Skip to main content

Epigenetics and Ageing

  • Chapter
  • First Online:
Clinical Genetics and Genomics of Aging

Abstract

Epigenetics is considered as a dynamic interface between the genome and the environment and encompasses different mechanisms that regulate chromatin dynamics and gene expression by DNA methylation, histone post-translational modifications, histone variants, non-coding RNAs, genome topology, among others. The molecular bases of ageing are multi factorial, and the change in the patterns of epigenetic marks is emerging as a hallmark of this physiological process in several tissues. Research in epigenetics has led to the identification of non-invasive biomarkers and therapeutic strategies in age-associated diseases. Furthermore, epigenetic modifications are reversible and might be preventable, making them attractive therapeutic targets to assure a healthy-ageing process. In the present chapter, we aim to provide an overview about the current research focused on the participation of epigenetic mechanisms in ageing health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

AMPK:

AMP-activated protein kinase

circRNA:

Circular RNA

CTCF:

CCCTC-binding factor

DNMT:

DNA methyltransferase

ES:

Estrogen receptor

EWAS:

Epigenome-wide association study

EZH2:

Enhancer of zeste 2 polycomb repressive complex 2 subunit

H2BK20:

Lysine 20 of histone 2B

H3K18Ac:

Histone 3 acetylated at lysine 18

H3K27me:

Histone 3 methylated at lysine 27

H3K4me:

Histone 3 methylated at lysine 4

H3K9Ac:

Histone 3 acetylated at lysine 9

H3K9me:

Histone 3 methylated at lysine 9

H4K12:

Lysine 12 of histone 4

H4K16:

Lysine 16 of histone 4

H4K20me:

Histone 4 methylated at lysine 20

HAT:

Histone acetyl transferases

HDAC:

Histone deacetylases

HGS:

Hutchinson-Gilford syndrome

HOTAIR:

HOX antisense intergenic RNA

HP1:

Heterochromatin protein 1

KMT1/Suv39:

Histone lysine methyltransferase family encoded by the EHM1 gene

LADs:

Lamina-associated domains

lncRNA:

Long non-coding RNA

miRNA:

MicroRNAs

ncRNA:

Non-coding RNA

NL:

Nuclear lamina

NOS2:

Nitric oxide synthase

PD:

Parkinson’s disease

PRC2:

Polycomb repressive complex 2

PTGS2:

Cyclooxygenase 2

PTM:

Post-translational modification

RA:

Rheumatoid arthritis

RBBP4:

RB Binding Protein 4

RISC:

RNA-induced silencing complex

ROS:

Reactive oxygen species

SAHF:

Senescence-associated heterochromatic foci

SALNR:

Senescence-associated lncRNA

SMCs:

Smooth muscle cells

T2D:

Type 2 diabetes

TADs:

Topologically associated domains

TERF2:

Telomeric repeat binding factor 2

TOR:

Target of rapamycin

WHO:

World Health Organization

XIST:

X-inactive-specific transcript

References

  1. Brennan-Olsen SL, Cook S, Leech MT, Bowe SJ, Kowal P, Naidoo N, et al. Prevalence of arthritis according to age, sex and socioeconomic status in six low and middle income countries: analysis of data from the World Health Organization study on global AGEing and adult health (SAGE) Wave 1. BMC Musculoskelet Disord. 2017;18(1):271.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Andersen-Ranberg K, Christensen K, Jeune B, Skytthe A, Vasegaard L, Vaupel JW. Declining physical abilities with age: a cross-sectional study of older twins and centenarians in Denmark. Age Ageing. 1999;28(4):373–7.

    Article  CAS  PubMed  Google Scholar 

  3. Park DC, Lodi-Smith J, Drew L, Haber S, Hebrank A, Bischof GN, et al. The impact of sustained engagement on cognitive function in older adults: the Synapse Project. Psychol Sci. 2014;25(1):103–12.

    Article  PubMed  Google Scholar 

  4. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Mc Auley MT, Guimera AM, Hodgson D, Mcdonald N, Mooney KM, Morgan AE, et al. Modelling the molecular mechanisms of aging. Biosci Rep. 2017;37(1):BSR20160177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Feil R, Fraga MF. Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet. 2012;13(2):97–109.

    Article  CAS  PubMed  Google Scholar 

  7. Molina-Serrano D, Kyriakou D, Kirmizis A. Histone modifications as an intersection between diet and longevity. Front Gen. 2019;10:192.

    Article  CAS  Google Scholar 

  8. Milagro FI, Mansego ML, De Miguel C, Martínez JA. Dietary factors, epigenetic modifications and obesity outcomes: progresses and perspectives. Mol Aspects Med. 2013;34(4):782–812.

    Article  CAS  PubMed  Google Scholar 

  9. Van Speybroeck L. From epigenesis to epigenetics: the case of C. H. Waddington. Ann N Y Acad Sci. 2002;981:61–81.

    Article  PubMed  Google Scholar 

  10. Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet. 2013;14(3):204–20.

    Article  CAS  PubMed  Google Scholar 

  11. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16(1):6–21.

    Article  CAS  PubMed  Google Scholar 

  12. Xiao FH, Wang HT, Kong QP. Dynamic DNA methylation during aging: a “prophet” of age-related outcomes. Front Genet. 2019;10:107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wilson VL, Jones PA. DNA methylation decreases in aging but not in immortal cells. Science. 1983;220(4601):1055–7.

    Article  CAS  PubMed  Google Scholar 

  14. Jintaridth P, Mutirangura A. Distinctive patterns of age-dependent hypomethylation in interspersed repetitive sequences. Physiol Genomics. 2010;41(2):194–200.

    Article  CAS  PubMed  Google Scholar 

  15. Bollati V, Tarantini L, Baccarelli A, Schwartz J, Wright R, Litonjua A, et al. Decline in genomic DNA methylation through aging in a cohort of elderly subjects. Mech Ageing Dev. 2009;130(4):234–9.

    Article  CAS  PubMed  Google Scholar 

  16. Xiao F-H, Kong Q-P, Perry B, He Y-H. Progress on the role of DNA methylation in aging and longevity. Brief Funct Genomics. 2016;15(6):454–9.

    CAS  PubMed  Google Scholar 

  17. Jones MJ, Goodman SJ, Kobor MS. DNA methylation and healthy human aging. Aging Cell. 2015;14(6):924–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ishimi Y, Kojima M, Takeuchi F, Miyamoto T, Yamada MA, Hanaoka F. Changes in chromatin structure during aging of human skin fibroblasts. Exp Cell Res. 1987;169(2):458–67.

    Article  CAS  PubMed  Google Scholar 

  19. Dell’Orco R. Research WW-B and biophysical, 1982 U. Micrococcal nuclease and DNase I digestion of DNA from aging human diploid cells. Biochem Biophys Res Commun. 1982;107(1):117–22.

    Article  PubMed  Google Scholar 

  20. Gentilini D, Garagnani P, Pisoni S, Bacalini MG, Calzari L, Mari D, et al. Stochastic epigenetic mutations (DNA methylation) increase exponentially in human aging and correlate with X chromosome inactivation skewing in females. Aging (Albany NY). 2015;7(8):568–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Heyn H, Li N, Ferreira HJ, Moran S, Pisano DG, Gomez A, et al. Distinct DNA methylomes of newborns and centenarians. Proc Natl Acad Sci. 2012;109(26):10522–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bacalini MG, Boattini A, Gentilini D, Giampieri E, Pirazzini C, Giuliani C, et al. A meta-analysis on age-associated changes in blood DNA methylation: results from an original analysis pipeline for Infinium 450k data. Aging (Albany NY). 2015;7(2):97–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Maegawa S, Hinkal G, Kim HS, Shen L, Zhang L, Zhang J, et al. Widespread and tissue specific age-related DNA methylation changes in mice. Genome Res. 2010;20(3):332–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Reynolds LM, Taylor JR, Ding J, Lohman K, Johnson C, Siscovick D, et al. Age-related variations in the methylome associated with gene expression in human monocytes and T cells. Nat Commun. 2014;5:5366.

    Article  PubMed  Google Scholar 

  25. Mcclay JL, Aberg KA, Clark SL, Nerella S, Kumar G, Xie LY, et al. A methylome-wide study of aging using massively parallel sequencing of the methyl-CpG-enriched genomic fraction from blood in over 700 subjects. Hum Mol Genet. 2014;23(5):1175–85.

    Article  CAS  PubMed  Google Scholar 

  26. Beerman I, Bock C, Garrison BS, Smith ZD, Gu H, Meissner A, et al. Proliferation-dependent alterations of the DNA methylation landscape underlie hematopoietic stem cell aging. Cell Stem Cell. 2013;12(4):413–25.

    Article  CAS  PubMed  Google Scholar 

  27. Bell JT, Tsai PC, Yang TP, Pidsley R, Nisbet J, Glass D, et al. Epigenome-wide scans identify differentially methylated regions for age and age-related phenotypes in a healthy ageing population. PLoS Genet. 2012;8(4):e1002629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bocker MT, Hellwig I, Breiling A, Eckstein V, Ho AD, Lyko F. Genome-wide promoter DNA methylation dynamics of human hematopoietic progenitor cells during differentiation and aging. Blood. 2011;117(19):e182–9.

    Article  CAS  PubMed  Google Scholar 

  29. Longo DL, Traynor BJ, Cookson MR, Singleton AB, Hernandez DG, Gibbs JR, et al. Distinct DNA methylation changes highly correlated with chronological age in the human brain. Hum Mol Genet. 2011;20(6):1164–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Grönniger E, Weber B, Heil O, Peters N, Stäb F, Wenck H, et al. Aging and chronic sun exposure cause distinct epigenetic changes in human skin. PLoS Genet. 2010;6(5):6.

    Article  CAS  Google Scholar 

  31. Rakyan VK, Down TA, Maslau S, Andrew T, Yang TP, Beyan H, et al. Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains. Genome Res. 2010;20(4):434–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Day K, Waite LL, Thalacker-Mercer A, West A, Bamman MM, Brooks JD, et al. Differential DNA methylation with age displays both common and dynamic features across human tissues that are influenced by CpG landscape. Genome Biol. 2013;14(9):R102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Christensen BC, Houseman EA, Marsit CJ, Zheng S, Wrensch MR, Wiemels JL, et al. Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CPG island context. PLoS Genet. 2009;5(8):e1000602.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Slieker RC, Relton CL, Gaunt TR, Slagboom PE, Heijmans BT. Age-related DNA methylation changes are tissue-specific with ELOVL2 promoter methylation as exception. Epigenetics Chromatin. 2018;11(1):25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Griñán-Ferré C, Izquierdo V, Otero E, Puigoriol-Illamola D, Corpas R, Sanfeliu C, et al. Environmental enrichment improves cognitive deficits, AD hallmarks and epigenetic alterations presented in 5xFAD mouse model. Front Cell Neurosci. 2018;12:224.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Jung M, Pfeifer GP. Aging and DNA methylation. BMC Biol. 2015 Jan;13:7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Grabowska W, Sikora E, Bielak-Zmijewska A. Sirtuins, a promising target in slowing down the ageing process. Biogerontology. 2017;18(4):447–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14(10):R115.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda SV, et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. 2013;49(2):359–67.

    Article  CAS  PubMed  Google Scholar 

  40. Bekaert B, Kamalandua A, Zapico SC, Van De Voorde W, Decorte R. Improved age determination of blood and teeth samples using a selected set of DNA methylation markers. Epigenetics. 2015;10(10):922–30.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Purohit G, Mukherjee AK, Sharma S, Chowdhury S. Extratelomeric binding of the telomere binding protein TRF2 at the PCGF3 promoter is G-quadruplex motif-dependent. Biochemistry. 2018;57(16):2317–24.

    Article  CAS  PubMed  Google Scholar 

  42. Mu W, Starmer J, Yee D, Magnuson T. EZH2 variants differentially regulate polycomb repressive complex 2 in histone methylation and cell differentiation. Epigenetics Chromatin. 2018;11(1):71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang X, Goodrich KJ, Gooding AR, Naeem H, Archer S, Paucek RD, et al. Targeting of polycomb repressive complex 2 to RNA by short repeats of consecutive guanines. Mol Cell. 2017;65(6):1056–1067.e5.

    Article  CAS  PubMed  Google Scholar 

  44. Malousi A, Andreou AZ, Georgiou E, Tzimagiorgis G, Kovatsi L, Kouidou S. Age-dependent methylation in epigenetic clock CpGs is associated with G-quadruplex, co-transcriptionally formed RNA structures and tentative splice sites. Epigenetics. 2018;13(8):808–21.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Fransquet PD, Wrigglesworth J, Woods RL, Ernst ME, Ryan J. The epigenetic clock as a predictor of disease and mortality risk: a systematic review and meta-analysis. Clin Epigenetics. 2019;11(1):62.

    Article  PubMed  PubMed Central  Google Scholar 

  46. El-Maarri O, Becker T, Junen J, Manzoor SS, Diaz-Lacava A, Schwaab R, et al. Gender specific differences in levels of DNA methylation at selected loci from human total blood: a tendency toward higher methylation levels in males. Hum Genet. 2007;122(5):505–14.

    Article  CAS  PubMed  Google Scholar 

  47. Peterson VS. Sex matters. Int Fem J Polit. 2014;16:389–409.

    Article  Google Scholar 

  48. Singmann P, Shem-Tov D, Wahl S, Grallert H, Fiorito G, Shin SY, et al. Characterization of whole-genome autosomal differences of DNA methylation between men and women. Epigenetics Chromatin. 2015;8(1):43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Cotton AM, Price EM, Jones MJ, Balaton BP, Kobor MS, Brown CJ. Landscape of DNA methylation on the X chromosome reflects CpG density, functional chromatin state and X-chromosome inactivation. Hum Mol Genet. 2015;24(6):1528–39.

    Article  CAS  PubMed  Google Scholar 

  50. Unnikrishnan A, Freeman WM, Jackson J, Wren JD, Porter H, Richardson A. The role of DNA methylation in epigenetics of aging. Pharmacol Ther. 2019;195:172–85.

    Article  CAS  PubMed  Google Scholar 

  51. Khurana I, Kaspi A, Ziemann M, Block T, Connor T, Spolding B, et al. DNA methylation regulates hypothalamic gene expression linking parental diet during pregnancy to the offspring’s risk of obesity in Psammomys obesus. Int J Obes. 2016;40(7):1079–88.

    Article  CAS  Google Scholar 

  52. Kaspi A, Khurana I, Ziemann M, Connor T, Spolding B, Zimmet P, et al. Diet during pregnancy is implicated in the regulation of hypothalamic RNA methylation and risk of obesity in offspring. Mol Nutr Food Res. 2018;62(14):e1800134.

    Article  CAS  Google Scholar 

  53. Ramaswamy A, Ioshikhes I. Dynamics of modeled oligonucleosomes and the role of histone variant proteins in nucleosome organization. Adv Protein Chem Struct Biol. 2013;90:119–49.

    Article  CAS  PubMed  Google Scholar 

  54. Cutter AR, Hayes JJ. A brief review of nucleosome structure. FEBS Lett. 2015;589:2914–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Song S, Johnson FB. Epigenetic mechanisms impacting aging: a focus on histone levels and telomeres. Genes (Basel). 2018;9(4):E201.

    Article  PubMed  CAS  Google Scholar 

  56. Adams PD, Ivanov A, Pawlikowski J, Manoharan I, Van TJ, Nelson DM, et al. Lysosome-mediated processing of chromatin in senescence. J Cell Biol. 2013;202(1):129–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. O’Sullivan RJ, Kubicek S, Schreiber SL, Karlseder J. Reduced histone biosynthesis and chromatin changes arising from a damage signal at telomeres. Nat Struct Mol Biol. 2010;17(10):1218–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Hauer MH, Seeber A, Singh V, Thierry R, Sack R, Amitai A, et al. Histone degradation in response to DNA damage enhances chromatin dynamics and recombination rates. Nat Struct Mol Biol. 2017;24(2):99–107.

    Article  CAS  PubMed  Google Scholar 

  59. Scaffidi P, Misteli T. Lamin A-dependent nuclear defects in human aging. Science (80). 2006;312(5776):1059–63.

    Article  CAS  Google Scholar 

  60. Shumaker DK, Dechat T, Kohlmaier A, Adam SA, Bozovsky MR, Erdos MR, et al. Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proc Natl Acad Sci. 2006;103(23):8703–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ucar D, Márquez EJ, Chung C-H, Marches R, Rossi RJ, Uyar A, et al. The chromatin accessibility signature of human immune aging stems from CD8+ T cells. J Exp Med. 2017;214(10):3123–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Talbert PB, Henikoff S. Histone variants on the move: substrates for chromatin dynamics. Nat Rev Mol Cell Biol. 2017;18(2):115–26.

    Article  CAS  PubMed  Google Scholar 

  63. Rogakou EP, Sekeri-Pataryas KE. Histone variants of H2A and H3 families are regulated during in vitro aging in the same manner as during differentiation. Exp Gerontol. 1999;34(6):741–54.

    Article  CAS  PubMed  Google Scholar 

  64. Correia-Melo C, Jurk D, Passos JF. Robust multiparametric assessment of cellular senescence. Methods Mol Biol. 2013;965:409–19.

    Article  CAS  PubMed  Google Scholar 

  65. Maze I, Wenderski W, Noh K-M, Bagot RC, Tzavaras N, Purushothaman I, et al. Critical role of histone turnover in neuronal transcription and plasticity. Neuron. 2015;87(1):77–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Contrepois K, Coudereau C, Benayoun BA, Schuler N, Roux PF, Bischof O, et al. Histone variant H2A. J accumulates in senescent cells and promotes inflammatory gene expression. Nat Commun. 2017;8:14995.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293(5532):1074–80.

    Article  CAS  PubMed  Google Scholar 

  68. Glass CK, Rosenfeld MG. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev. 2000;14(2):121–41.

    CAS  PubMed  Google Scholar 

  69. Kouzarides T. Chromatin modifications and their function. Cell. 2007;128(4):693–705.

    Article  CAS  PubMed  Google Scholar 

  70. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921.

    Article  CAS  PubMed  Google Scholar 

  71. Oñate SA, Tsai SY, Tsai MJ, O’Malley BW. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science. 1995;270(5240):1354–7.

    Article  PubMed  Google Scholar 

  72. Benevolenskaya EV. Histone H3K4 demethylases are essential in development and differentiation. Biochem Cell Biol. 2007;85(4):435–43.

    Article  CAS  PubMed  Google Scholar 

  73. Klose RJ, Zhang Y. Regulation of histone methylation by demethylimination and demethylation. Nat Rev Mol Cell Biol. 2007;8(4):307–18.

    Article  CAS  PubMed  Google Scholar 

  74. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, et al. High-resolution profiling of histone methylations in the human genome. Cell. 2007;129(4):823–37.

    Article  CAS  PubMed  Google Scholar 

  75. Dang W, Steffen KK, Perry R, Dorsey JA, Johnson FB, Shilatifard A, et al. Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature. 2009;459(7248):802–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Greer EL, Maures TJ, Hauswirth AG, Green EM, Leeman DS, Maro GS, et al. Members of the H3K4 trimethylation complex regulate lifespan in a germline-dependent manner in C. elegans. Nature. 2010;466(7304):383–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Li L, Greer C, Eisenman RN, Secombe J. Essential functions of the histone demethylase Lid. PLoS Genet. 2010;6(11):e1001221.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Siebold AP, Banerjee R, Tie F, Kiss DL, Moskowitz J, Harte PJ. Polycomb repressive complex 2 and trithorax modulate drosophila longevity and stress resistance. Proc Natl Acad Sci. 2010;107(1):169–74.

    Article  CAS  PubMed  Google Scholar 

  79. Maures TJ, Greer EL, Hauswirth AG, Brunet A. The H3K27 demethylase UTX-1 regulates C. elegans lifespan in a germline-independent, insulin-dependent manner. Aging Cell. 2011;10(6):980–90.

    Article  CAS  PubMed  Google Scholar 

  80. Ryder DJ, Judge SM, Beharry AW, Farnsworth CL, Silva JC, Judge AR. Identification of the acetylation and ubiquitin-modified proteome during the progression of skeletal muscle atrophy. PLoS One. 2015;10(8):e0136247.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Rodova M, Lu Q, Li Y, Woodbury BG, Crist JD, Gardner BM, et al. Nfat1 regulates adult articular chondrocyte function through its age-dependent expression mediated by epigenetic histone methylation. J Bone Miner Res. 2011;26(8):1974–86.

    Article  CAS  PubMed  Google Scholar 

  82. Rao RA, Ketkar AA, Kedia N, Krishnamoorthy VK, Lakshmanan V, Kumar P, et al. KMT1 family methyltransferases regulate heterochromatin–nuclear periphery tethering via histone and non-histone protein methylation. EMBO Rep. 2019;20(5):e43260.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Narita M, Nũnez S, Heard E, Narita M, Lin AW, Hearn SA, et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell. 2003;113(6):703–16.

    Article  CAS  PubMed  Google Scholar 

  84. Chandra T, Kirschner K, Thuret J-Y, Pope BD, Ryba T, Newman S, et al. Independence of repressive histone marks and chromatin compaction during senescent heterochromatic layer formation. Mol Cell. 2012;47(2):203–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang W, Li J, Suzuki K, Qu J, Wang P, Zhou J, et al. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science. 2015;348(6239):1160–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Succoio M, Comegna M, D’Ambrosio C, Scaloni A, Cimino F, Faraonio R. Proteomic analysis reveals novel common genes modulated in both replicative and stress-induced senescence. J Proteomics. 2015;128:18–29.

    Article  CAS  PubMed  Google Scholar 

  87. Kurz DJ, Payeli S, Greutert H, Briand Schumacher S, Lüscher TF, Tanner FC. Epigenetic regulation of tissue factor inducibility in endothelial cell senescence. Mech Ageing Dev. 2014;140:1–9.

    Article  CAS  PubMed  Google Scholar 

  88. Ahuja G, Bartsch D, Yao W, Geissen S, Frank S, Aguirre A, et al. Loss of genomic integrity induced by lysosphingolipid imbalance drives ageing in the heart. EMBO Rep. 2019;20(4):e47407.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Pavlopoulos E, Jones S, Kosmidis S, Close M, Kim C, Kovalerchik O, et al. Molecular mechanism for age-related memory loss: the histone-binding protein RbAp48. Sci Transl Med. 2013;5(200):200ra115.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Engel N, Mahlknecht U. Aging and anti-aging: unexpected side effects of everyday medication through sirtuin1 modulation. Int J Mol Med. 2008;21(2):223–32.

    CAS  PubMed  Google Scholar 

  91. Cho S-H, Chen JA, Sayed F, Ward ME, Gao F, Nguyen TA, et al. SIRT1 deficiency in microglia contributes to cognitive decline in aging and neurodegeneration via epigenetic regulation of IL-1β. J Neurosci. 2015;35(2):807–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Mohamad Nasir NF, Zainuddin A, Shamsuddin S. Emerging roles of sirtuin 6 in Alzheimer’s disease. J Mol Neurosci. 2018;64(2):157–61.

    Article  CAS  PubMed  Google Scholar 

  93. Narayan P, Dragunow M. Alzheimer’s disease and histone code alterations. Adv Exp Med Biol. 2017;978:321–36.

    Article  CAS  PubMed  Google Scholar 

  94. Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol. 2010;28(10):1057–68.

    Article  CAS  PubMed  Google Scholar 

  95. Klutstein M, Nejman D, Greenfield R, Cedar H. DNA methylation in cancer and aging. Cancer Res. 2016;76(12):3446–50.

    Article  CAS  PubMed  Google Scholar 

  96. Lin RK, Wang YC. Dysregulated transcriptional and post-translational control of DNA methyltransferases in cancer. Cell Biosci. 2014;4(1):46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Hałasa M, Wawruszak A, Przybyszewska A, Jaruga A, Guz M, Kałafut J, et al. H3K18Ac as a marker of cancer progression and potential target of anti-cancer therapy. Cells. 2019;8(5):485.

    Article  PubMed Central  CAS  Google Scholar 

  98. Rai TS, Cole JJ, Nelson DM, Dikovskaya D, Faller WJ, Vizioli MG, et al. HIRA orchestrates a dynamic chromatin landscape in senescence and is required for suppression of Neoplasia. Genes Dev. 2014;28(24):2712–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Pérez RF, Tejedor JR, Bayón GF, Fernández AF, Fraga MF. Distinct chromatin signatures of DNA hypomethylation in aging and cancer. Aging Cell. 2018;17(3):e12744.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Chen D, Kerr C. The epigenetics of stem cell aging comes of age. Trends Cell Biol. 2019;29(7):563–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Fernández AF, Bayón GF, Urdinguio RG, Toraño EG, García MG, Carella A, et al. H3K4me1 marks DNA regions hypomethylated during aging in human stem and differentiated cells. Genome Res. 2015;25(1):27–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Chen Z, Chang WY, Etheridge A, Strickfaden H, Jin Z, Palidwor G, et al. Reprogramming progeria fibroblasts re-establishes a normal epigenetic landscape. Aging Cell. 2017;16(4):870–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Van der Kraan PM, Van den Berg WB. Chondrocyte hypertrophy and osteoarthritis: role in initiation and progression of cartilage degeneration? Osteoarthr Cartil. 2012;20(3):223–32.

    Article  Google Scholar 

  104. El Mansouri FE, Chabane N, Zayed N, Kapoor M, Benderdour M, Martel-Pelletier J, et al. Contribution of H3K4 methylation by SET-1A to interleukin-1-induced cyclooxygenase 2 and inducible nitric oxide synthase expression in human osteoarthritis chondrocytes. Arthritis Rheum. 2011;63(1):168–79.

    Article  PubMed  CAS  Google Scholar 

  105. Iliopoulos D, Malizos KN, Tsezou A. Epigenetic regulation of leptin affects MMP-13 expression in osteoarthritic chondrocytes: possible molecular target for osteoarthritis therapeutic intervention. Ann Rheum Dis. 2007;66(12):1616–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Portal-Núñez S, Esbrit P, Alcaraz MJ, Largo R. Oxidative stress, autophagy, epigenetic changes and regulation by miRNAs as potential therapeutic targets in osteoarthritis. Biochem Pharmacol. 2016;108:1–10.

    Article  PubMed  CAS  Google Scholar 

  107. Kim K, Park YS, Im GI. Changes in the epigenetic status of the SOX-9 promoter in human osteoarthritic cartilage. J Bone Miner Res. 2013;28(5):1050–60.

    Article  CAS  PubMed  Google Scholar 

  108. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    Article  CAS  PubMed  Google Scholar 

  109. Danka Mohammed CP, Park JS, Nam HG, Kim K. MicroRNAs in brain aging. Mech Ageing Dev. 2017;168:3–9.

    Article  CAS  PubMed  Google Scholar 

  110. Lin X, Zhan J-K, Wang Y-J, Tan P, Chen Y-Y, Deng H-Q, et al. Function, role, and clinical application of microRNAs in vascular aging. Biomed Res Int. 2016;2016:6021394.

    PubMed  PubMed Central  Google Scholar 

  111. Victoria B, Nunez Lopez YO, Masternak MM. MicroRNAs and the metabolic hallmarks of aging. Mol Cell Endocrinol. 2017;455:131–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Iwakawa H, Tomari Y. The functions of microRNAs: mRNA decay and translational repression. Trends Cell Biol. 2015;25(11):651–65.

    Article  CAS  PubMed  Google Scholar 

  113. Gomez-Verjan JC, Vazquez-Martinez ER, Rivero-Segura NA, Medina-Campos RH. The RNA world of human ageing. Hum Genet. 2018;137(11–12):865–79.

    Article  CAS  PubMed  Google Scholar 

  114. Cardoso AL, Fernandes A, Aguilar-Pimentel JA, de Angelis MH, Guedes JR, Brito MA, et al. Towards frailty biomarkers: candidates from genes and pathways regulated in aging and age-related diseases. Ageing Res Rev. 2018;47:214–77.

    Article  CAS  PubMed  Google Scholar 

  115. Kumar S, Vijayan M, Bhatti JS, Reddy PH. MicroRNAs as peripheral biomarkers in aging and age-related diseases. Prog Mol Biol Transl Sci. 2017;146:47–94.

    Article  CAS  PubMed  Google Scholar 

  116. Smith-Vikos T, Liu Z, Parsons C, Gorospe M, Ferrucci L, Gill TM, et al. A serum miRNA profile of human longevity: findings from the Baltimore Longitudinal Study of Aging (BLSA). Aging (Albany NY). 2016;8(11):2971–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Olivieri F, Albertini MC, Orciani M, Ceka A, Cricca M, Procopio AD, et al. DNA damage response (DDR) and senescence: shuttled inflamma-miRNAs on the stage of inflamm-aging. Oncotarget. 2015;6(34):35509–21.

    PubMed  PubMed Central  Google Scholar 

  118. Rani A, O’Shea A, Ianov L, Cohen RA, Woods AJ, Foster TC. miRNA in circulating microvesicles as biomarkers for age-related cognitive decline. Front Aging Neurosci. 2017;9:323.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Hekmatimoghaddam S, Dehghani Firoozabadi A, Zare-Khormizi MR, Pourrajab F. Sirt1 and Parp1 as epigenome safeguards and microRNAs as SASP-associated signals, in cellular senescence and aging. Ageing Res Rev. 2017;40:120–41.

    Article  CAS  PubMed  Google Scholar 

  120. Huh CJ, Zhang B, Victor MB, Dahiya S, Batista LF, Horvath S, et al. Maintenance of age in human neurons generated by microRNA-based neuronal conversion of fibroblasts. Elife. 2016;5:e18648.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Gudmundsson H, Gudbjartsson DF, Kong A, Gudbjartsson H, Frigge M, Gulcher JR, et al. Inheritance of human longevity in Iceland. Eur J Hum Genet. 2000;8(10):743–9.

    Article  CAS  PubMed  Google Scholar 

  122. ElSharawy A, Keller A, Flachsbart F, Wendschlag A, Jacobs G, Kefer N, et al. Genome-wide miRNA signatures of human longevity. Aging Cell. 2012;11(4):607–16.

    Article  CAS  PubMed  Google Scholar 

  123. Noren Hooten N, Abdelmohsen K, Gorospe M, Ejiogu N, Zonderman AB, Evans MK. microRNA expression patterns reveal differential expression of target genes with age. PLoS One. 2010;5(5):e10724. Blagosklonny MV, editor

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Gombar S, Jung H, Dong F, Calder B, Atzmon G, Barzilai N, et al. Comprehensive microRNA profiling in B-cells of human centenarians by massively parallel sequencing. BMC Genomics. 2012;13(1):353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Serna E, Gambini J, Borras C, Abdelaziz KM, Belenguer A, Sanchis P, et al. Centenarians, but not octogenarians, up-regulate the expression of microRNAs. Sci Rep. 2012;2(1):961.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Balzano F, Deiana M, Dei Giudici S, Oggiano A, Pasella S, Pinna S, et al. MicroRNA expression analysis of centenarians and rheumatoid arthritis patients reveals a common expression pattern. Int J Med Sci. 2017;14(7):622–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Borrás C, Serna E, Gambini J, Inglés M, Vina J. Centenarians maintain miRNA biogenesis pathway while it is impaired in octogenarians. Mech Ageing Dev. 2017;168:54–7.

    Article  PubMed  CAS  Google Scholar 

  128. Crocco P, Montesanto A, Passarino G, Rose G. Polymorphisms falling within putative miRNA target sites in the 3′UTR region of SIRT2 and DRD2 genes are correlated with human longevity. J Gerontol Ser A Biol Sci Med Sci. 2016;71(5):586–92.

    Article  CAS  Google Scholar 

  129. Lafferty-Whyte K, Cairney CJ, Jamieson NB, Oien KA, Keith WN. Pathway analysis of senescence-associated miRNA targets reveals common processes to different senescence induction mechanisms. Biochim Biophys Acta. 2009;1792(4):341–52.

    Article  CAS  PubMed  Google Scholar 

  130. Noren Hooten N, Fitzpatrick M, Wood WH, De S, Ejiogu N, Zhang Y, et al. Age-related changes in microRNA levels in serum. Aging (Albany NY). 2013;5(10):725–40.

    Article  PubMed  Google Scholar 

  131. Pourrajab F, Vakili Zarch A, Hekmatimoghaddam S, Zare-Khormizi MR. The master switchers in the aging of cardiovascular system, reverse senescence by microRNA signatures; as highly conserved molecules. Prog Biophys Mol Biol. 2015;119(2):111–28.

    Article  CAS  PubMed  Google Scholar 

  132. Rippo MR, Olivieri F, Monsurrò V, Prattichizzo F, Albertini MC, Procopio AD. MitomiRs in human inflamm-aging: a hypothesis involving miR-181a, miR-34a and miR-146a. Exp Gerontol. 2014;56:154–63.

    Article  CAS  PubMed  Google Scholar 

  133. Chan SY, Zhang Y-Y, Hemann C, Mahoney CE, Zweier JL, Loscalzo J. MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins ISCU1/2. Cell Metab. 2009;10(4):273–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Lauri A, Pompilio G, Capogrossi MC. The mitochondrial genome in aging and senescence. Ageing Res Rev. 2014;18:1–15.

    Article  CAS  PubMed  Google Scholar 

  135. Bandiera S, Rüberg S, Girard M, Cagnard N, Hanein S, Chrétien D, et al. Nuclear outsourcing of RNA interference components to human mitochondria. Pfeffer S, editor. PLoS One. 2011;6(6):e20746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Boon RA, Iekushi K, Lechner S, Seeger T, Fischer A, Heydt S, et al. MicroRNA-34a regulates cardiac ageing and function. Nature. 2013;495(7439):107–10.

    Article  CAS  PubMed  Google Scholar 

  137. Zhao T, Li J, Chen AF. MicroRNA-34a induces endothelial progenitor cell senescence and impedes its angiogenesis via suppressing silent information regulator 1. Am J Physiol Endocrinol Metab. 2010;299(1):E110–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Guo Y, Li P, Gao L, Zhang J, Yang Z, Bledsoe G, et al. Kallistatin reduces vascular senescence and aging by regulating microRNA-34a-SIRT1 pathway. Aging Cell. 2017;16(4):837–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008;456(7224):980–4.

    Article  CAS  PubMed  Google Scholar 

  140. Capri M, Olivieri F, Lanzarini C, Remondini D, Borelli V, Lazzarini R, et al. Identification of miR-31-5p, miR-141-3p, miR-200c-3p, and GLT1 as human liver aging markers sensitive to donor-recipient age-mismatch in transplants. Aging Cell. 2017;16(2):262–72.

    Article  CAS  PubMed  Google Scholar 

  141. Toutfaire M, Bauwens E, Debacq-Chainiaux F. The impact of cellular senescence in skin ageing: a notion of mosaic and therapeutic strategies. Biochem Pharmacol. 2017;142:1–12.

    Article  CAS  PubMed  Google Scholar 

  142. Reddy PH, Williams J, Smith F, Bhatti JS, Kumar S, Vijayan M, et al. MicroRNAs, aging, cellular senescence, and Alzheimer’s disease. Prog Mol Biol Transl Sci. 2017;146:127–71.

    Article  CAS  PubMed  Google Scholar 

  143. Geekiyanage H, Jicha GA, Nelson PT, Chan C. Blood serum miRNA: non-invasive biomarkers for Alzheimer’s disease. Exp Neurol. 2012;235(2):491–6.

    Article  CAS  PubMed  Google Scholar 

  144. Tan L, Yu J-T, Liu Q-Y, Tan M-S, Zhang W, Hu N, et al. Circulating miR-125b as a biomarker of Alzheimer’s disease. J Neurol Sci. 2014;336(1–2):52–6.

    Article  CAS  PubMed  Google Scholar 

  145. Hadar A, Milanesi E, Walczak M, Puzianowska-Kuźnicka M, Kuźnicki J, Squassina A, et al. SIRT1, miR-132 and miR-212 link human longevity to Alzheimer’s disease. Sci Rep. 2018;8(1):8465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Barnes PJ. Senescence in COPD and its comorbidities. Annu Rev Physiol. 2017;79(1):517–39.

    Article  CAS  PubMed  Google Scholar 

  147. Brown DM, Goljanek-Whysall K. microRNAs: modulators of the underlying pathophysiology of sarcopenia? Ageing Res Rev. 2015;24(Pt B):263–73.

    Article  CAS  PubMed  Google Scholar 

  148. Marini F, Cianferotti L, Brandi M. Epigenetic mechanisms in bone biology and osteoporosis: can they drive therapeutic choices? Int J Mol Sci. 2016;17(8):1329.

    Article  PubMed Central  CAS  Google Scholar 

  149. Choi SW, Lee JY, Kang K-S. miRNAs in stem cell aging and age-related disease. Mech Ageing Dev. 2017;168:20–9.

    Article  CAS  PubMed  Google Scholar 

  150. Okada M, Kim HW, Matsu-ura K, Wang Y-G, Xu M, Ashraf M. Abrogation of age-induced microRNA-195 rejuvenates the senescent mesenchymal stem cells by reactivating telomerase. Stem Cells. 2016;34(1):148–59.

    Article  CAS  PubMed  Google Scholar 

  151. Neault M, Couteau F, Bonneau É, De Guire V, Mallette FA. Molecular regulation of cellular senescence by microRNAs: implications in cancer and age-related diseases. Int Rev Cell Mol Biol. 2017;334:27–98.

    Article  CAS  PubMed  Google Scholar 

  152. Saeidimehr S, Ebrahimi A, Saki N, Goodarzi P, Rahim F. MicroRNA-based linkage between aging and cancer: from Epigenetics View Point. Cell J. 2016;18(2):117–26.

    PubMed  PubMed Central  Google Scholar 

  153. Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 2012;22(9):1775–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Ulitsky I, Bartel DP. lincRNAs: genomics, evolution, and mechanisms. Cell. 2013;154(1):26–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Jain S, Thakkar N, Chhatai J, Pal Bhadra M, Bhadra U. Long non-coding RNA: functional agent for disease traits. RNA Biol. 2017;14(5):522–35.

    Article  PubMed  Google Scholar 

  156. Wu C-L, Wang Y, Jin B, Chen H, Xie B-S, Mao Z-B. Senescence-associated long non-coding RNA (SALNR) delays oncogene-induced senescence through NF90 regulation. J Biol Chem. 2015;290(50):30175–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Abdelmohsen K, Panda A, Kang M-J, Xu J, Selimyan R, Yoon J-H, et al. Senescence-associated lncRNAs: senescence-associated long noncoding RNAs. Aging Cell. 2013;12(5):890–900.

    Article  CAS  PubMed  Google Scholar 

  158. Fu VX, Dobosy JR, Desotelle JA, Almassi N, Ewald JA, Srinivasan R, et al. Aging and cancer-related loss of insulin-like growth factor 2 imprinting in the mouse and human prostate. Cancer Res. 2008;68(16):6797–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Abdelmohsen K, Panda AC, De S, Grammatikakis I, Kim J, Ding J, et al. Circular RNAs in monkey muscle: age-dependent changes. Aging (Albany NY). 2015;7(11):903–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Yoon J-H, Abdelmohsen K, Kim J, Yang X, Martindale JL, Tominaga-Yamanaka K, et al. Scaffold function of long non-coding RNA HOTAIR in protein ubiquitination. Nat Commun. 2013;4:2939.

    Article  PubMed  CAS  Google Scholar 

  161. Grammatikakis I, Panda AC, Abdelmohsen K, Gorospe M. Long noncoding RNAs(lncRNAs) and the molecular hallmarks of aging. Aging (Albany NY). 2014;6(12):992–1009.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Luo Q, Chen Y. Long noncoding RNAs and Alzheimer’s disease. Clin Interv Aging. 2016;11:867–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Chen L-L, Yang L. Regulation of circRNA biogenesis. RNA Biol. 2015;12(4):381–8.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, et al. Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res. 2017;27(5):626–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. Preiss T, editor. PLoS One. 2012;7(2):e30733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Cortés-López M, Miura P. Emerging functions of circular RNAs. Yale J Biol Med. 2016;89(4):527–37.

    PubMed  PubMed Central  Google Scholar 

  167. Zhang Y, Zhang X-O, Chen T, Xiang J-F, Yin Q-F, Xing Y-H, et al. Circular intronic long noncoding RNAs. Mol Cell. 2013;51(6):792–806.

    Article  CAS  PubMed  Google Scholar 

  168. Salzman J, Chen RE, Olsen MN, Wang PL, Brown PO. Cell-type specific features of circular RNA expression. PLoS Genet. 2013;9(9):e1003777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Han Y-N, Xia S-Q, Zhang Y-Y, Zheng J-H, Li W. Circular RNAs: a novel type of biomarker and genetic tools in cancer. Oncotarget. 2017;8(38):64551–63.

    PubMed  PubMed Central  Google Scholar 

  170. Qu S, Zhong Y, Shang R, Zhang X, Song W, Kjems J, et al. The emerging landscape of circular RNA in life processes. RNA Biol. 2017;14(8):992–9.

    Article  PubMed  Google Scholar 

  171. Du WW, Yang W, Liu E, Yang Z, Dhaliwal P, Yang BB. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res. 2016;44(6):2846–58.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Panda AC, Grammatikakis I, Kim KM, De S, Martindale JL, Munk R, et al. Identification of senescence-associated circular RNAs (SAC-RNAs) reveals senescence suppressor CircPVT1. Nucleic Acids Res. 2017;45(7):4021–35.

    Article  CAS  PubMed  Google Scholar 

  173. Holdt LM, Stahringer A, Sass K, Pichler G, Kulak NA, Wilfert W, et al. Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat Commun. 2016;7:12429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Cheng J, Huang J, Yuan S, Zhou S, Yan W, Shen W, et al. Circular RNA expression profiling of human granulosa cells during maternal aging reveals novel transcripts associated with assisted reproductive technology outcomes. Yu Y, editor. PLoS One. 2017;12(6):e0177888.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Knupp D, Miura P. CircRNA accumulation: a new hallmark of aging? Mech Ageing Dev. 2018;173:71–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Gruner H, Cortés-López M, Cooper DA, Bauer M, Miura P. CircRNA accumulation in the aging mouse brain. Sci Rep. 2016;6(1):38907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Piwecka M, Glažar P, Hernandez-Miranda LR, Memczak S, Wolf SA, Rybak-Wolf A, et al. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science (80). 2017;357(6357):eaam8526.

    Article  CAS  Google Scholar 

  178. Rybak-Wolf A, Stottmeister C, Glažar P, Jens M, Pino N, Giusti S, et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell. 2015;58(5):870–85.

    Article  CAS  PubMed  Google Scholar 

  179. Lukiw WJ, Circular RNA. (circRNA) in Alzheimer’s disease (AD). Front Genet. 2013;4:307.

    PubMed  PubMed Central  Google Scholar 

  180. Ashapkin VV, Kutueva LI, Kurchashova SY, Kireev II. Are there common mechanisms between the Hutchinson-Gilford progeria syndrome and natural aging? Front Genet. 2019;10:455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Nmezi B, Xu J, Fu R, Armiger TJ, Rodriguez-Bey G, Powell JS, et al. Concentric organization of A- and B-type lamins predicts their distinct roles in the spatial organization and stability of the nuclear lamina. Proc Natl Acad Sci. 2019;116(10):4307–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Crasto S, Di Pasquale E. Induced pluripotent stem cells to study mechanisms of laminopathies: focus on epigenetics. Front Cell Dev Biol. 2018;6:172.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Bertrand AT, Chikhaoui K, Yaou RB, Bonne G. Clinical and genetic heterogeneity in laminopathies. Biochem Soc Trans. 2011;39(6):1687–92.

    Article  CAS  PubMed  Google Scholar 

  184. Palm W, de Lange T. How shelterin protects mammalian telomeres. Annu Rev Genet. 2008;42(1):301–34.

    Article  CAS  PubMed  Google Scholar 

  185. Doksani Y, Wu JY, de Lange T, Zhuang X. Super-resolution fluorescence imaging of telomeres reveals TRF2-dependent T-loop formation. Cell. 2013;155(2):345–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Decker ML, Chavez E, Vulto I, Lansdorp PM. Telomere length in Hutchinson-Gilford progeria syndrome. Mech Ageing Dev. 2009;130(6):377–83.

    Article  CAS  PubMed  Google Scholar 

  187. Chojnowski A, Ong PF, Wong ES, Lim JS, Mutalif RA, Navasankari R, et al. Progerin reduces LAP2α-telomere association in hutchinson-gilford progeria. Elife. 2015;4:1–21.

    Article  Google Scholar 

  188. Chandra T, Ewels PA, Schoenfelder S, Furlan-Magaril M, Wingett SW, Kirschner K, et al. Global reorganization of the nuclear landscape in senescent cells. Cell Rep. 2015;10(4):471–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Zhang R, Poustovoitov MV, Ye X, Santos HA, Chen W, Daganzo SM, et al. Formation of macroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. Dev Cell. 2005;8(1):19–30.

    Article  CAS  PubMed  Google Scholar 

  190. Burrows AE, Smogorzewska A, Elledge SJ. Polybromo-associated BRG1-associated factor components BRD7 and BAF180 are critical regulators of p53 required for induction of replicative senescence. Proc Natl Acad Sci U S A. 2010;107(32):14280–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Pegoraro G, Kubben N, Wickert U, Göhler H, Hoffmann K, Misteli T. Ageing-related chromatin defects through loss of the NURD complex. Nat Cell Biol. 2009;11(10):1261–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Cho I, Tsai P-F, Lake RJ, Basheer A, Fan H-Y. ATP-dependent chromatin remodeling by Cockayne syndrome protein B and NAP1-like histone chaperones is required for efficient transcription-coupled DNA repair. PLoS Genet. 2013;9(4):e1003407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Sikora E. Rejuvenation of senescent cells-The road to postponing human aging and age-related disease? Exp Gerontol. 2013;48(7):661–6.

    Article  CAS  PubMed  Google Scholar 

  194. Obeid R, Schadt A, Dillmann U, Kostopoulos P, Fassbender K, Herrmann W. Methylation status and neurodegenerative markers in Parkinson disease. Clin Chem. 2009;55(10):1852–60.

    Article  CAS  PubMed  Google Scholar 

  195. Horvath S, Ritz BR. Increased epigenetic age and granulocyte counts in the blood of Parkinson’s disease patients. Aging (Albany NY). 2015;7(12):1130–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Kontopoulos E, Parvin JD, Feany MB. α-synuclein acts in the nucleus to inhibit histone acetylation and promote neurotoxicity. Hum Mol Genet. 2006;15(20):3012–23.

    Article  CAS  PubMed  Google Scholar 

  197. Lee J-H, Ryu H. Epigenetic modification is linked to Alzheimer’s disease: is it a maker or a marker? BMB Rep. 2010;43(10):649–55.

    Article  CAS  PubMed  Google Scholar 

  198. Silva PNO, Gigek CO, Leal MF, Bertolucci PHF, De Labio RW, Payão SLM, et al. Promoter methylation analysis of SIRT3, SMARCA5, HTERT and CDH1 genes in aging and Alzheimer’s disease. J Alzheimer’s Dis. 2008;13(2):173–6.

    Article  CAS  Google Scholar 

  199. Bennett DA, Yu L, Yang J, Srivastava GP, Aubin C, De Jager PL. Epigenomics of Alzheimer’s disease. Transl Res. 2015;165(1):200–20.

    Article  CAS  PubMed  Google Scholar 

  200. Furuya TK, Da Silva PNO, Payão SLM, Rasmussen LT, De Labio RW, Bertolucci PHF, et al. SORL1 and SIRT1 mRNA expression and promoter methylation levels in aging and Alzheimer’s Disease. Neurochem Int. 2012;61(7):973–5.

    Article  CAS  PubMed  Google Scholar 

  201. Borodinova AA, Kuznetsova MA, Alekseeva VS, Balaban PM. Histone acetylation determines transcription of atypical protein kinases in rat neurons. Sci Rep. 2019;9(1):4332.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Zhang K, Schrag M, Crofton A, Trivedi R, Vinters H, Kirsch W. Targeted proteomics for quantification of histone acetylation in Alzheimer’s disease. Proteomics. 2012;12(8):1261–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Gensous N, Bacalini MG, Pirazzini C, Marasco E, Giuliani C, Ravaioli F, et al. The epigenetic landscape of age-related diseases: the geroscience perspective. Biogerontology. 2017;18(4):549–59.

    Article  PubMed  PubMed Central  Google Scholar 

  204. Escoubas CC, Silva-García CG, Mair WB. Deregulation of CRTCs in aging and age-related disease risk. Trends Genet. 2017;33(5):303–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nancy Monroy-Jaramillo or Edgar Ricardo Vázquez-Martínez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Monroy-Jaramillo, N., Vázquez-Martínez, E.R. (2020). Epigenetics and Ageing. In: Gomez-Verjan, J., Rivero-Segura, N. (eds) Clinical Genetics and Genomics of Aging. Springer, Cham. https://doi.org/10.1007/978-3-030-40955-5_8

Download citation

Publish with us

Policies and ethics