Skip to main content

Role of Fungi in Adaptation of Agricultural Crops to Abiotic Stresses

  • Chapter
  • First Online:
Agriculturally Important Fungi for Sustainable Agriculture

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Agriculture is considered to be one of the most vulnerable sectors to climate change. Crop production, particularly in tropical regions is facing increasing stresses caused due to natural and anthropogenic factors. Stress in plants refers to external conditions that adversely affect growth, development, or productivity of plants. Stresses trigger a wide range of plant responses like altered gene expression, cellular metabolism, changes in growth rates, crop yields, etc. A plant stress usually reflects some sudden changes in environmental condition. Plant stress can be divided into two primary categories namely abiotic stress and biotic stress. Abiotic stress imposed on plants by environment may be either physical or chemical, while biotic stress exposed to the crop plants is a biological unit like diseases and insects. Plants in natural systems and crop lands are simultaneously exposed to both biotic and abiotic stresses. Abiotic stresses such as drought (water stress), excessive watering (water logging), extreme temperatures (cold, frost, and heat), salinity, and mineral toxicity negatively impact growth, development, yield, and seed quality of crops and other plants. Abiotic stress tolerance plays a vital role in determining crop productivity and distribution of plant species across the environment. These factors are likely to cause serious negative impacts on crop growth and yields and impose severe pressure on our land and water resources. The plant provides nutrition to the endophytes, while in return endophytes help in adaption to abiotic conditions like nutrients limitation, salination, and extreme pH, drought, temperature variation, and protection from pathogens, insects, and nematodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel Latef AA, Chaoxing H (2011) Arbuscular mycorrhizal influence on growth, photosynthetic pigments, osmotic adjustment and oxidative stress in tomato plants subjected to low temperature stress. Acta Physiol Plant 33:1217–1225

    CAS  Google Scholar 

  • Abo Nouh FA (2019) Endophytic fungi for sustainable agriculture. Microb Biosyst 4:31–44

    Google Scholar 

  • Ali AH, Radwan U, El-Zayat S, El-Sayed MA (2018) Desert plant-fungal endophytic association: the beneficial aspects to their hosts. Biol Forum 10:138–145

    CAS  Google Scholar 

  • Al-Karaki GN, Ammad R, Rusan M (2001a) Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza 11:43–47

    CAS  Google Scholar 

  • Al-Karaki GN, Hammad R, Rusan M (2001b) Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza 11:43–47

    CAS  Google Scholar 

  • Allen MF, Bosalis MG (1983) Effects of two species of VA mycorrhizal fungi on drought tolerance of winter wheat. New Phytol 93:67–76

    Google Scholar 

  • Amalric C, Sallanon H, Monnet F, Hitmi A, Coudret A (1999) Gas exchange and chlorophyll fluorescence in symbiotic and non-symbiotic ryegrass under water stress. Photosynthetica 37:107–112

    Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress and signal transduction. Annu Rev Plant Biol 55:373–399

    CAS  PubMed  Google Scholar 

  • Arachevaleta M, Bacon CW, Hoveland CS, Radcliffe DE (1989) Effect of the tall fescue endophyte on plant response to environmental stress. Agron J 81:83–90

    Google Scholar 

  • Arnold AE (2007) Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biol Rev 21:51–66

    Google Scholar 

  • Arnold EA, Mejia LC, Kyllo D, Rojas E, Maynard Z, Robbins N et al (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci U S A 100:15649–15654

    CAS  PubMed  PubMed Central  Google Scholar 

  • Asghari H, Marchner P, Smith S, Smith F (2005) Growth reponses of Atriplex nummularia to inoculation with arbuscular mycorrhizal fungi at different salinity levels. Plant Soil 273:245–256

    CAS  Google Scholar 

  • Ashmore M, Toet S, Emberson L et al (2006) Ozone-a significant threat to future world food production? New Phytol 170:201–204

    PubMed  Google Scholar 

  • Augé RM (2001) Water relations, drought and VA mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Google Scholar 

  • Augé RM, Foster JG, Loescher WH, Stodola AJW (1992) Symplastic sugar and free amino acid molality of Rosa roots with regard to mycorrhizal colonization and drought. Symbiosis 12:1–17

    Google Scholar 

  • Azad K, Kaminskyj S (2016) A fungal endophyte strategy for mitigating the effect of salt and drought stress on plant growth. Symbiosis 68:73–78

    CAS  Google Scholar 

  • Bacon CW (1993) Abiotic stress tolerances (moisture, nutrients) and photosynthesis in endophyte infected tall fescue. Agric Ecosyst Environ 44:123–141

    Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    CAS  Google Scholar 

  • Batool N, Shahzad A, Ilyas N (2014) Plants and Salt stress. Int J Agric Crop Sci 7:1439–14461

    CAS  Google Scholar 

  • Battisti DS, Naylor RL (2009) Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323:240–244

    CAS  PubMed  Google Scholar 

  • Begum N, Qin C, Ahanger MA, Raza S, Khan MI, Ashraf M, Ahmed N, Zhang L (2019) Role of Arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Front Plant Sci 10:1068

    PubMed  PubMed Central  Google Scholar 

  • Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17:21–34

    CAS  Google Scholar 

  • Ben Khaled L, Gomez AM, Ouarraqi EM, Oihabi A (2003) Physiological and biochemical responses to salt stress of mycorrhizal and/or nodulated clover seedlings (Trifolium alexandrium L.). Agronomie 23:571–580

    Google Scholar 

  • Bhandari P, Garg N (2017) Arbuscular mycorrhizal symbiosis: a promising approach for imparting abiotic stress tolerance in crop plants. In: Singh DP et al (eds) Plant-microbe interactions in agro-ecological perspectives. Springer, Singapore, pp 377–402

    Google Scholar 

  • Borde M, Dudhane M, Jite PK (2010) AM fungi influences the photosynthetic activity, growth and antioxidant enzymes in Allium sativum L. under salinity condition. Not Sci Biol 2:64–71

    CAS  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    CAS  PubMed  Google Scholar 

  • Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2:48–54

    Google Scholar 

  • Carillo P, Annunziata MG, Pontecorvo G, Fuggi A, Woodrow P (2011) Salinity stress and salt tolerance. In: Shanker A (ed) Abiotic stress in plants mechanisms and adaptations. InTech, London, pp 21–38

    Google Scholar 

  • Carroll G (1988) Fungal endophytes in stems and leaves from latent pathogen to mutualistic symbiont. Ecology 69:2–9

    Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS et al (2003) Understanding plant responses to drought- from genes to the whole plant. Funct Plant Biol 30:239–264

    CAS  PubMed  Google Scholar 

  • Chaw S, Chang C, Chen H, Li W (2004) Dating the monocot-dicot divergence and the origin of core eudicots using whole chloroplast genomes. J Mol Evol 58:424–441

    CAS  PubMed  Google Scholar 

  • Cheplick GP (2006) Costs of fungal endophyte infection in Lolium perenne genotypes from Eurasia and North Africa under extreme resource limitation. Environ Exp Bot 60:202–210

    Google Scholar 

  • Cheplick GP, Perera A, Koulouris K (2000) Effect of drought on the growth of Lolium perenne genotypes with and without fungal endophytes. Funct Ecol 14:657–667

    Google Scholar 

  • Chhipa H, Deshmukh SK (2019) Fungal endophytes: rising tools in sustainable agriculture production. In: Jha S (ed) Endophytes and secondary metabolites. Springer, Cham, pp 1–24

    Google Scholar 

  • Colla G, Rouphae Y, Cardarelli M, Tulio M, Rivera CM, Rea E (2008) Alleviation of salt stress by arbuscular mycorrhiza in zucchini plants grown at low and high phosphorus concentration. Biol Fertil Soils 44:501–509

    CAS  Google Scholar 

  • Cramer GR, Nowak RS (1992) Supplemental manganese improves the relative growth, net assimilation and photosynthetic rates of salt stressed barley. Physiol Plant 84(600):605

    Google Scholar 

  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163

    PubMed  PubMed Central  Google Scholar 

  • Cruz-Hernández A, Tomasini-Campocosio A, Pérez-Flores LJ, Fernández-Perrino FJ, Gutiérrez-Rojas M (2013) Inoculation of seed-borne fungus in the rhizosphere of Festuca arundinacea promotes hydrocarbon removal and pyrene accumulation in roots. Plant Soil 362:261–270

    Google Scholar 

  • Dastogeer KMG, Wylie SJ (2017) Plant–fungi association: role of fungal endophytes in improving plant tolerance to water stress. In: Singh DP et al (eds) Plant-microbe interactions in agro-ecological perspectives. Springer, Singapore, pp 143–160

    Google Scholar 

  • Davidson JF, Whyte B, Bissinger PH, Schiestl RH (1996) Oxidative stress is involved in heat-induced cell death in Saccharomyces cerevisiae. Proc Natl Acad Sci 93:5116–5121

    CAS  PubMed  Google Scholar 

  • Deckert RJ, Melville LH, Peterson L et al (2001) Structural features of a Lophodermium endophyte during the cryptic life-cycle phase in the foliage of Pinus strobus. Mycol Res 105:991–997

    Google Scholar 

  • Diouf D, Diop TA, Ndoye I (2003) Actinorhizal, mycorrhizal and rhizobial symbioses: how much do we know? Afr J Biotechnol 2:1–7

    CAS  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feng G, Zhang FS (2003) Effect of arbuscualar mycorrhizal fungi on salinity tolerance of cotton. Chin J Ecol Agric 11:21–24

    Google Scholar 

  • Feng G, Li XL, Zhang FS, Li SX (2000) Effect of AM fungi on water and nutrition status of corn plants under salt stress. Chin J Appl Ecol 11:595–598

    CAS  Google Scholar 

  • Fusconi A, Berta G (2012) Environmental stress and role of arbuscular mycorrhizal symbiosis. In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants. Springer, New York, pp 197–214

    Google Scholar 

  • Garg N, Kaur H (2012) Influence of zinc on cadmium-induced toxicity in nodules of pigeon pea (Cajanus cajan L. Mill sp.) inoculated with arbuscular mycorrhizal (AM) fungi. Acta Physiol Plant 34:1363–1380

    CAS  Google Scholar 

  • Garg N, Pandey R (2015) Effectiveness of native and exotic arbuscular mycorrhizal fungi on nutrient uptake and ion homeostasis in salt-stressed Cajanus cajan L. (Mill sp.) genotypes. Mycorrhiza 25:165–180

    Google Scholar 

  • Garg N, Singla P (2012) The role of Glomus mosseae on key physiological and biochemical parameters of pea plants grown in arsenic contaminated soil. Sci Hortic 143:92–101

    Google Scholar 

  • Gaur A, Adholeya A (2004) Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr Sci 86:528–534

    CAS  Google Scholar 

  • Gholamhoseini M, Ghalavand A, Dolatabadian A, Jamshidi E, Khodaei-Joghan A (2013) Effects of arbuscular mycorrhizal inoculation on growth, yield, nutrient uptake and irrigation water productivity of sunflowers grown under drought stress. Agric Water Manag 117:106–114

    Google Scholar 

  • Gill SS, Gill R, Trivedi DK, Anjum NA, Sharma KK, Ansari MW, Ansari AA, Johri AK, Prasad R, Pereira E, Varma A, Tuteja N (2016) Piriformospora indica: potential and significance in plant stress tolerance. Front Microbiol 7:332

    Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2007) Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microb Ecol 54:753–760

    Google Scholar 

  • Greaves JA (1996) Improving sub optimal temperature tolerance in maize the search for variation. J Exp Bot 47:307–323

    CAS  Google Scholar 

  • Grover M, Ali SKZ, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240

    Google Scholar 

  • Gull A, Lone AA, Wani NUI (2019) “Biotic and Abiotic Stresses in Plants,” in Abiotic and Biotic Stress in Plants. IntechOpen)

    Google Scholar 

  • Gutjahr C, Parniske M (2013) Cell and developmental biology of the arbuscular mycorrhiza symbiosis. Annu Rev Cell Dev Biol 29:593–617

    CAS  PubMed  Google Scholar 

  • Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic, London

    Google Scholar 

  • Hattori YK, Nagai M, Ashikari (2011) Rice growth adapting to deepwater. Curr Opin Plant Biol 14:100–105

    PubMed  Google Scholar 

  • Hussain SS, Mehnaz S, KHM S (2018) Harnessing the plant microbiome for improved abiotic stress tolerance. In: Egamberdieva D, Ahmad P (eds) Plant microbiome: stress response, Microorganisms for sustainability, vol 5. Springer, Singapore, pp 21–43

    Google Scholar 

  • IPCC (2007) Climate Change 2007: Synthesis report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K and Reisinger, A. (eds.)]. IPCC, Geneva, Switzerland, 104 pp

    Google Scholar 

  • Jahromi F, Aroca R, Porcel R, Ruiz-Lozano JM (2008) Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microb Ecol 55:45–53

    Google Scholar 

  • Jain P, Pundir RK (2017) Potential role of endophytes in sustainable agriculture-recent developments and future prospects. In: Maheshwari DK (ed) Endophytes: biology and biotechnology, sustainable development and biodiversity, vol 15. Springer, Cham, pp 145–160

    Google Scholar 

  • Jindal V, Atwal A, Sekhon BS, Rattan S, Singh R (1993) Effect of vesicular arbuscular mycorrhizae on metabolism of moong plants under NaCl salinity. Plant Physiol Biochem 31:475–481

    Google Scholar 

  • Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol 135:575–586

    Google Scholar 

  • Johnson JM, Alex T, Oelmuller R (2014) Piriformospora indica: the versatile and multifunctional root endophytic fungus for enhanced yield and tolerance to biotic and abiotic stress in crop plants. J Trop Agric 52:103–122

    Google Scholar 

  • Kane KH (2011) Effects of endophyte infection on drought stress tolerance of Lolium perenne accessions from the Mediterranean region. Environ Exp Bot 71:337–344

    Google Scholar 

  • Kaur T, Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Dhaliwal HS, Saxena AK (2020) Microbe-mediated biofortification for micronutrients: present status and future challenges. In: Rastegari AA, Yadav AN, Awasthi AK, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam, pp 1–17. https://doi.org/10.1016/B978-0-12-820528-0.00002-8

    Chapter  Google Scholar 

  • Khalmuratova I, Kim H, Nam Y, Oh Y, Jeong M, Choi H, You Y, Lee I, Shin J, Yoon H, You YH (2015) Diversity and plant growth promoting capacity of endophytic fungi associated with halophytic plants from the coast of Korea. Microbiology 43:373–383

    Google Scholar 

  • Khan SA, Hamayun M, Khan AL, Shinwari ZK (2012) Isolation of plant growth promoting endophytic fungi from dicots inhabiting coastal sand dunes of Korea. Pak J Bot 44:1453–1460

    Google Scholar 

  • Kour D, Rana KL, Yadav AN, Yadav N, Kumar V, Kumar A, Sayyed RZ, Hesham AE-L, Dhaliwal HS, Saxena AK (2019a) Drought-tolerant phosphorus-solubilizing microbes: biodiversity and biotechnological applications for alleviation of drought stress in plants. In: Sayyed RZ, Arora NK, Reddy MS (eds) Plant growth promoting rhizobacteria for sustainable stress management: volume 1: rhizobacteria in abiotic stress management. Springer, Singapore, pp 255–308. https://doi.org/10.1007/978-981-13-6536-2_13

    Chapter  Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Kumar A, Meena VS, Singh B, Chauhan VS, Dhaliwal HS, Saxena AK (2019b) Rhizospheric microbiomes: biodiversity, mechanisms of plant growth promotion, and biotechnological applications for sustainable agriculture. In: Kumar A, Meena VS (eds) Plant growth promoting rhizobacteria for agricultural sustainability: from theory to practices. Springer, Singapore, pp 19–65. https://doi.org/10.1007/978-981-13-7553-8_2

    Chapter  Google Scholar 

  • Kour D, Rana KL, Kaur T, Sheikh I, Yadav AN, Kumar V, Dhaliwal HS, Saxena AK (2020a) Microbe-mediated alleviation of drought stress and acquisition of phosphorus in great millet (Sorghum bicolour L.) by drought-adaptive and phosphorus-solubilizing microbes. Biocatal Agric Biotechnol 23:101501. https://doi.org/10.1016/j.bcab.2020.101501

    Article  Google Scholar 

  • Kour D, Rana KL, Sheikh I, Kumar V, Yadav AN, Dhaliwal HS, Saxena AK (2020b) Alleviation of drought stress and plant growth promotion by Pseudomonas libanensis EU-LWNA-33, a drought-adaptive phosphorus-solubilizing bacterium. Proc Natl Acad Sci India Sec B Biol Sci. https://doi.org/10.1007/s40011-019-01151-4

  • Kour D, Rana KL, Yadav AN, Sheikh I, Kumar V, Dhaliwal HS, Saxena AK (2020c) Amelioration of drought stress in Foxtail millet (Setaria italica L.) by P-solubilizing drought-tolerant microbes with multifarious plant growth promoting attributes. Environ Sustain. https://doi.org/10.1007/s42398-020-00094-1

  • Kour D, Rana KL, Yadav AN, Yadav N, Kumar M, Kumar V, Vyas P, Dhaliwal HS, Saxena AK (2020d) Microbial biofertilizers: bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatal Agric Biotechnol 23:101487. https://doi.org/10.1016/j.bcab.2019.101487

    Article  Google Scholar 

  • Lata R, Chowdhury S, Gond S, White JF (2018) Induction of abiotic stress tolerance in plants by endophytic microbes. Appl Microbiol 66:268–276

    CAS  Google Scholar 

  • Latef AAHA, Hashem A, Rasool S, Abd-Allah EF, Alqarawi AA, Egamberdieva D, Jan S, Anjum NA, Ahmad P (2016) Arbuscular mycorrhizal Symbiosis and abiotic stress in plants: a review. J Plant Biol 59:407

    Google Scholar 

  • Lewis GC, Clements RO (1986) A survey of ryegrass endophyte (Acremonium lolii) in the U.K. and its apparent ineffectuality on a seedling pest. J Agric Sci 107:633–638

    Google Scholar 

  • Liu X, Song Q, Tang Y, Li W, Xu J, Wu J et al (2013) Human health risk assessment of heavy metals in soil–vegetable system: a multi-medium analysis. Sci Total Environ 463-464:530

    CAS  PubMed  Google Scholar 

  • López-Ráez JA (2016) How drought and salinity affect arbuscular mycorrhizal symbiosis and strigolactone biosynthesis? Planta 243:1375–1385

    PubMed  Google Scholar 

  • Lugtenberg BJJ, Caradus JR, Johnson LJ (2016) Fungal endophytes for sustainable crop production. FEMS Microb Ecol 92:1–17

    Google Scholar 

  • Maggio A, Hasegawa PM, Bressan RA, Consiglio MF, Joly RJ (2001) Unravelling the functional relationship between root anatomy and stress tolerance. Funct Plant Biol 28:999–1004

    Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    CAS  PubMed  Google Scholar 

  • Malinowski DP, Belesky DP (2000) Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci 40:923–940

    CAS  Google Scholar 

  • Mandhania S, Madan S, Sawhney V (2006) Antioxidant defense mechanism under salt stress in wheat seedlings. Biol Plant 50:227–231

    Google Scholar 

  • Márquez LM, Redman RS, Rodriguez RJ, Roossinck MJ (2007) A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance. Science 315:513–515

    PubMed  Google Scholar 

  • Maya MA, Matsubara Y (2013) Influence of arbuscular mycorrhiza on the growth and antioxidative activity in Cyclamen under heat stress. Mycorrhiza 23:381–390

    CAS  PubMed  Google Scholar 

  • McLellan CA, Turbyville TJ, Wijeratne K, Kerschen A, Vierling E, Queitsch C, Whiteshell L, Gunatilaka AAL (2007) A rhizosphere fungus enhances Arabidopsis thermotolerance through production of an HSP90 inhibitor. Plant Physiol 145:174–182

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller JD, Mackenzie S, Foto M, Adams GW, Findlay JA (2002) Needles of white spruce inoculated with rugulosin-producing endophytes contain rugulosin reducing spruce budworm growth rate. Mycol Res 106:471–479

    Google Scholar 

  • Mohammed MJ, Malkawi HI, Shibli R (2003) Effects of arbuscular mycorrhizal fungi and phosphorus fertilization on growth and nutrient uptake of barley grown on soils with different levels of salts. J Plant Nutr 26:125–137

    Google Scholar 

  • Morse LJ, Day TA, Faeth SH (2002) Effect of Neotyphodium endophyte infection on growth and leaf gas exchange of Arizona fescue under contrasting water availability regimes. Environ Exp Bot 48:257–268

    Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    CAS  PubMed  Google Scholar 

  • Nasim G (2010) The role of arbuscualar mycorrhizae in inducing resistance to drought and salinity stress in crops. In: Ashraf M et al (eds) Plant adaptation and phytoremediation. Springer, New York, pp 119–141

    Google Scholar 

  • Navrot N, Rouhier N, Gelhaye E, Jacquot JP (2007) ROS generation and antioxidant systems in plant mitochondria. Physiol Plant 129:185–195

    CAS  Google Scholar 

  • Nelson TN, Safir GR (1982) Increased drought tolerance of mycorrhizal onion plants cased by improved phosphorus nutrition. Planta 154:407–413

    Google Scholar 

  • Neto D, Carvalho LM, Cruz C, Martin-Loucao MA (2006) How do mycorrhizas affect C and N relationships in flooded Aster trifolium plants? Plant Soil 279:51–63

    CAS  Google Scholar 

  • Okcu G, Kaya DM, Atak M et al (2005) Effects of salt and drought stresses on germination and seedling growth of pea (Pisum sativum L). Turk J Agric For 29:237–242

    Google Scholar 

  • Pieterse CMJ, Dicke M (2007) Plant interactions with microbes and insects: from molecular mechanisms to ecology. Trends Plant Sci 12:564–569

    CAS  PubMed  Google Scholar 

  • Prasad K (2015) Biofertilizers: a new dimension for agriculture and environmental development to improve production in sustainable manner. J Basic Appl Mycol 11:5–13

    Google Scholar 

  • Prasad K (2017) Biology, diversity and promising role of mycorrhizal endophytes for green technology. In: Maheshwari DK (ed) Endophytes: biology and biotechnology, sustainable development and biodiversity, vol 15. Springer, Cham, pp 267–302

    Google Scholar 

  • Prasad K, Gautam SP (2000) Arbuscular mycorrhizal spore types present in the root zone of Dalbergia sissoo L. Vislesana. Res J Sci 7:013–018

    Google Scholar 

  • Rabie GH, Almadini AM (2005) Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress. Afr J Biotechnol 4:210–222

    CAS  Google Scholar 

  • Raghuwanshi R (2018) Fungal community in mitigating impacts of drought in plants. In: Gehlot P, Singh J (eds) Fungi and their role in sustainable development: current perspectives. Springer, Singapore, pp 267–382

    Google Scholar 

  • Rana KL, Kour D, Sheikh I, Dhiman A, Yadav N, Yadav AN, Rastegari AA, Singh K, Saxena AK (2019a) Endophytic fungi: biodiversity, ecological significance and potential industrial applications. In: Yadav AN, Mishra S, Singh S, Gupta A (eds) Recent advancement in white biotechnology through fungi: volume 1: diversity and enzymes perspectives. Springer, Cham, pp 1–62

    Google Scholar 

  • Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V, Singh BP, Dhaliwal HS, Saxena AK (2019b) Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. In: Singh BP (ed) Advances in endophytic fungal research: present status and future challenges. Springer, Cham, pp 105–144. https://doi.org/10.1007/978-3-030-03589-1_6

    Chapter  Google Scholar 

  • Rana KL, Kour D, Yadav AN (2019c) Endophytic microbiomes: biodiversity, ecological significance and biotechnological applications. Res J Biotechnol 14:142–162

    Google Scholar 

  • Rana KL, Kour D, Kaur T, Sheikh I, Yadav AN, Kumar V, Suman A, Dhaliwal HS (2020) Endophytic microbes from diverse wheat genotypes and their potential biotechnological applications in plant growth promotion and nutrient uptake. Proc Natl Acad Sci. https://doi.org/10.1007/s40011-020-01168-0

  • Read JC, Camp BJ (1986) The effect of the fungal endophyte Acremonium coenophialum in tall fescue on animal performance, toxicity and stand maintenance. Agron J 78:848–850

    Google Scholar 

  • Redman RS, Ranson J, Rodriguez RJ (1999) Conversion of the pathogenic fungus Colletotrichum magna to a nonpathogenic endophytic mutualist by gene disruption. Mol Plant-Microbe Interact 12:969–975

    CAS  Google Scholar 

  • Redman RS, Dunigan DD, Rodriguez RJ (2001) Fungal symbiosis: from mutualism to parasitism, who controls the outcome, host or invader? New Phytol 151:705–716

    Google Scholar 

  • Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM (2002) Thermotolerance conferred to plant host and fungal endophyte during mutualistic symbiosis. Science 298:1581

    CAS  PubMed  Google Scholar 

  • Redman RS, Kim YO, Woodward CJDA, Greer C, Espino L, Doty SL, Rodriguez RJ (2011) Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change. PLoS ONE 6:1–10

    Google Scholar 

  • Richardson MD, Chapman GW Jr, Hoveland CS, Bacon CW (1992) Sugar alcohols in endophyte-infected tall fescue under drought. Crop Sci 32:1060–1061

    CAS  Google Scholar 

  • Richardson MD, Hoveland CS, Bacon CW (1993) Photosynthesis and stomatal conductance of symbiotic and nonsymbiotic tall fescue. Crop Sci 33:145–149

    Google Scholar 

  • Rodriguez R, Redman R (2008) More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. J Exp Bot 59:1109–1114

    CAS  PubMed  Google Scholar 

  • Rodriguez RJ, Redman RS, Henson JM et al (2004) The role of fungal symbioses in the adaptation of plants to high stress environments. Mitig Adapt Strateg Glob Chang 9:261–272

    Google Scholar 

  • Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M (2008) Stress tolerance in plants via habitat-adapted symbiosis. Int Soc Microb Ecol J 2:404–416

    Google Scholar 

  • Rodriguez RJ, White JF, Arnold AE, Redman RS et al (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    CAS  PubMed  Google Scholar 

  • Rouhier N, Koh CS, Gelhaye E, Corbier C, Favier F, Didierjean C et al (2008) Redox based anti-oxidant systems in plants: biochemical and structural analyses. Biochim Biophys Acta 1780:1249–1260

    CAS  PubMed  Google Scholar 

  • Ruiz-Lazano JM, Azcon R (1995) Hyphal contribution to water uptake in mycorrhizal plants as affected by the fungal species and water status. Physiol Plant 95:472–478

    Google Scholar 

  • Ruiz-Lozano JM, Aroca R, Zamarreño ÁM, Molina S, Andreo-Jiménez B, Porcel R et al (2015) Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant Cell Environ 39:441–452

    PubMed  Google Scholar 

  • Rutto KL, Mizutani F, Kadoya K (2002) Effect of root-zone flooding on mycorrhizal and non-mycorrhizal peach (Prunus persica Batsch) seedlings. Sci Hortic 94:285–295

    Google Scholar 

  • Sannazzaro AI, Oscar R, Edgardo A, Ana M (2006) Alleviation of salt stress in Lotus glaber by Glomus intraradices. Plant Soil 285:279–287

    CAS  Google Scholar 

  • Saxena AK, Yadav AN, Rajawat M, Kaushik R, Kumar R, Kumar M, Prasanna R, Shukla L (2016) Microbial diversity of extreme regions: an unseen heritage and wealth. Indian J Plant Genet Resour 29:246–248

    Google Scholar 

  • Schardl CL, Leuchtmann A, Spiering MJ et al (2004) Annu Rev Plant Biol 55:315–340

    CAS  PubMed  Google Scholar 

  • Schulz BJE (2006) Mutualistic interactions with fungal root endophytes. In: Schulz BJE, Boyle CJC, Sieber TN (eds) Microbial root endophytes. Springer, Berlin, pp 261–280

    Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686

    PubMed  Google Scholar 

  • Schulz B, Guske S, Dammann U, Boyle C et al (1998) Endophyte-host interactions. II. Defining symbiosis of the endophyte-host interaction. Symbiosis 25:213–227

    Google Scholar 

  • Schulz B, Römmert AK, Dammann U, Aust HJ, Strack D (1999) The endophyte-host interaction: a balanced antagonism? Mycol Res 103:1275–1283

    Google Scholar 

  • Schüβler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Google Scholar 

  • Sheng M, Tang M, Chen H, Yang B, Zhang F, Huang Y (2008) Influence of arbuscualar mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18:287–296

    Google Scholar 

  • Shrivastava S, Verma A (2014) From Piriformospora indica to rootonic: a review. Afr J Microbial Res 8:2984–2992

    Google Scholar 

  • Singh LP, Gill SS, Tuteja N (2011) Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signal Behav 6:175–191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh A, Kumari R, Yadav AN, Mishra S, Sachan A, Sachan SG (2020) Tiny microbes, big yields: microorganisms for enhancing food crop production sustainable development. In: Rastegari AA, Yadav AN, Awasthi AK, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 1–16. https://doi.org/10.1016/B978-0-12-820526-6.00001-4

    Chapter  Google Scholar 

  • Skirycz A, Inze D (2010) More from less: plant growth under limited water. Curr Opin Biotechnol 21:197–203

    CAS  PubMed  Google Scholar 

  • Smirnoff N (1998) Plant resistance to environmental stress. Curr Opin Biotechnol 9:214–219

    CAS  PubMed  Google Scholar 

  • Suman A, Yadav AN, Verma P (2016) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh D, Abhilash P, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity, research perspectives. Springer, New Delhi, pp 117–143. https://doi.org/10.1007/978-81-322-2647-5_7

    Chapter  Google Scholar 

  • Tanaka A, Christensen MJ, Takemoto D, Park P, Scott B (2006) Reactive oxygen species play a role in regulating a fungus—perennial ryegrass mutualistic interaction. Plant Cell 18:1052–1066

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vadassery J, Oelmüller R (2009) Calcium signaling in pathogenic and beneficial plant microbe interactions. Plant Signal Behav 4:1024–1027

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verma S, Nizam S, Verma PK (2013) Biotic and abiotic stress signalling in plants. Stress Signal Plants 1:25–49

    Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A (2016) Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol 56:44–58

    CAS  PubMed  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Saxena AK, Suman A (2017a) Potassium-solubilizing microbes: diversity, distribution, and role in plant growth promotion. In: Panpatte DG, Jhala YK, Vyas RV, Shelat HN (eds) Microorganisms for green revolution: volume 1: microbes for sustainable crop production. Springer, Singapore, pp 125–149. https://doi.org/10.1007/978-981-10-6241-4_7

    Chapter  Google Scholar 

  • Verma P, Yadav AN, Kumar V, Singh DP, Saxena AK (2017b) Beneficial plant-microbes interactions: biodiversity of microbes from diverse extreme environments and its impact for crop improvement. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives: volume 2: microbial interactions and agro-ecological impacts. Springer, Singapore, pp 543–580. https://doi.org/10.1007/978-981-10-6593-4_22

    Chapter  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Mishra S, Kumar S, Saxena AK, Suman A (2019) Appraisal of diversity and functional attributes of thermotolerant wheat associated bacteria from the peninsular zone of India. Saudi J Biol Sci 26:1882–1895. https://doi.org/10.1016/j.sjbs.2016.01.042

    PubMed  Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M et al (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance and higher yield. Proc Natl Acad Sci U S A 102:13386–13391

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Chen C (2006) Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv 24:427–451

    CAS  PubMed  Google Scholar 

  • Wang Y, Frei M (2011) Stressed food—the impact of abiotic environmental stresses on crop quality. Agric Ecosyst Environ 141:271–286

    Google Scholar 

  • Wang FY, Liu RJ (2001) A preliminary survey of arbuscular mycorrhizal fungi in saline alkaline soils of the Yellow river delta. Biodivers Sci 9:389–392

    Google Scholar 

  • Wang WX, Vinocur B, Shoseyov O, Altman A (2001) Biotechnology of plant osmotic stress tolerance: physiological and molecular considerations. Acta Hortic 560:285–292

    CAS  Google Scholar 

  • White RH, Engelke MC, Morton SJ, Johnson-Cicalese JM, Ruemmele BA (1992) Acremonium endophyte effects on tall fescue drought tolerance. Crop Sci 32:1392–1396

    Google Scholar 

  • Yadav AN (2017) Agriculturally important microbiomes: biodiversity and multifarious PGP attributes for amelioration of diverse abiotic stresses in crops for sustainable agriculture. Biomed J Sci Tech Res 1:1–4

    Google Scholar 

  • Yadav AN (2019) Endophytic fungi for plant growth promotion and adaptation under abiotic stress conditions. Acta Sci Agric 3:91–93

    CAS  Google Scholar 

  • Yadav AN, Yadav N (2018) Stress-adaptive microbes for plant growth promotion and alleviation of drought stress in plants. Acta Sci Agric 2:85–88

    Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Saxena AK (2015a) Prospecting cold deserts of north western Himalayas for microbial diversity and plant growth promoting attributes. J Biosci Bioeng 119:683–693

    CAS  PubMed  Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Tyagi SP, Kaushik R, Saxena AK (2015b) Culturable diversity and functional annotation of psychrotrophic bacteria from cold desert of Leh Ladakh (India). World J Microbiol Biotechnol 31:95–108

    CAS  PubMed  Google Scholar 

  • Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B, Chauhan V, Dhaliwal HS, Saxena AK (2017a) Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5:45–57

    CAS  Google Scholar 

  • Yadav AN, Verma P, Sachan SG, Saxena AK (2017b) Biodiversity and biotechnological applications of psychrotrophic microbes isolated from Indian Himalayan regions. Ecol Microbiol 1:48–54

    Google Scholar 

  • Yadav AN, Kumar V, Prasad R, Saxena AK, Dhaliwal HS (2018a) Microbiome in crops: diversity, distribution and potential role in crops improvements. In: Prasad R, Gill SS, Tuteja N (eds) Crop improvement through microbial biotechnology. Elsevier, Cambridge, pp 305–332

    Google Scholar 

  • Yadav AN, Verma P, Kumar S, Kumar V, Kumar M, Singh BP, Saxena AK, Dhaliwal HS (2018b) Actinobacteria from rhizosphere: molecular diversity, distributions and potential biotechnological applications. In: Singh B, Gupta V, Passari A (eds) New and future developments in microbial biotechnology and bioengineering. Springer, New York, pp 13–41. https://doi.org/10.1016/B978-0-444-63994-3.00002-3

    Chapter  Google Scholar 

  • Yadav AN, Verma P, Sachan SG, Kaushik R, Saxena AK (2018c) Psychrotrophic microbiomes: molecular diversity and beneficial role in plant growth promotion and soil health. In: Panpatte DG, Jhala YK, Shelat HN, Vyas RV (eds) Microorganisms for green revolution-volume 2: microbes for sustainable agro-ecosystem. Springer, Singapore, pp 197–240. https://doi.org/10.1007/978-981-10-7146-1_11

    Chapter  Google Scholar 

  • Yadav AN, Gulati S, Sharma D, Singh RN, Rajawat MVS, Kumar R, Dey R, Pal KK, Kaushik R, Saxena AK (2019a) Seasonal variations in culturable archaea and their plant growth promoting attributes to predict their role in establishment of vegetation in Rann of Kutch. Biologia 74:1031–1043. https://doi.org/10.2478/s11756-019-00259-2

    Article  Google Scholar 

  • Yadav AN, Kour D, Sharma S, Sachan SG, Singh B, Chauhan VS, Sayyed RZ, Kaushik R, Saxena AK (2019b) Psychrotrophic microbes: biodiversity, mechanisms of adaptation, and biotechnological implications in alleviation of cold stress in plants. In: Sayyed RZ, Arora NK, Reddy MS (eds) Plant growth promoting rhizobacteria for sustainable stress management: volume 1: rhizobacteria in abiotic stress management. Springer, Singapore, pp 219–253. https://doi.org/10.1007/978-981-13-6536-2_12

    Chapter  Google Scholar 

  • Yadav AN, Singh S, Mishra S, Gupta A (2019c) Recent advancement in white biotechnology through fungi, volume 3: perspective for sustainable environments. Springer, Cham

    Google Scholar 

  • Yadav AN, Yadav N, Sachan SG, Saxena AK (2019d) Biodiversity of psychrotrophic microbes and their biotechnological applications. J Appl Biol Biotechnol 7:99–108

    Google Scholar 

  • Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (2020a) Agriculturally important fungi for sustainable agriculture, volume 1: perspective for diversity and crop productivity. Springer, Cham

    Google Scholar 

  • Yadav AN, Rastegari AA, Yadav N, Kour D (2020b) Advances in plant microbiome and sustainable agriculture: diversity and biotechnological applications. Springer, Singapore

    Google Scholar 

  • Yadav AN, Rastegari AA, Yadav N, Kour D (2020c) Advances in plant microbiome and sustainable agriculture: functional annotation and future challenges. Springer, Singapore

    Google Scholar 

  • Yadav AN, Singh J, Rastegari AA, Yadav N (2020d) Plant microbiomes for sustainable agriculture. Springer, Cham

    Google Scholar 

  • Yuan Z, Zhang C, Lin FL (2010) Role of diverse non-systemic fungal endophytes in plant performance and response to stress: progress and approaches. J Plant Growth Regul 29:116–126

    CAS  Google Scholar 

  • Yue B, Xue W, Xiong L, Yu X, Luo L, Cui K, Jin D et al (2006) Genetic basis of drought resistance at reproductive stage in rice: separation of drought tolerance from drought avoidance. Genetics 172:1213–1228

    PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2007) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Google Scholar 

  • Zhu XC, Song FB, Xu HW (2010) Effects of arbuscular mycorrhizal fungi on photosynthetic characteristics of maize under low temperature stress. Acta Ecol Sin 21:470–475

    CAS  Google Scholar 

  • Zou YN, Wu QS, Huang YM, Ni QD, He XH (2013) Mycorrhizal-mediated lower proline accumulation in Poncirus trifoliata under water deficit derives from the integration of inhibition of proline synthesis with increase of proline degradation. PLoS One 8:1–8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abo Nouh, F.A., Abdel-Azeem, A.M. (2020). Role of Fungi in Adaptation of Agricultural Crops to Abiotic Stresses. In: Yadav, A., Mishra, S., Kour, D., Yadav, N., Kumar, A. (eds) Agriculturally Important Fungi for Sustainable Agriculture. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-48474-3_2

Download citation

Publish with us

Policies and ethics