Skip to main content

Solid-State Digital Photon Counting PET/CT

  • Chapter
  • First Online:
Advances in PET
  • 733 Accesses

Abstract

In this chapter, we describe the solid-state digital photon counting (DPC) clinical PET/CT, Vereos TF 64, a system differing from other SiPM-based PET/CT systems by directly coupling every lutetium-yttrium oxyorthosilicate (LYSO) scintillator with its own DPC detector sensor. First, we will introduce the system, its architecture, and the features of its reconstruction and quality control. Second, we will discuss the system performance measurements in spatial resolution (3.88 mm at center in axial), timing resolution (310 ps), sensitivity (5.5 cps/kBq), peak NECR (153 kcps at 54.3 kBq/mL), peak true count rate (878 kBq/mL), and scatter fraction (32.2%). Finally, we will demonstrate clinical applications focusing on low-dose PET, fast PET imaging, PET simulation, and lesion detectability. The system has presented improvements in system performance, characteristics, and image quality leading to promising clinical opportunities and diagnostic confidence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frach T, Prescher G, Degenhardt G, Gruyter R, Schmitz A, Ballizany R. The digital silicon photomultiplier – principle of operation and intrinsic detector performance. In: Nuclear science symposium conference record, N28-5; 2009.

    Google Scholar 

  2. Degenhardt C, Zwaans B, Frach T, Gruyter R. Arrays of digital silicon photomultipliers - intrinsic performance and application to scintillator readout. In: Nuclear science symposium conference record (NSS/MIC). IEEE; 2010. https://doi.org/10.1109/NSSMIC.2010.5874115.

  3. Schaart DR, Charbon E, Frach T, Schulz V. Advances in digital SiPMs and their application in biomedical imaging. Nucl Inst Methods Phys Res A. 2016;809:31–52.

    Article  CAS  Google Scholar 

  4. Zhang J, Maniawski P, Knopp MV. Performance evaluation of the next generation solid-state digital photon counting PET/CT system. EJNMMI Res. 2018;8(1):97. https://doi.org/10.1186/s13550-018-0448-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Haemisch Y, et al. Fully digital arrays of silicon photomultipliers (dSiPM) – a scalable alternative to vacuum photomultiplier tubes (PMT). Phys Procedia. 2012;37:1546–60.

    Article  CAS  Google Scholar 

  6. Truly digital PET imaging: Philips proprietary Digital Photon Counting technology. Philips Healthcare: Eindhoven; 2016.

    Google Scholar 

  7. Wang W, Hu Z, Gualtieri EE, Parma MJ, Walsh ES, Sebok D, et al. Systematic and distributed time-of-flight list-mode PET reconstruction. Proc Nucl Sci Symp Conf Rec. 2006;3:1715–7.

    Google Scholar 

  8. Popescu LM, Lewitt RM. Ray tracing through a grid of blobs. IEEE Nucl Sci Symp Conf Rec. 2004;6:3983–6.

    Google Scholar 

  9. J. Ye, X. Song and Z. Hu, Scatter correction with combined single-scatter simulation and Monte Carlo simulation for 3D PET. In: 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). Seattle, WA; 2014. pp. 1–3.

    Google Scholar 

  10. Casey ME, Hoffman EJ. Quantitation in positron emission computed tomography. A technique to reduce noise in accidental coincidence measurements and coincidence efficiency calibration. J Comput Assist Tomogr. 1986;10:845–50.

    Article  CAS  Google Scholar 

  11. Richardson WH. Bayesian-based iterative method of image restoration. J Opt Soc Am. 1972;62:55–9.

    Article  Google Scholar 

  12. Lucy LB. An iterative technique for the rectification of observed distributions. Astron J. 1974;79:745–65.

    Article  Google Scholar 

  13. Zhang B, Olivier P, Lorman B, Tung C. PET image resolution recovery using PSF-based ML-EM deconvolution with blob-based list-mode TOF reconstruction. J Nucl Med. 2011;52(Supplement 1):266.

    Google Scholar 

  14. iDose4 iterative reconstruction technique. Philips Healthcare: Eindhoven; 2011.

    Google Scholar 

  15. Vereos PET/CT: focusing on high performance. Philips Healthcare: Eindhoven; 2018.

    Google Scholar 

  16. NEMA NU 2-2012: performance measurements of positron emission tomographs (PETs). National Electrical Manufacturers Association: Rosslyn; 2013.

    Google Scholar 

  17. Huesman RH. The effects of a finite number of projection angles and finite lateral sampling of projections on the propagation of statistical errors in transverse section reconstruction. Phys Med Biol. 1977;22:511.

    Article  CAS  Google Scholar 

  18. Saha GB. Performance characteristics of PET scanners. In: Basics of PET imaging. New York: Springer; 2010.

    Chapter  Google Scholar 

  19. Moses WW. Fundamental limits of spatial resolution in PET. Nucl Inst Methods Phys Res A. 2011;648:S236–40.

    Article  CAS  Google Scholar 

  20. Rausch I, Ruiz A, Valverde-Pascual I, Cal-González J, Beyer T, Carrio I. Performance evaluation of the Philips Vereos PET/CT system according to the NEMA NU2-2012 standard. J Nucl Med. 2018; https://doi.org/10.2967/jnumed.118.215541.

    Article  Google Scholar 

  21. Zhang J, Knopp MI, Knopp MV. Sparse detector configuration in SiPM digital photon counting PET: a feasibility study. Mol Imaging Biol. 2018; https://doi.org/10.1007/s11307-018-1250-7.

    Article  Google Scholar 

  22. Mao Y, Miller M, Bai C, et al. Evaluation of a TOF resolution measurement method using standard NEMA NEC phantom. J Nucl Med. 2017;58(supplement 1):436.

    Google Scholar 

  23. Wang GC, Li X, Niu X, Du H, Balakrishnan K, Ye H, et al. PET timing performance measurement method using NEMA NEC phantom. IEEE Trans Nucl Sci. 2016;63(3):1335–42.

    Article  CAS  Google Scholar 

  24. Karp JS, Surti S, Daube-Witherspoon ME, Muehllehner G. The benefit of time-of-flight in PET imaging: experimental and clinical results. J Nucl Med. 2008;49(3):462–70.

    Article  Google Scholar 

  25. Conti M. Focus on time-of-flight PET: the benefits of improved time resolution. Eur J Nucl Med Mol Imaging. 2011;38(6):1147–57.

    Article  Google Scholar 

  26. NEMA NU 2-2018: performance measurements of positron emission tomographs (PET). National Electrical Manufacturers Association: Rosslyn; 2018.

    Google Scholar 

  27. Kolthammer JA, Su KH, Grover A, Narayanan M, Jordan DW, Muzic RF. Performance evaluation of the ingenuity TF PET/CT scanner with a focus on high count-rate conditions. Phys Med Biol. 2014;59(14):3843–59.

    Article  Google Scholar 

  28. Surti S, Kuhn A, Werner ME, Perkins AE, Kolthammer J, Karp JS. Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities. J Nucl Med. 2007;48(3):471–80.

    PubMed  Google Scholar 

  29. Zhang J, Binzel K, Ross P, Hall N, Knopp MV. An anatomical adaptive acquisition approach (A5) for PET/CT. J Nucl Med. 2011;52:424.

    Article  Google Scholar 

  30. Alessio AM, Sammer M, Phillips GS, Manchanda V, Mohr BC, Parisi MT. Evaluation of optimal acquisition duration or injected activity for pediatric 18F-FDG PET/CT. J Nucl Med. 2011 Jul;52(7):1028–34.

    Article  Google Scholar 

  31. Schaefferkoetter JD, Yan J, Townsend DW, Conti M. Initial assessment of image quality for low-dose PET: evaluation of lesion detectability. Phys Med Biol. 2015;60(14):5543–56.

    Article  Google Scholar 

  32. Yan JH, Schaefferkoetter J, Conti M, Townsend D. A method to assess image quality for Lowdose PET: analysis of SNR, CNR, bias and image noise. Phys Med Biol. 2015;60(14):5543–56.

    Article  Google Scholar 

  33. Gatidis S, Schmidt H, la Fougère C, Nikolaou K, Schwenzer NF, Schäfer JF. Defining optimal tracer activities in pediatric oncologic whole-body 18F-FDG-PET/MRI. Eur J Nucl Med Mol Imaging. 2016;43(13):2283–9.

    Article  CAS  Google Scholar 

  34. Zhang J, Zhang B, Knopp MV. Low counts density PET simulation using time-, space-, order- and randomization-based approaches on a SiPM digital photo counting TOF PET/CT. In: IEEE nuclear science symposium and medical imaging conference (NSS/MIC); 2019 Nov 30.

    Google Scholar 

  35. Nguyen NC, Vercher-Conejero JL, Sattar A, Miller MA, Maniawski PJ, Jordan DW, et al. Image quality and diagnostic performance of a digital PET prototype in patients with oncologic diseases: initial experience and comparison with analog PET. J Nucl Med. 2015;56(9):1378–85.

    Article  CAS  Google Scholar 

  36. Wright CL, Binzel K, Zhang J, Knopp MV. Advanced functional tumor imaging and precision nuclear medicine enabled by digital PET technologies. Contrast Media Mol Imaging. 2017;5260305. https://doi.org/10.1155/2017/5260305.

    Article  Google Scholar 

  37. López-Mora DA, Flotats A, Fuentes-Ocampo F, Camacho V, Fernández A, Ruiz A, et al. Comparison of image quality and lesion detection between digital and analog PET/CT. Eur J Nucl Med Mol Imaging. 2019;46(6):1383–90.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, J., Knopp, M.V. (2020). Solid-State Digital Photon Counting PET/CT. In: Zhang, J., Knopp, M. (eds) Advances in PET. Springer, Cham. https://doi.org/10.1007/978-3-030-43040-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43040-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43039-9

  • Online ISBN: 978-3-030-43040-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics