Skip to main content

Efficient Post-quantum SNARKs for RSIS and RLWE and Their Applications to Privacy

  • Conference paper
  • First Online:
Post-Quantum Cryptography (PQCrypto 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12100))

Included in the following conference series:

Abstract

In this paper we give efficient statistical zero-knowledge proofs (SNARKs) for Module/Ring LWE and Module/Ring SIS relations, providing the remaining ingredient for building efficient cryptographic protocols from lattice-based hardness assumptions. We achieve our results by exploiting the linear-algebraic nature of the statements supported by the Aurora proof system (Ben-Sasson et al.), which allows us to easily and efficiently encode the linear-algebraic statements that arise in lattice schemes and to side-step the issue of “relaxed extractors”, meaning extractors that only recover a witness for a larger relation than the one for which completeness is guaranteed. We apply our approach to the example use case of partially dynamic group signatures and obtain a lattice-based group signature that protects users against corrupted issuers, and that produces signatures smaller than the state of the art, with signature sizes of less than 300 KB for the comparably secure version of the scheme. To obtain our argument size estimates for proof of knowledge of RLWE secret, we implemented the NIZK using libiop.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange - a new hope. In: 25th USENIX Security Symposium, USENIX Security 16, Austin, TX, USA, 10–12 August 2016, pp. 327–343 (2016)

    Google Scholar 

  2. Banaszczyk, W.: New bounds in some transference theorems in the geometry of numbers. Math. Ann. 296(1), 625–635 (1993)

    Article  MathSciNet  Google Scholar 

  3. Baum, C., Bootle, J., Cerulli, A., del Pino, R., Groth, J., Lyubashevsky, V.: Sub-linear lattice-based zero-knowledge arguments for arithmetic circuits. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 669–699. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_23

    Chapter  Google Scholar 

  4. Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: the case of dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–153. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3_11

    Chapter  Google Scholar 

  5. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.: Aurora: transparent succinct arguments for R1CS. IACR Cryptology ePrint Archive, 2018:828 (2018)

    Google Scholar 

  6. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. IACR Cryptology ePrint Archive 2016:116 (2016)

    Google Scholar 

  7. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M., Smith, A. (eds.) TCC 2016, Part II. LNCS, vol. 9986, pp. 31–60. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5_2

    Chapter  Google Scholar 

  8. Boschini, C., Camenisch, J., Neven, G.: Floppy-sized group signatures from lattices. In: Preneel, B., Vercauteren, F. (eds.) ACNS 2018. LNCS, vol. 10892, pp. 163–182. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93387-0_9

    Chapter  Google Scholar 

  9. Boyen, X.: Lattice mixing and vanishing trapdoors: a framework for fully secure short signatures and more. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 499–517. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13013-7_29

    Chapter  Google Scholar 

  10. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_29

    Chapter  Google Scholar 

  11. Chiesa, A., Manohar, P., Spooner, N.: Succinct arguments in the quantum random oracle model. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019, Part II. LNCS, vol. 11892, pp. 1–29. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36033-7_1

    Chapter  Google Scholar 

  12. del Pino, R., Lyubashevsky, V., Seiler, G.: Lattice-based group signatures and zero-knowledge proofs of automorphism stability. In: Lie, D., Mannan, M., Backes, M., Wang, X.F. (eds.) ACM CCS 2018, pp. 574–591. ACM Press, New York (2018)

    Google Scholar 

  13. Genise, N., Micciancio, D.: Faster Gaussian sampling for trapdoor lattices with arbitrary modulus. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part I. LNCS, vol. 10820, pp. 174–203. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_7

    Chapter  Google Scholar 

  14. Gennaro, R., Minelli, M., Nitulescu, A., Orrù, M.: Lattice-based zk-SNARKs from square span programs. In: Lie, D., Mannan, M., Backes, M., Wang, X.F. (eds.) ACM CCS 2018, pp. 556–573. ACM Press, New York (2018)

    Google Scholar 

  15. Katsumata, S., Yamada, S.: Group signatures without NIZK: from lattices in the standard model. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part III. LNCS, vol. 11478, pp. 312–344. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_11

    Chapter  MATH  Google Scholar 

  16. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices. Des. Codes Crypt. 75(3), 565–599 (2014). https://doi.org/10.1007/s10623-014-9938-4

    Article  MathSciNet  MATH  Google Scholar 

  17. Libert, B., Ling, S., Nguyen, K., Wang, H.: Lattice-based zero-knowledge arguments for integer relations. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 700–732. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_24

    Chapter  Google Scholar 

  18. Ling, S., Nguyen, K., Stehlé, D., Wang, H.: Improved zero-knowledge proofs of knowledge for the ISIS problem, and applications. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 107–124. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7_8

    Chapter  Google Scholar 

  19. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_43

    Chapter  Google Scholar 

  20. Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: SWIFFT: a modest proposal for FFT hashing. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 54–72. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71039-4_4

    Chapter  Google Scholar 

  21. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1

    Chapter  Google Scholar 

  22. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 35–54. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_3

    Chapter  Google Scholar 

  23. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_41

    Chapter  Google Scholar 

  24. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 147–191. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-88702-7_5

    Chapter  MATH  Google Scholar 

  25. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attacks. In: 22nd ACM STOC, pp. 427–437. ACM Press, May 1990

    Google Scholar 

  26. Shamir, A., Tauman, Y.: Improved online/offline signature schemes. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 355–367. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_21

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia Boschini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boschini, C., Camenisch, J., Ovsiankin, M., Spooner, N. (2020). Efficient Post-quantum SNARKs for RSIS and RLWE and Their Applications to Privacy. In: Ding, J., Tillich, JP. (eds) Post-Quantum Cryptography. PQCrypto 2020. Lecture Notes in Computer Science(), vol 12100. Springer, Cham. https://doi.org/10.1007/978-3-030-44223-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44223-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44222-4

  • Online ISBN: 978-3-030-44223-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics