Skip to main content
Log in

Hamiltonian models of interacting fermion fields in quantum field theory

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider Hamiltonian models representing an arbitrary number of spin 1 / 2 fermion quantum fields interacting through arbitrary processes of creation or annihilation of particles. The fields may be massive or massless. The interaction form factors are supposed to satisfy some regularity conditions in both position and momentum space. Without any restriction on the strength of the interaction, we prove that the Hamiltonian identifies to a self-adjoint operator on a tensor product of antisymmetric Fock spaces and we establish the existence of a ground state. Our results rely on new interpolated \(N_\tau \) estimates. They apply to models arising from the Fermi theory of weak interactions, with ultraviolet and spatial cutoffs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvarez, B., Faupin, J.: Scattering theory for mathematical models of the weak interaction. Rev. Math. Phys. (to appear)

  2. Ammari, Z.: On odd perturbations of free fermion fields. Lett. Math. Phys. 63, 241–253 (2003)

    Article  MathSciNet  Google Scholar 

  3. Ammari, Z.: Scattering theory for a class of fermionic Pauli–Fierz models. J. Funct. Anal. 208, 302–359 (2004)

    Article  MathSciNet  Google Scholar 

  4. Aschbacher, W., Barbaroux, J.-M., Faupin, J., Guillot, J.-C.: Spectral theory for a mathematical model of the weak interaction: the decay of the intermediate vector bosons W\(+/-\), II. Ann. Henri Poincaré 12(8), 1539–1570 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bach, V., Fröhlich, J., Sigal, I.M.: Quantum electrodynamics of confined nonrelativistic particles. Adv. Math. 137, 299–395 (1998)

    Article  MathSciNet  Google Scholar 

  6. Barbaroux, J.-M., Faupin, J., Guillot, J.-C.: Local decay for weak interactions with massless particles. J. Spectr. Theor. 9(2), 453–512 (2019)

    Article  MathSciNet  Google Scholar 

  7. Barbaroux, J.-M., Guillot, J.-C.: Spectral theory for a mathematical model of the weak interactions: the decay of the intermediate vector bosons W\(+/-\). Adv. Math. Phys. 009, Article ID 978903 (2009)

  8. Barbaroux, J.-M., Faupin, J., Guillot, J.-C.: Spectral theory near thresholds for weak interactions with massive particles. J.Spectr. Theory 6, 505–555 (2016)

    Article  MathSciNet  Google Scholar 

  9. Dai, L.R., Oset, E.: Helicity amplitudes in \(B\) \(\rightarrow \) \(D^{*}\overline{\nu }l\) decay. arXiv:1808.02876

  10. Dereziński, J., Gérard, C.: Asymptotic completeness in quantum field theory. Massive Pauli–Fierz Hamiltonians. Rev. Math. Phys. 11, 383–450 (1999)

    Article  MathSciNet  Google Scholar 

  11. Glimm, J., Jaffe, A.: Quantum Field Theory and Statistical Mechanics. Birkhaüser Boston Inc., Boston (1985). Expositions, Reprint of articles published 1969–1977

    Book  Google Scholar 

  12. Greiner, W., Müller, B.: Gauge Theory of Weak Interactions, 3rd edn. Springer, Berlin (2000)

    Book  Google Scholar 

  13. Griesemer, M., Lieb, E.H., Loss, M.: Ground states in non-relativistic quantum electrodynamics. Invent. Math. 145, 557–595 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  14. Guinti, C., Kim, C.W.: Fundamentals of Neutrino Physics and Astrophysics. Oxford University Press, CPI Group (UK) Ltd, Oxford (2016)

    Google Scholar 

  15. Huber, T., Qin, Q., Keri Vos, K.: Five-particle contributions to the inclusive rare \(B\rightarrow X_{s(d)}l^{+}l^{-}\) decays. arXiv:1806.11521

  16. Hübner, M., Spohn, H.: Radiative decay: nonperturbative approaches. Rev. Math. Phys. 7, 363–387 (1995)

    Article  MathSciNet  Google Scholar 

  17. Kane, G.: Modern Elementary Particle Physics. Cambridge University Press, Cambridge (2017)

    Book  Google Scholar 

  18. Li, Q., Wang, T., Jiang, Y., Yuan, H., Zhou, T., Wang, G.-L.: Decays of \( B, B_s\) and \(B_c\) to \(D\)-wave heavy–light mesons. arXiv:1607.07167

  19. Olive, K.A., et al.: Particle data group. Chin. Phys. C 38(9), 090001 (2014)

    Article  ADS  Google Scholar 

  20. Pizzo, A.: One-particle (improper) states in Nelson’s massless model. Ann. Henri Poincaré 4, 439–486 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  21. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. I and II. Academic Press, New York (1972)

    MATH  Google Scholar 

  22. Roman, P.: Theory of Elementary Particles. North Holland, Amsterdam (1961)

    Google Scholar 

  23. Takaesu, T.: Essential spectrum of a fermionic quantum field model. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 17, 1450024 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  24. Weinberg, S.: The Quantum Theory of Fields, vol. I. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  25. Weinberg, S.: The Quantum Theory of Fields, vol. II. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

Download references

Acknowledgements

JF and J-CG are grateful to J-M Barbaroux for many discussions and fruitful collaborations. We thank an anonymous referee for useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérémy Faupin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvarez, B., Faupin, J. & Guillot, JC. Hamiltonian models of interacting fermion fields in quantum field theory. Lett Math Phys 109, 2403–2437 (2019). https://doi.org/10.1007/s11005-019-01193-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-019-01193-9

Keywords

Mathematics Subject Classification

Navigation