edn. Clarendon Press, Oxford (1935)

    MATH  Google Scholar 

  13. Dunkl, C.F.: Differential-difference operators associated to reflection groups. Trans. Am. Math. Soc. 311(1), 167–183 (1989). MR 951883

    Google Scholar 

  14. Faddeev, L.D., Yakubovskiı̆, O.A.: Lectures on quantum mechanics for mathematics students. In: Student Mathematical Library, vol. 47. American Mathematical Society, Providence, RI (2009). Translated from the 1980 Russian original by Harold McFaden, With an appendix by Leon Takhtajan. MR 2492178

    Google Scholar 

  15. Feenberg, E.: Ground state of an interacting boson system. Ann. Phys. 84(1), 128–146 (1974)

    Article  MathSciNet  Google Scholar 

  16. Fock, V.: Konfigurationsraum und zweite quantelung. Zeitschrift für Physik 75(9), 622–647 (1932)

    Article  Google Scholar 

  17. Gel’fand, I.M., Vilenkin, N.Ya.: Generalized Functions. Vol. 4. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London (1964) [1977]. Applications of Harmonic Analysis. Translated from the Russian by Amiel Feinstein. MR 0435834

    Google Scholar 

  18. Goldin, G.A., Grodnik, J., Powers, R.T., Sharp, D.H.: Nonrelativistic current algebra in the NV  limit. J. Math. Phys. 15, 88–100 (1974). MR 363257

    Google Scholar 

  19. Goldin, G.A., Menikoff, R., Sharp, D.H.: Representations of a local current algebra in nonsimply connected space and the Aharonov-Bohm effect. J. Math. Phys. 22(8), 1664–1668 (1981). MR 628546

    Google Scholar 

  20. Goldin, G.A., Sharp, D.H.: Lie algebras of local currents and their representations. In: Group Representations in Math. and Phys (Battelle Seattle 1969 Rencontres). Lecture Notes in Physics, Vol. 6, pp. 300–311. Springer, Berlin (1970). MR 0272325

    Google Scholar 

  21. Goldin, G.A.: Nonrelativistic current algebras as unitary representations of groups. J. Math. Phys. 12, 462–487 (1971). MR 284101

    Google Scholar 

  22. Goldin, G.A.: Lectures on diffeomorphism groups in quantum physics. In: Contemporary Problems in Mathematical Physics, pp. 3–93. World Sci. Publ., Hackensack, NJ (2004). MR 2441348

    Google Scholar 

  23. Goldin, G.A., Menikoff, R., Sharp, D.H.: Diffeomorphism groups, gauge groups, and quantum theory. Phys. Rev. Lett. 51(25), 2246–2249 (1983). MR 726744

    Google Scholar 

  24. Jiang, Y.-Z., Chen, Y.-Y., Guan, X.-W.: Understanding many-body physics in one dimension from the Lieb-Liniger model. Chin. Phys. B 24(5), 050311 (2015)

    Article  Google Scholar 

  25. Lapointe, L., Vinet, L.: Exact operator solution of the Calogero-Sutherland model. Commun. Math. Phys. 178(2), 425–452 (1996). MR 1389912

    Google Scholar 

  26. Menikoff, R.: Generating functionals determining representations of a nonrelativistic local current algebra in the N/V limit. J. Math. Phys. 15(8), 1394–1408 (1974)

    Article  Google Scholar 

  27. Menikoff, R., Sharp, D.H.: Representations of a local current algebra: their dynamical determination. J. Math. Phys. 16(12), 2341–2352 (1975). MR 413939

    Google Scholar 

  28. Mitropolsky, Yu.A., Bogolubov, Jr., N.N.: Prykarpatsky, A.K., Samoylenko, V.Hr.: Integrable Dynamical Systems. Spectral and Differential Geometric Aspects. Naukova Dumka, Kiev (1987)

    Google Scholar 

  29. Prykarpatsky, A.K., Mykytiuk, I.V.: Algebraic integrability of nonlinear dynamical systems on manifolds. In: Mathematics and Its Applications, vol. 443. Kluwer Academic Publishers, Dordrecht (1998). Classical and Quantum Aspects. MR 1745160

    Google Scholar 

  30. Prykarpatsky, A.K., Taneri, U., Bogolubov, Jr., N.N.: Quantum Field Theory with Application to Quantum Nonlinear Optics. World Scientific Publishing, River Edge, NJ (2002). MR 1961215

    Google Scholar 

  31. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. I, 2nd edn. Academic Press, [Harcourt Brace Jovanovich, Publishers], New York (1980). Functional Analysis. MR 751959

    Google Scholar 

  32. Sergeev, A.N., Veselov, A.P.: Dunkl operators at infinity and Calogero-Moser systems. e-prints (2013). arXiv:1311.0853

    Google Scholar 

  33. Sklyanin, E.K.: Quantum variant of the method of the inverse scattering problem. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 95, 55–128, 161 (1980). Differential Geometry, Lie Groups and Mechanics, III. J. Sov. Math. 19(5), 1546–1596 (1982). MR 606022

    Google Scholar 

  34. Sklyanin, E.K., Tahtadžjan, L.A., Faddeev, L.D.: Quantum inverse problem method. I. Teoret. Mat. Fiz. 40(2), 194–220 (1979). Theoret. Math. Phys. 40(2), 688–706 (1979). MR 549615

    Google Scholar 

  35. Takhtajan, L.A.: Quantum Mechanics for Mathematicians. In: Graduate Studies in Mathematics, vol. 95. American Mathematical Society, Providence, RI (2008). MR 2433906

    Google Scholar 

Download references

Acknowledgements

Authors would like to thank Prof. Gerald Goldin for valuable discussions of this work during the XXXVIII International Workshop on “Geometry in Physics”. They also are cordially appreciative of Profs. Joel Lebowitz, Denis Blackmore and Nikolai N. Bogolubov (Jr.) for instructive discussions, useful comments and remarks on the work. A special author’s appreciation belongs to Prof. Joel Lebowitz for the invitation to take part in the 121-st Statistical Mechanics Conference at the Rutgers University, New Brunswick, NJ, USA. Personal A.P.’s acknowledgments belong to the Department of Physics, Mathematics and Computer Science of the Cracow University of Technology for a local research grant F-2/370/2018/DS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatolij Prykarpatski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Prorok, D., Prykarpatski, A. (2020). Many-Particle Schrödinger Type Finitely Factorized Quantum Hamiltonian Systems and Their Integrability. In: Kielanowski, P., Odzijewicz, A., Previato, E. (eds) Geometric Methods in Physics XXXVIII. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-53305-2_16

Download citation

Publish with us

Policies and ethics