Skip to main content

Anthropogenic Effects on Avian Haemosporidians and Their Vectors

  • Chapter
  • First Online:
Avian Malaria and Related Parasites in the Tropics

Abstract

With a population of nearly 8 billion humans, the planet is going through rapid unprecedented change. Human activities cause deforestation, desertification, urbanization, and climate change, all of which are affecting the tropical regions of the world. For example, it is clear that anthropogenic disturbance in tropical forests can rapidly increase biodiversity loss, and global environmental change may severely further degrade forests in the future. With regard to avian haemosporidians, it is not entirely clear how these changes will affect the prevalence, diversity, and pathogenicity of the parasites, but several studies have provided insights into how human impacts in the tropics will affect birds, vectors, and blood parasites. This chapter summarizes recent work that investigates the human effects on haemosporidian disease ecology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abella-Medrano CA, Ibáñez-Bernal S, MacGregor-Fors I et al (2015) Spatiotemporal variation of mosquito diversity (Diptera: Culicidae) at places with different land-use types within a neotropical montane cloud forest matrix. Parasit Vectors 8:487

    Article  PubMed  PubMed Central  Google Scholar 

  • Abella-Medrano CA, Ibáñez-Bernal S, Carbó-Ramírez P et al (2018) Blood-meal preferences and avian malaria detection in mosquitoes (Diptera: Culicidae) captured at different land use types within a neotropical montane cloud forest matrix. Parasitol Int 67:313–320

    Article  PubMed  Google Scholar 

  • Aguirre AA, Ostfeld RS, Daszak P (2012) New directions in conservation medicine: applied cases of ecological health. Oxford University Press, New York

    Google Scholar 

  • Alberti M (2008) Advances in urban ecology: integrating humans and ecological processes in urban ecosystems. Springer, New York

    Book  Google Scholar 

  • Amraoui F, Tijane M, Sarih M et al (2012) Molecular evidence of Culex pipiens form molestus and hybrids pipiens/molestus in Morocco, North Africa. Parasit Vector 5:83

    Google Scholar 

  • Aratrakorn S, Thunhikorn S, Donald PF (2006) Changes in bird communities following conversion of lowland forest to oil palm and rubber plantations in southern Thailand. Bird Conserv Int 16:71–82

    Article  Google Scholar 

  • Aronson MFJ, La Sorte FA, Nilon CH et al (2014) A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proc R Soc Lond B 281:20133330

    Google Scholar 

  • Atkinson CT, Samuel MD (2010) Avian malaria Plasmodium relictum in native Hawaiian forest birds: epizootiology and demographic impacts on ‘Apapane Himatione sanguinea. J Avian Biol 41:357–366

    Article  Google Scholar 

  • Becker N, Petrić D, Boase C et al (2010) Mosquitoes and their control, vol 2. Springer, New York, p 577

    Book  Google Scholar 

  • Becker N, Leisnham PT, LaDeau SL (2014) A tale of two city blocks: differences in immature and adult mosquito abundances between socioeconomically different urban blocks in Baltimore (Maryland, USA). Int J Environ Res Public Health 11:3256–3270

    Google Scholar 

  • Beji M, Rhim A, Roiz D et al (2017) Ecophysiological characterization and molecular differentiation of Culex pipiens forms (Diptera: Culicidae) in Tunisia. Parasit Vectors 10:327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Belo NO, Pinheiro RT, Reis ES et al (2011) Prevalence and lineage diversity of avian haemosporidians from three distinct cerrado habitats in Brazil. PLoS One 6:e17654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berkowitz AR, Nilon CH, Hollweg KS (2003) Understanding urban ecosystems: a new frontier for science and education. Springer, New York

    Book  Google Scholar 

  • Bertrand R, Lenoir J, Piedallu C et al (2011) Changes in plant community composition lag behind climate warming in lowland forests. Nature 479:517–520

    Google Scholar 

  • Bichet C, Scheifler R, Cœurdassier M et al (2013) Urbanization, trace metal pollution, and malaria prevalence in the House Sparrow. PLoS One 8:e53866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bisseleua DHB, Missoup AD, Vidal S (2008) Biodiversity conservation, ecosystem functioning, and economic incentives under cocoa agroforestry intensification. Conserv Biol 23:1176–1184

    Article  Google Scholar 

  • Bogojević MS, Merdić E, Bogdanović T (2011) The flight distances of floodwater mosquitoes (Aedes vexans, Ochlerotatus sticticus and Ochlerotatus caspius) in Osijek, Eastern Croatia. Biologia 66:678–683

    Article  Google Scholar 

  • Bonizzoni M, Gasperi G, Chen X et al (2013) The invasive mosquito species Aedes albopictus: current knowledge and future perspectives. Trends Parasitol 29:460–468

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonneaud C, Sepil I, Milá B et al (2009) The prevalence of avian Plasmodium is higher in undisturbed tropical forests of Cameroon. J Trop Ecol 25:439–447

    Article  Google Scholar 

  • Buczek A, Ciura D, Bartosik K et al (2014) Threat of attacks of Ixodes ricinus ticks (Ixodida: Ixodidae) and Lyme borreliosis within urban heat islands in South-Western Poland. Parasit Vectors 7:562

    Article  PubMed  PubMed Central  Google Scholar 

  • Byrne K, Nichols RA (1999) Culex pipiens in London underground tunnels: differentiation between surface and subterranean population. Heredity 82:7–15

    Article  PubMed  Google Scholar 

  • Cancrini G, Frangipane di Regalbono A, Ricci I et al (2003) Aedes albopictus is a natural vector of Dirofilaria immitis in Italy. Vet Parasitol 118:195–202

    Article  CAS  PubMed  Google Scholar 

  • Carbó-Ramírez P, Zuria I, Schaefer HM et al (2017) Avian haemosporidians at three environmentally contrasting urban greensapaces. J Urban Ecol 3:1–11

    Article  Google Scholar 

  • Carlson ML, Proudfoot GA, Gentile K et al (2018) Haemosporidian prevalence in northern saw-whet owls Aegolius acadicus is predicted by host age and average annual temperature at breeding grounds. J Avian Biol 49:e01817

    Article  Google Scholar 

  • Carrara E, Arroyo-Rodríguez V, Vega-Rivera JH et al (2015) Impact of landscape composition and configuration on forest specialist and generalist bird species in the fragmented Lacandona rainforest, Mexico. Biol Conserv 184:117–126

    Article  Google Scholar 

  • Chasar A, Loiseau C, Valkiūnas G et al (2009) Prevalence and diversity patterns of avian blood parasites in degraded African rainforest habitats. Mol Ecol 18:4121–4133

    Article  CAS  PubMed  Google Scholar 

  • Chen IC, Hill JK, Ohlemuller R et al (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026

    Article  CAS  PubMed  Google Scholar 

  • Chung A, Eggleton P, Speight M et al (2000) The diversity of beetle assemblages in different habitat types in Sabah, Malaysia. Bull Entomol Res 90:475–496

    Article  CAS  PubMed  Google Scholar 

  • Ciota AT, Drummond CL, Ruby MA et al (2012) Dispersal of Culex mosquitoes (Diptera: Culicidae) from a wastewater treatment facility. J Med Entomol 4:35–42

    Article  Google Scholar 

  • Clough Y, Barkmann J, Juhrbandt J et al (2011) Combining high biodiversity with yields in tropical agroforests. Proc Natl Acad Sci U S A 108:8311–8316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Condit R, Hubbell SP, Foster RB (1996) Changes in tree species abundance in a Neotropical forest: impact of climate change. J Trop Ecol 12:231–256

    Article  Google Scholar 

  • Cosgrove CL, Wood MJ, Day KP et al (2008) Seasonal variation in Plasmodium prevalence in a population of blue tits Cyanistes caeruleus. J Anim Ecol 77:540–548

    Article  PubMed  Google Scholar 

  • Croci S, Butet A, Georges A et al (2008) Small urban woodlands as biodiversity conservation hot-spot: a multi-taxon approach. Landsc Ecol 23:1171–1186

    Article  Google Scholar 

  • Cruz-Angón A, Greenberg R (2005) Are epiphytes important for birds in coffee plantations? An experimental assessment. J Appl Ecol 42:150–159

    Article  Google Scholar 

  • Czech B, Krausman PR, Devers PK (2000) Economic associations among causes of species endangerment in the United States. Bioscience 50:593–601

    Article  Google Scholar 

  • Danabalan R, Ponsonby DJ, Linton Y-M (2012) A critical assessment of available molecular identification tools for determining the status of Culex pipiens s.l. in the United Kingdom. J Am Mosq Control Assoc 28:68–74

    Article  PubMed  Google Scholar 

  • Danielsen F, Heegaard M (1995) Impact of logging and plantation development on species diversity: a case study from Sumatra. In: Sandbukt Ø (ed) Management of tropical forests: towards an integrated perspective. University of Oslo, Oslo, pp 73–92

    Google Scholar 

  • de Aguilar JR, Castillo F, Moreno A et al (2018) Patterns of avian haemosporidian infections vary with time, but not habitat, in a fragmented Neotropical landscape. PLoS One 13:e0206493

    Article  CAS  Google Scholar 

  • DeClerck FAJ, Chazdon R, Holl KD et al (2010) Biodiversity conservation in human-modified landscapes of Mesoamerica: past, present, and future. Biol Conserv 143:2301–2313

    Article  Google Scholar 

  • Deconchat M, Brockerhoff EG, Barbaro L (2009) Effects of surrounding landscape composition on the conservation value of native and exotic habitats for native forest birds. For Ecol Manag 258S:S196–S204

    Article  Google Scholar 

  • Di Luca M, Toma L, Boccolini D et al (2016) Ecological distribution and CQ11 genetic structure of Culex pipiens complex (Diptera: Culicidae) in Italy. PLoS One 11(1):e0146476

    Google Scholar 

  • Dobson (2009) Climate variability, global change, immunity, and the dynamics of infectious diseases. Ecology 90:920–927

    Article  PubMed  Google Scholar 

  • Duncan RP, Blackburn TM, Sol D (2003) The ecology of bird introductions. Annu Rev Ecol Evol Syst 34:71–98

    Article  Google Scholar 

  • Eritja R, Palmer JR, Roiz D et al (2017) Direct evidence of adult Aedes albopictus dispersal by car. Sci Rep 7:14399

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Evans KL, Gaston KJ, Sharp SP et al (2009) Effects of urbanization on disease prevalence and age structure in blackbird Turdus merula populations. Oikos 118:774–782

    Article  Google Scholar 

  • Faeth SH, Warren PS, Shochat E et al (2005) Trophic dynamics in urban communities. Bioscience 55:399–407

    Article  Google Scholar 

  • Faraji A, Egizi A, Fonseca DM et al (2014) Comparative host feeding patterns of the Asian tiger mosquito, Aedes albopictus, in urban and suburban Northeastern USA and implications for disease transmission. PLoS Negl Trop Dis 8:e3037

    Article  PubMed  PubMed Central  Google Scholar 

  • Fecchio A, Wells K, Bell JA et al (2019) Climate variation influences host specificity in avian malaria parasites. Ecol Lett 22:547–557

    Google Scholar 

  • Ferraguti M (2017) Biodiversity and vector-borne diseases: effects of landscape, mosquito and vertebrate communities on the transmission of West Nile virus and avian malaria parasites. Dissertation. Universidad Pablo de Olavide

    Google Scholar 

  • Ferraguti M, Martínez-de la Puente J, Roiz D et al (2016) Effects of landscape anthropization on mosquito community composition and abundance. Sci Rep 6:29002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferraz G, Nichols JD, Hines JE et al (2007) A large-scale deforestation experiment: effects of patch area and isolation on Amazon birds. Science 315:238–241

    Article  CAS  PubMed  Google Scholar 

  • Fessl B, Heimpel GE, Causton CE (2018) Invasion of an avian nest parasite, Philornis downsi, to the Galapagos Islands: colonization history, adaptations to novel ecosystems, and conservation challenges. In: Parker P (ed) Disease ecology: Galapagos birds and their parasites. Springer, Cham, pp 213–266

    Google Scholar 

  • Figuerola J, Jiménez-Clavero MÁ, Rojo G et al (2007) Prevalence of West Nile virus neutralizing antibodies in colonial aquatic birds in southern Spain. Avian Pathol 36:209–212

    Google Scholar 

  • Fischer JD, Schneider SC, Ahlers AA et al (2015) Categorizing wildlife responses to urbanization and conservation implications of terminology. Conserv Biol 29:1246–1248

    Article  PubMed  Google Scholar 

  • Fokidis HB, Greiner EC, Deviche P (2008) Interspecific variation in avian blood parasites and haematology associated with urbanization in a desert habitat. J Avian Biol 39:300–310

    Article  Google Scholar 

  • Fonseca DM, Keyghobadi N, Malcolm CA et al (2004) Emerging vectors in the Culex pipiens complex. Science 303:1535–1538

    Article  CAS  PubMed  Google Scholar 

  • Forman RTT (2014) Urban ecology: science of cities. Cambridge University Press, New York

    Google Scholar 

  • Fortini LB, Vorsino AE, Amidon FA et al (2015) Large-scale range collapse of Hawaiian forest birds under climate change and the need 21st century conservation options. PLoS One 10:e0140389

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fortini LB, Kaiser LR, Vorsino AE et al (2017) Assessing the potential of translocating vulnerable forest birds by searching for novel and enduring climatic ranges. Ecol Evol 7:9119–9130

    Article  PubMed  PubMed Central  Google Scholar 

  • Frankie GW, Ehler LE (1978) Ecology of insects in urban environments. Annu Rev Entomol 23:367–387

    Article  Google Scholar 

  • Fritz ML, Walker ED, Miller JR et al (2015) Divergent host preferences of above -and below-ground Culex pipiens mosquitoes and their hybrid offspring. Med Vet Entomol 29:115–123

    Article  CAS  PubMed  Google Scholar 

  • Gao F, Bailes E, Robertson DL (1999) Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature 397:436–441

    Article  CAS  PubMed  Google Scholar 

  • Garamszegi LZ (2011) Climate change increases the risk of malaria in birds. Glob Change Biol 17:1751–1759

    Article  Google Scholar 

  • Gilioli G, Mariani L (2011) Sensitivity of Anopheles gambiae population dynamics to meteo–hydrological variability: a mechanistic approach. Malar J 10:294

    Article  PubMed  PubMed Central  Google Scholar 

  • Gomes B, Kioulos E, Papa A et al (2013) Distribution and hybridization of Culex pipiens forms in Greece during the West Nile virus outbreak of 2010. Infect Genet Evol 16:218–225

    Article  PubMed  Google Scholar 

  • Gonzalez-Quevedo C, Davies RG, Richardson DS (2014) Predictors of malaria infection in a wild bird population: landscape-level analyses reveal climatic and anthropogenic factors. J Anim Ecol 83:1091–1102

    Article  PubMed  Google Scholar 

  • Grard G, Caron M, Mombo IM et al (2014) Zika virus in Gabon (Central Africa) – 2007: a new threat from Aedes albopictus? PLoS Negl Trop Dis 8:e2681

    Article  PubMed  PubMed Central  Google Scholar 

  • Gratz NG (2004) Critical review of the vector status of Aedes albopictus. Med Vet Ent 18:215–227

    Article  CAS  Google Scholar 

  • Greenberg R, Bichier P, Sterling J (1997a) Acacia, cattle and migratory birds in Southeastern Mexico. Biol Conserv 80:235–247

    Article  Google Scholar 

  • Greenberg R, Bichier P, Sterling J (1997b) Bird populations in rustic and planted shade coffee plantations of Eastern Chiapas, México. Biotropica 29:501–514

    Article  Google Scholar 

  • Grimm NB, Faeth SH, Bolubiewski NE et al (2008) Global change and the ecology of cities. Science 319:756–760

    Article  CAS  PubMed  Google Scholar 

  • Gubler DJ (2009) Vector-borne diseases. Rev Sci Tech 28:583–588

    Article  CAS  PubMed  Google Scholar 

  • Gutiérrez-López R, Bialosuknia SM, Ciota AT et al (2019) Vector competence of Aedes caspius and Ae. albopictus mosquitoes for Zika virus, Spain. Emerg Infect Dis 25:346–348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harvey CA, González-Villalobos JA (2007) Agroforestry systems conserve species-rich but modified assemblages of tropical birds and bats. Biodivers Conserv 16:2257–2292

    Article  Google Scholar 

  • Harvey CA, Alpizar F, Chacón M et al (2005a) Assessing linkages between agriculture and biodiversity in Central America: historical overview and future perspectives. The Nature Conservancy. Available via EfD. http://efdinitiative.org/sites/default/files/linking20agriculture20and20biodiversity20in20ca202004_0.pdf. Accessed 10 Mar 2019

  • Harvey CA, Villanueva C, Villacís J et al (2005b) Contribution of live fences to ecological integrity of agricultural landscapes. Agric Ecosyst Environ 111:200–230

    Article  Google Scholar 

  • Harvey CA, Medina A, Sánchez DM et al (2006) Patterns of animal diversity in different forms of tree cover in agricultural landscapes. Ecol Appl 16:1986–1999

    Article  PubMed  Google Scholar 

  • Hayes EB, Komar N, Nasci RS et al (2005) Epidemiology and transmission dynamics of West Nile virus disease. Emerg Infect Dis 11:1167–1173

    Article  PubMed  PubMed Central  Google Scholar 

  • Hernández-Lara C, González-García F, Santiago-Alarcon D (2017) Spatial and seasonal variation of avian malaria infections in five different land use types within a Neotropical montane forest matrix. Landscape Urban Plan 157:151–160

    Google Scholar 

  • Hernández-Lara C, Carbó-Ramírez P, Santiago-Alarcon D (2020) Effects of land use change (rural-urban) on the diversity and epizootiological parameters of avian Haemosporida in a widespread neotropical bird. Acta Tropica 209:105542

    Google Scholar 

  • Hess A, Hayes RO, Tempelis C (1968) The use of the forage ratio technique in mosquito host preference studies. Mosq News 28:386–389

    Google Scholar 

  • Hickling R, Roy DB, Hill JK et al (2006) The distributions of a wide range of taxonomic groups are expanding polewards. Glob Chang Biol 12:450–455

    Article  Google Scholar 

  • Higa Y (2011) Dengue vectors and their spatial distribution. Trop Med Health 39:17–27

    Article  PubMed  PubMed Central  Google Scholar 

  • Ibañez-Justicia A, Stroo A, Dik M et al (2015) National mosquito (Diptera: Culicidae) survey in The Netherlands 2010–2013. J Med Entomol 52:185–198

    Article  PubMed  Google Scholar 

  • Jetz W, Wilcove DS, Dobson AP (2007) Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol 5:e157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiménez-Peñuela J, Ferraguti M, Martínez-de la Puente J et al (2019) Urbanization and blood parasite infections affect the body condition of wild birds. Sci Total Environ 651:3015–3022

    Article  PubMed  CAS  Google Scholar 

  • Johnson MF, Gomez A, Pinedo-Vasquez M (2008) Land use and mosquito diversity in the Peruvian Amazon. J Med Entomol 45:1023–1030

    Article  CAS  PubMed  Google Scholar 

  • Johnston E, Weinstein P, Slaney D et al (2014) Mosquito communities with trap height and urban-rural gradient in Adelaide, South Australia: implications for disease vector surveillance. J Vector Ecol 39:48–55

    Article  PubMed  Google Scholar 

  • Jones KE, Patel NG, Levy MA et al (2008) Global trends in emerging infectious diseases. Nature 451:990–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones MR, Cheviron ZA, Carling MD (2013) Spatial patterns of avian malaria prevalence in Zonotrichia capensis on the western slope of the Peruvian Andes. J Parasitol 99:903–905

    Article  CAS  PubMed  Google Scholar 

  • Kay BH, Ryan PA, Russell BM et al (2000) The importance of subterranean mosquito habitat to arbovirus vector control strategies in North Queensland, Australia. J Med Entomol 37:846–853

    Article  CAS  PubMed  Google Scholar 

  • Kilpatrick AM, Kramer LD, Jones MJ et al (2006) West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior. PLoS Biol 4:e82

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Knowles SCL, Palinauskas V, Sheldon BC (2010) Chronic malaria infections increase family inequalities and reduce parental fitness: experimental evidence from a wild bird population. J Evol Biol 23:557–569

    Article  CAS  PubMed  Google Scholar 

  • Kraemer MU, Sinka ME, Duda KA et al (2015) The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. eLife 4:e08347

    Article  PubMed  PubMed Central  Google Scholar 

  • Krida G, Rhim A, Daaboub J et al (2015) New evidence for the potential role of Culex pipiens mosquitoes in the transmission cycle of West Nile virus in Tunisia. Med Vet Entomol 29:124–128

    Article  CAS  PubMed  Google Scholar 

  • La Ruche G, Souarès Y, Armengaud A et al (2010) First two autochthonous dengue virus infections in metropolitan France, September 2010. In: Euro Surveill 15:pii=19676

    Google Scholar 

  • LaDeau SL, Leisnham PT, Biehler D et al (2013) Higher mosquito production in low-income neighborhoods of Baltimore and Washington, DC: understanding ecological drivers and mosquito-borne disease risk in temperate cities. Int J Environ Res Public Health 10:1505–1526

    Article  PubMed  PubMed Central  Google Scholar 

  • LaDeau SL, Allan BF, Leisnham PT et al (2015) The ecological foundations of transmission potential and vector-borne disease in urban landscapes. Funct Ecol 29:889–901

    Article  PubMed  PubMed Central  Google Scholar 

  • Lafferty KD, Mordecai EA (2016) The rise and fall of infectious disease in a warmer world. F1000Res 5:2040

    Article  Google Scholar 

  • Lang I, Gormley LHL, Harvey CA et al (2003) Composición de la comunidad de aves en cercas vivas de Río Frío. Costa Rica Agrofor Am 10:86–92

    Google Scholar 

  • LaPointe DA, Goff ML, Atkinson CT (2010) Thermal constraints to the sporogonic development and altitudinal distribution of avian malaria Plasmodium relictum in Hawai. J Parasitol 96:318–324

    Article  PubMed  Google Scholar 

  • Lavergne S, Molina J, Debussche M (2006) Fingerprints of environmental change on the rare mediterranean flora: a 115-year study. Glob Change Biol 12:1466–1478

    Article  Google Scholar 

  • Leisnham PT, Sandoval-Mohapatra S (2011) Mosquitoes associated with ditch-plugged and control tidal salt marshes on the Delmarva Peninsula. Int J Environ Res Public Health 8:3099–3113

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Kamara F, Zhou G et al (2014) Urbanization increases Aedes albopictus larval habitats and accelerates mosquito development and survivorship. PLoS Negl Trop Dis 8:e3301

    Article  PubMed  PubMed Central  Google Scholar 

  • Liao W, Atkinson CT, LaPointe DA et al (2017) Mitigating future avian malaria threats to Hawaiian forest birds from climate change. PLoS One 12:e0168880

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Loiseau C, Sorci G, Dano S et al (2008) Effects of experimental increase of corticosterone levels on behavior, immunity and parental provisioning rate in house sparrows. Gen Comp Endocrinol 155:101–108

    Article  CAS  PubMed  Google Scholar 

  • Loiseau C, Iezhova T, Valkiūnas G et al (2010) Spatial variation of haemosporidian parasite infection in African rainforest bird species. J Parasitol 96:21–29

    Article  PubMed  Google Scholar 

  • Loiseau C, Harrigan RJ, Cornel AJ et al (2012) First evidence and predictions of Plasmodium transmission in Alaskan bird populations. PLoS One 7:e44729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loiseau C, Harrigan RJ, Bichet C et al (2013) Predictions of avian Plasmodium expansion under climate change. Sci Rep 3:1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loss SR, Will T, Marra PP (2015) Direct mortality of birds from anthropogenic causes. Annu Rev Ecol Evol Syst 46:99–120

    Article  Google Scholar 

  • Lowe SJ, Browne M, Boudjelas S (2000) 100 of the world’s worst invasive alien species –a selection from the global invasive species database. IUCN/SSC Invasive Species Specialist Group, New Zealand

    Google Scholar 

  • Luck GW, Daily G (2003) Tropical countryside bird assemblages: richness, composition, and foraging differ by landscape context. Ecol Appl 13:235–247

    Article  Google Scholar 

  • Lurgi M, Lopez BC, Montoya JM (2012) Novel communities from climate change. Philos Trans R Soc Lond B 367:2913–2922

    Google Scholar 

  • MacGregor-Fors I, Escobar-Ibáñez JF (2017) Avian ecology in Latin American cityscapes. Springer, Cham

    Google Scholar 

  • MacGregor-Fors I, Morales-Pérez L, Quesada J et al (2010) Relationship between the presence of House Sparrows (Passer domesticus) and Neotropical bird community structure and diversity. Biol Invasions 12:87–96

    Article  Google Scholar 

  • MacGregor-Fors I, González-García F, Hernández-Lara C et al (2018) Where are the birds in the matrix? Avian diversity in a Neotropical landscape mosaic. Wilson J Ornithol 130:81–93

    Article  Google Scholar 

  • Mack RN, Simberloff D, Lonsdale WM et al (2000) Biotic invasions: epidemiology, global consequences, and control. Ecol Appl 10:689–710

    Article  Google Scholar 

  • Martin LB, Boruta M (2014) The impact of urbanization on avian disease transmission and emergence. In: Gil D, Brumm H (eds) Avian urban ecology: behavioural and physiological adaptations. Oxford University Press, New York, pp 116–128

    Google Scholar 

  • Martínez-de la Puente J, Muñoz J, Capelli G et al (2015) Avian malaria parasites in the last supper: identifying encounters between parasites and the invasive Asian mosquito tiger and native mosquito species in Italy. Malar J 14:32

    Article  PubMed  PubMed Central  Google Scholar 

  • Martínez-de la Puente J, Ferraguti M, Ruiz S et al (2016) Culex pipiens forms and urbanization: effects on blood feeding sources and transmission of avian Plasmodium. Malar J 15:589

    Article  PubMed  PubMed Central  Google Scholar 

  • Martínez-de la Puente J, Ferraguti M, Ruiz S et al (2018a) Tracing pathogen transmission by mosquitoes under a global change perspective: on the role of the identification of mosquito bloodmeals. eLS, John Wiley & Sons, Ltd, Chichester

    Google Scholar 

  • Martínez-de la Puente J, Ferraguti M, Ruiz S et al (2018b) Mosquito community influences West Nile virus seroprevalence in wild birds: implications for the risk of spillover into human populations. Sci Rep 8:2599

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marzal A, Ricklefs RE, Valkiūnas G et al (2011) Diversity, loss, and gain of malaria parasites in a globally invasive bird. PLoS One 6:e21905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marzal A, García-Longoria L, Cárdenas Callirgos JM et al (2015) Invasive avian malaria as an emerging parasitic disease in native birds in Peru. Biol Invasions 17:39–45

    Article  Google Scholar 

  • Maxwell SL, Fuller RA, Brooks TM et al (2016) The ravages of guns, nets and bulldozers. Nature 536:143–145

    Article  CAS  PubMed  Google Scholar 

  • McDonnell MJ, Pickett STA (1990) Ecosystem structure and function along urban-rural gradients: an unexploited opportunity for ecology. Ecology 71:1232–1237

    Article  Google Scholar 

  • McKinney ML (2002) Urbanization, biodiversity and conservation. Bioscience 52:883–890

    Article  Google Scholar 

  • McKinney ML (2008) Effects of urbanization on species richness: a review of plants and animals. Urban Ecosyst 11:161–176

    Article  Google Scholar 

  • Medlock JM, Hansford KM, Schaffner F et al (2012) A review of the invasive mosquitoes in Europe: ecology, public health risks, and control options. Vector Borne Zoonotic Dis 12:435–447

    Article  PubMed  PubMed Central  Google Scholar 

  • Mendenhall CD, Archer HM, Brenes FO et al (2013) Balancing biodiversity with agriculture: land sharing mitigates avian malaria prevalence. Conserv Lett 6:125–131

    Article  Google Scholar 

  • Menéndez R, Megías AG, Hill JK et al (2006) Species richness changes lag behind climate change. Proc R Soc Lond B 273:1465–1470

    Google Scholar 

  • Mohd-Azland J, Lawes MJ (2011) The effect of the surrounding landscape matrix on mangrove bird community assembly in North Australia. Biol Conserv 144:2134–2141

    Article  Google Scholar 

  • Montgomery MR (2008) The urban transformation of the developing world. Science 319:761–764

    Article  CAS  PubMed  Google Scholar 

  • Muñoz J, Ruiz S, Soriguer R et al (2012) Feeding patterns of potential West Nile virus vectors in south-West Spain. PLoS One 7:e39549

    PubMed  PubMed Central  Google Scholar 

  • Ortega-Álvarez R, MacGregor-Fors I (2009) Living in the big city: effects of urban land-use on bird community structure, diversity, and composition. Landsc Urban Plan 90:189–195

    Article  Google Scholar 

  • Osório HC, Zé-Zé L, Amaro F et al (2014) Sympatric occurrence of Culex pipiens (Diptera, Culicidae) biotypes pipiens, molestus and their hybrids in Portugal, Western Europe: feeding patterns and habitat determinants. Med Vet Entomol 28:103–109

    Article  PubMed  Google Scholar 

  • Ostfeld RS, Keesing F, Eviner VT (2008) Infectious disease ecology: the effects of ecosystems on disease and of disease on ecosystems. Princeton University Press, New Jersey

    Google Scholar 

  • Overgaard HJ, Ekbom B, Suwonkerd W et al (2003) Effect of landscape structure on anopheline mosquito density and diversity in northern Thailand: implication on malaria transmission and control. Landsc Ecol 18:605–619

    Article  Google Scholar 

  • Paaijmans KP, Heinig RL, Seliga RA et al (2013) Temperature variation makes ectotherms more sensitive to climate change. Glob Change Biol 19:2373–2380

    Article  Google Scholar 

  • Padmanabha H, Durham D, Correa F (2012) The interactive roles of Aedes aegypti super-production and human density in dengue transmission. PLoS Negl Trop Dis 6:e1799

    Article  PubMed  PubMed Central  Google Scholar 

  • Parker P (2018) Disease ecology: Galapagos birds and their parasites. Springer, Cham

    Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Patz J, Graczyk TK, Geller N et al (2000) Effects of environmental change on emerging parasitic diseases. Int J Parasitol 30:1395–1405

    Article  CAS  PubMed  Google Scholar 

  • Paupy C, Ollomo B, Kamgang B et al (2010) Comparative role of Aedes albopictus and Aedes aegypti in the emergence of dengue and chikungunya in Central Africa. Vector Borne Zoonotic Dis 10:259–266

    Article  PubMed  Google Scholar 

  • Pautasso M, Böhning-Gaese K, Clergeau P et al (2011) Global macroecology of bird assemblages in urbanized and semi-natural ecosystems. Glob Ecol Biogeogr 20:426–436

    Article  Google Scholar 

  • Paxton EH, Laut M, Vetter JP et al (2018) Research and management priorities for Hawaiian forest birds. Condor 120:557–565

    Article  Google Scholar 

  • Pérez-Rodríguez A, de la Hera I, Fernández-González S et al (2014) Global warming will reshuffle the areas of high prevalence and richness of three genera of avian blood parasites. Glob Change Biol 20:2406–2416

    Article  Google Scholar 

  • Pérez-Rodríguez A, Khimoun A, Ollivier A (2018) Habitat fragmentation, not habitat loss, drives the prevalence of blood parasites in a Caribbean passerine. Ecography 41:1835–1849

    Article  Google Scholar 

  • Perkins SE, Altizer S, Bjornstad O et al (2008) Invasion biology and parasitic infections. In: Ostfeld RS, Keesing F, Eviner VT (eds) Infectious disease ecology: effects of ecosystems on disease and of disease on ecosystems. Princeton University Press, New Jersey, pp 179–204

    Google Scholar 

  • Peterson AT, Soberón J, Pearson RG et al (2011) Ecological niches and geographic distributions. Princeton University Press, New Jersey

    Book  Google Scholar 

  • Pfeifer M, Lefebvre V, Peres CA (2017) Creation of forest edges has a global impact on forest vertebrates. Nature 551:187–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Philpott SM, Arendt WJ, Armbrecht I et al (2008) Biodiversity loss in Latin American coffee landscapes: review of the evidence on ants, birds, and trees. Conserv Biol 22:1093–1105

    Article  PubMed  Google Scholar 

  • Pimm SL (1991) The balance of nature? Ecological issues in the conservation of species and communities. Univ Chicago Press, Chicago

    Google Scholar 

  • Piperno DR (2007) Prehistoric human occupation and impacts on Neotropical forest landscapes during the Late Pleistocene and Early/Middle Holocene. In: Bush MB, Flenley JR (eds) Tropical rainforest responses to climate change. Springer, NewYork, pp 193–218

    Chapter  Google Scholar 

  • Pounds JA (2001) Climate and amphibian declines. Nature 410:639–640

    Article  CAS  PubMed  Google Scholar 

  • Ramírez-Villegas J, Cuesta F, Devenish C et al (2014) Using species distributions models for designing conservation strategies of Tropical Andean biodiversity under climate change. J Nat Conserv 22:391–404

    Article  Google Scholar 

  • Reusken CBEM, De Vries A, Buijs J et al (2010) First evidence for presence of Culex pipiens biotype molestus in the Netherlands, and of hybrid biotype pipiens and molestus in northern Europe. J Vector Ecol 35:210–212

    Article  CAS  PubMed  Google Scholar 

  • Rice RA, Greenberg R (2000) Cacao cultivation and the conservation of biological diversity. Ambio 29:167–173

    Article  Google Scholar 

  • Rizzoli A, Bolzoni L, Chadwick EA et al (2015) Understanding West Nile virus ecology in Europe: Culex pipiens host feeding preference in a hotspot of virus emergence. Parasit Vector 8:213

    Google Scholar 

  • Roche B, Léger L, L'Ambert G et al (2015) The spread of Aedes albopictus in metropolitan France: contribution of environmental drivers and human activities and predictions for a near future. PLoS One 10:e012560

    Article  CAS  Google Scholar 

  • Roemer GW, Donlan CJ, Corchamp F (2002) Golden eagles, feral pigs, and insular carnivores: how exotic species turn native predators into prey. Proc Natl Acad Sci U S A 99:791–796

    Article  CAS  PubMed  Google Scholar 

  • Rudolf M, Czajka C, Börstler J et al (2013) First nationwide surveillance of Culex pipiens complex and Culex torrentium mosquitoes demonstrated the presence of Culex pipiens biotype pipiens/molestus hybrids in Germany. PLoS One 8:e71832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santiago-Alarcon D, Delgado-V CA (2017) Warning! Urban threats for birds in Latin America. In: MacGregor-Fors I, Escobar-Ibáñez JF (eds) Avian ecology in Latin American cityscapes. Springer, Cham, pp 125–142

    Google Scholar 

  • Santiago-Alarcon D, Merkel J (2018) New host-parasite relationships by host-switching. In: Parker P (ed) Disease ecology: galapagos birds and their parasites. Springer, Cham, pp 157–177

    Google Scholar 

  • Santiago-Alarcon D, Palinauskas V, Schaefer HM (2012a) Diptera vectors of avian haemosporidian parasites: untangling parasite life cycles and their taxonomy. Biol Rev 87:928–964

    Article  PubMed  Google Scholar 

  • Santiago-Alarcon D, Havelka P, Schaefer HM et al (2012b) Bloodmeal analysis reveals avian Plasmodium infections and broad host preferences of Culicoides (Diptera: Ceratopogonidae) vectors. PLoS One 7:e31098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santiago-Alarcon D, Carbó-Ramírez P, Macgregor-Fors I et al (2018) The prevalence of avian haemosporidian parasites in an invasive bird is lower in urban than non-urban environments. Ibis. doi: 10.1111/ibi.12699

    Google Scholar 

  • Santiago-Alarcon D, MacGregor-Fors I, Falfán I et al (2019) Parasites in space and time: a case study of haemosporidian spatiotemporal prevalence in urban birds. Int J Parasitol 49:235–246

    Article  PubMed  Google Scholar 

  • Sapolsky RM (1992) Stress, the aging brain, and the mechanisms of neuron death. MIT Press, Cambridge

    Google Scholar 

  • Schmitt CJ, Cook JA, Zamudio KR et al (2018) Museum specimens of terrestrial vertebrates are sensitive indicators of environmental change in the Anthropocene. Phil Trans R Soc Lond B 374:20170387

    Google Scholar 

  • Sehgal RNM (2015) Manifold habitat effects on the prevalence and diversity of avian blood parasites. Int J Parasitol Parasites Wildl 4:421–430

    Article  PubMed  PubMed Central  Google Scholar 

  • Sehgal RNM, Buermann W, Harrigan RJ et al (2011) Spatially explicit predictions of blood parasites in a widely distributed African rainforest bird. Proc R Soc Lond B 278:1025–1033

    Google Scholar 

  • Sengupta S, Mondal M, Basu P (2014) Bird species assemblages across a rural urban gradient around Kolkata, India. Urban Ecosyst 17:585–596

    Article  Google Scholar 

  • Seress G, Liker A (2015) Habitat urbanization and its effects on birds. Acta Zool Acad Sci Hung 61:373–408

    Article  Google Scholar 

  • Shochat E, Warre PS, Faeth SH et al (2006) From patterns to emerging processes in mechanistic urban ecology. Trends Ecol Evol 21:186–191

    Article  PubMed  Google Scholar 

  • Shochat E, Lerman SB, Anderies JM et al (2010) Invasion, competition, and biodiversity loss in urban ecosystems. Bioscience 60:199–208

    Article  Google Scholar 

  • Stephens PR, Altizer S, Smith KF et al (2016) The macroecology of infectious diseases: a new perspective on global-scale drivers of pathogen distributions and impacts. Ecol Lett 19:1159–1171

    Article  PubMed  Google Scholar 

  • Tchoumbou MA, Mayi MPA, Malange ENF et al (2020) Effect of deforestation on prevalence of avian haemosporidian parasites and mosquito abundance in a tropical rainforest of Cameroon. Int J Parasitol 50:63–73

    Google Scholar 

  • Takken W, Verhulst NO (2013) Host preferences of blood-feeding mosquitoes. Annu Rev Entomol 58:433–453

    Article  CAS  PubMed  Google Scholar 

  • Taubert F, Fischer R, Groeneveld J (2018) Global patterns of tropical forest fragmentation. Nature 554:519–522

    Article  CAS  PubMed  Google Scholar 

  • Tischler W (1973) Ecology of arthropod fauna in man-made habitats: the problem of synanthropy. Zool Anz 191:157–161

    Google Scholar 

  • Torchin ME, Lafferty KD, Dobson AP et al (2003) Introduced species and their missing parasites. Nature 421:628–630

    Article  CAS  PubMed  Google Scholar 

  • Uezu A, Metzger JP (2011) Vanishing bird species in the Atlantic Forest: relative importance of landscape configuration, forest structure and species characteristics. Biodivers Conserv 20:3627–3643

    Article  Google Scholar 

  • van Riper C III, van Riper SG, Goff ML et al (1986) The epizootiology and ecological significance of malaria in Hawaiian land birds. Ecol Monogr 56:327–344

    Article  Google Scholar 

  • VanderWaal KL, Ezenwa VO (2016) Heterogeneity in pathogen transmission: mechanisms and methodology. Funct Ecol 30:1606–1622

    Article  Google Scholar 

  • Vijay V, Pimm SL, Jenkins CN et al (2016) The impacts of oil palm on recent deforestation and biodiversity loss. PLoS One 11:e0159668

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vinogradova EB (2000) Culex pipiens pipiens mosquitoes: taxonomy, distribution, ecology, physiology, genetics, applied importance and control, vol 2. Pensoft Publishers, Sofia

    Google Scholar 

  • Vinogradova EB (2003) Ecophysiological and morphological variations in mosquitoes of the Culex pipiens complex (Diptera: Culicidae). Acta Soc Zool Bohem 67:41–50

    Google Scholar 

  • Vorou RM, Papavassiliou VG, Tsiodras S et al (2007) Emerging zoonoses and vector-borne infections affecting humans in Europe. Epidemiol Infect 135:1231–1247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vourc’h G, Plantard O, Morand S (2012) How does biodiversity influence the ecology of infectious disease? In: Morand S, Beaudeau F, Cabaret J (eds) New frontiers of molecular epidemiology of infectious diseases. Springer, London, pp 291–309

    Chapter  Google Scholar 

  • Waters CN, Zalasiewicz J, Summerhayes C et al (2016) The anthropocene is functionally and stratigraphically distinct from the Holocene. Science 351:aad2622

    Article  PubMed  CAS  Google Scholar 

  • Williams JW, Jackson ST, Kutzbach JE (2007) Projected distributions of novel and disappearing climates by 2100 AD. Proc Natl Acad Sci U S A 104:5738–5742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson RJ, Davies ZG, Thomas CD (2007) Insects and climate change: processes, patterns and implications for conservation. In: Stewart AJA, New TR, Lewis OT (eds) Insect conservation biology. CABI, Wallingford, pp 245–279

    Chapter  Google Scholar 

  • Woodworth BL, Atkinson CT, LaPointe DA (2005) Host population persistence in the face of introduced vector-borne diseases: Hawaii amakihi and avian malaria. Proc Natl Acad Sci U S A 102:1531–1536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan J, Gangoso L, Martínez-de la Puente J et al (2017) Avian phenotypic traits related to feeding preferences in two Culex mosquitoes. Naturwissenschaften 104:76

    Article  PubMed  CAS  Google Scholar 

  • Zittra C, Flechl E, Kothmayer M et al (2016) Ecological characterization and molecular differentiation of Culex pipiens complex taxa and Culex torrentium in eastern Austria. Parasit Vector 9:197

    Google Scholar 

Download references

Acknowledgments

The authors thank Claire Loiseau for her comments and suggestions that enhanced the clarity of our chapter. DS-A was supported from CONACYT, A.C. grants from the Ciencia Básica research fund (2011-01-168524) and from the Problemas Nacionales fund (2015-01-1628). CH-L thanks the graduate scholarships provided by CONACYT, A.C. to conduct masters and doctoral studies at the Instituto de Ecología, A.C. – CONACYT, Mexico. MF was funded by a Juan de la Cierva 2017 Formación Grant (FJCI-2017-34394) from the Ministry of Science, Innovation and Universities.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ferraguti, M., Hernández-Lara, C., Sehgal, R.N.M., Santiago-Alarcon, D. (2020). Anthropogenic Effects on Avian Haemosporidians and Their Vectors. In: Santiago-Alarcon, D., Marzal, A. (eds) Avian Malaria and Related Parasites in the Tropics. Springer, Cham. https://doi.org/10.1007/978-3-030-51633-8_14

Download citation

Publish with us

Policies and ethics