Skip to main content

Molecular Basis of Progeroid Diseases

  • Chapter
  • First Online:
Clinical Genetics and Genomics of Aging

Abstract

Aging is a universal and inevitable process that affects virtually all living organisms; in humans, aging is characterized by a gradual decline of physical and psychological functions that ultimately leads to death. Over the past decades, the study of progeroid syndromes, a group of premature aging disorders that recapitulates multiple features of physiological aging, has provided insightful information toward the identification of mechanisms underlying aging. In this chapter, we provide an updated description of the main progeroid syndromes affecting humans, including their clinical manifestations and the genetic and molecular basis underlying their pathogenesis. Most progeroid syndromes originate from defective DNA repair and nuclear structure systems, highlighting a key role of genome stability in aging. A special emphasis is given to Hutchinson Gilford Progeria Syndrome (HGPS), the most well-studied premature aging disorder, which is characterized by accelerated aging and early death due to cardiovascular complications. HGPS is typically caused by a silent mutation in the LMNA gene that provokes the expression of progerin, a dominant-negative mutant protein that anchors aberrantly to the nuclear envelope, thereby inducing cellular toxicity and organismal detriment. Thus, we provide a description of established cellular and animal models for HGPS and discuss the perspectives for therapeutic developments, including an updated presentation of treatment strategies that have been tested so far in vitro (human HGPS fibroblast cultures) and in vivo (HGPS mice models) and in clinical trials, with argumentation of their main limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APS:

Atypical Progeria Syndromes

ASO:

Antisense Oligonucleotides

BAC:

Bacterial Artificial Chromosome

BS:

Bloom Syndrome

CRM1:

Chromosomal Region Maintenance 1

CS:

Cockayne Syndrome

CSA:

Cockayne Syndrome protein A

CSB:

Cockayne Syndrome protein B

DSB:

Double-Strand Break

FTI:

Farnesyltransferase Inhibitors

HGPS:

Hutchinson-Gilford Progeria Syndrome

iPSCs:

induced Pluripotent Stem Cells

MAD:

Mandibuloacral Dysplasia

mTOR:

mammalian Target of Rapamycin

NE:

Nuclear Envelope

NER:

Nucleotide Excision Repair

NES:

Nuclear Export Signal

NGPS:

Nestor-Guillermo Progeria Syndrome

NPC:

Nuclear Pore Complexes

Prx1:

Paired related homeobox 1

RD:

Restrictive Dermopathy

ROS:

Reactive Oxygen Species

RTS:

Rothmund-Thomson Syndrome

TCR:

Transcription-Coupled Repair

TTD:

Trichothiodystrophy

WS:

Werner Syndrome

WT:

Wild Type

XP:

Xeroderma Pigmentosum

XPO1:

Exportin-1

References

  1. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kennedy BK, Berger SL, Brunet A, Campisi J, Cuervo AM, Epel ES, et al. Geroscience: linking aging to chronic disease. Cell. 2014;159(4):709–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Valenzano DR, Aboobaker A, Seluanov A, Gorbunova V. Non-canonical aging model systems and why we need them. EMBO J. 2017;36(8):959–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gordon LB, Rothman FG, Lopez-Otin C, Misteli T. Progeria: a paradigm for translational medicine. Cell. 2014;156(3):400–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Carrero D, Soria-Valles C, Lopez-Otin C. Hallmarks of progeroid syndromes: lessons from mice and reprogrammed cells. Dis Model Mech. 2016;9(7):719–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hetzer MW. The nuclear envelope. Cold Spring Harb Perspect Biol. 2010;2(3):a000539.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Dechat T, Pfleghaar K, Sengupta K, Shimi T, Shumaker DK, Solimando L, et al. Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev. 2008;22(7):832–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schreiber KH, Kennedy BK. When lamins go bad: nuclear structure and disease. Cell. 2013;152(6):1365–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Prokocimer M, Davidovich M, Nissim-Rafinia M, Wiesel-Motiuk N, Bar DZ, Barkan R, et al. Nuclear lamins: key regulators of nuclear structure and activities. J Cell Mol Med. 2009;13(6):1059–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dorado B, Andres V. A-type lamins and cardiovascular disease in premature aging syndromes. Curr Opin Cell Biol. 2017;46:17–25.

    Article  CAS  PubMed  Google Scholar 

  11. Eriksson M, Brown WT, Gordon LB, Glynn MW, Singer J, Scott L, et al. Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature. 2003;423(6937):293–8.

    Article  CAS  PubMed  Google Scholar 

  12. De Sandre-Giovannoli A, Bernard R, Cau P, Navarro C, Amiel J, Boccaccio I, et al. Lamin a truncation in Hutchinson-Gilford progeria. Science (New York, NY). 2055;300(5628):2003.

    Google Scholar 

  13. Ahmed MS, Ikram S, Bibi N, Mir A. Hutchinson-Gilford Progeria syndrome: a premature aging disease. Mol Neurobiol. 2018;55(5):4417–27.

    CAS  PubMed  Google Scholar 

  14. Kubben N, Voncken JW, Demmers J, Calis C, van Almen G, Pinto Y, et al. Identification of differential protein interactors of lamin A and progerin. Nucleus (Austin, Tex). 2010;1(6):513–25.

    PubMed Central  Google Scholar 

  15. Snow CJ, Dar A, Dutta A, Kehlenbach RH, Paschal BM. Defective nuclear import of Tpr in Progeria reflects the Ran sensitivity of large cargo transport. J Cell Biol. 2013;201(4):541–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Larrieu D, Vire E, Robson S, Breusegem SY, Kouzarides T, Jackson SP. Inhibition of the acetyltransferase NAT10 normalizes progeric and aging cells by rebalancing the Transportin-1 nuclear import pathway. Sci Signal. 2018;11(537):eaar5401.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Garcia-Aguirre I, Alamillo-Iniesta A, Rodriguez-Perez R, Velez-Aguilera G, Amaro-Encarnacion E, Jimenez-Gutierrez E, et al. Enhanced nuclear protein export in premature aging and rescue of the progeria phenotype by modulation of CRM1 activity. Aging Cell. 2019;18:e13002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Tariq Z, Zhang H, Chia-Liu A, Shen Y, Gete Y, Xiong ZM, et al. Lamin A and microtubules collaborate to maintain nuclear morphology. Nucleus (Austin, Tex). 2017;8(4):433–46.

    CAS  Google Scholar 

  19. Novelli G, Muchir A, Sangiuolo F, Helbling-Leclerc A, D’Apice MR, Massart C, et al. Mandibuloacral dysplasia is caused by a mutation in LMNA-encoding lamin A/C. Am J Hum Genet. 2002;71(2):426–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cenni V, D’Apice MR, Garagnani P, Columbaro M, Novelli G, Franceschi C, et al. Mandibuloacral dysplasia: A premature ageing disease with aspects of physiological ageing. Ageing Res Rev. 2018;42:1–13.

    Article  PubMed  Google Scholar 

  21. Bai S, Lozada A, Jones MC, Dietz HC, Dempsey M, Das S. Mandibuloacral dysplasia caused by LMNA mutations and uniparental disomy. Case reports in genetics. 2014;2014:508231.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Navarro CL, Cadinanos J, De Sandre-Giovannoli A, Bernard R, Courrier S, Boccaccio I, et al. Loss of ZMPSTE24 (FACE-1) causes autosomal recessive restrictive dermopathy and accumulation of Lamin A precursors. Hum Mol Genet. 2005;14(11):1503–13.

    Article  CAS  PubMed  Google Scholar 

  23. Capanni C, Mattioli E, Columbaro M, Lucarelli E, Parnaik VK, Novelli G, et al. Altered pre-lamin A processing is a common mechanism leading to lipodystrophy. Hum Mol Genet. 2005;14(11):1489–502.

    Article  CAS  PubMed  Google Scholar 

  24. Thill M, Nguyen TD, Wehnert M, Fischer D, Hausser I, Braun S, et al. Restrictive dermopathy: a rare laminopathy. Arch Gynecol Obstet. 2008;278(3):201–8.

    Article  PubMed  Google Scholar 

  25. Cabanillas R, Cadinanos J, Villameytide JA, Perez M, Longo J, Richard JM, et al. Nestor-Guillermo progeria syndrome: a novel premature aging condition with early onset and chronic development caused by BANF1 mutations. Am J Med Genet A. 2011;155a(11):2617–25.

    Article  PubMed  CAS  Google Scholar 

  26. Hutchison CJ. Lamins: building blocks or regulators of gene expression? Nat Rev Mol Cell Biol. 2002;3(11):848–58.

    Article  CAS  PubMed  Google Scholar 

  27. Mekhail K, Moazed D. The nuclear envelope in genome organization, expression and stability. Nat Rev Mol Cell Biol. 2010;11(5):317–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Loi M, Cenni V, Duchi S, Squarzoni S, Lopez-Otin C, Foisner R, et al. Barrier-to-autointegration factor (BAF) involvement in prelamin A-related chromatin organization changes. Oncotarget. 2016;7(13):15662–77.

    Article  PubMed  Google Scholar 

  29. Paquet N, Box JK, Ashton NW, Suraweera A, Croft LV, Urquhart AJ, et al. Nestor-Guillermo Progeria Syndrome: a biochemical insight into Barrier-to-Autointegration Factor 1, alanine 12 threonine mutation. BMC Mol Biol. 2014;15:27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Guo H, Luo N, Hao F, Bai Y. p.Pro4Arg mutation in LMNA gene: a new atypical progeria phenotype without metabolism abnormalities. Gene. 2014;546(1):35–9.

    Article  CAS  PubMed  Google Scholar 

  31. Al-Haggar M, Madej-Pilarczyk A, Kozlowski L, Bujnicki JM, Yahia S, Abdel-Hadi D, et al. A novel homozygous p.Arg527Leu LMNA mutation in two unrelated Egyptian families causes overlapping mandibuloacral dysplasia and progeria syndrome. Eur J Human Genet. 2012;20(11):1134–40.

    Article  CAS  Google Scholar 

  32. Liang L, Zhang H, Gu X. Homozygous LMNA mutation R527C in atypical Hutchinson-Gilford progeria syndrome: evidence for autosomal recessive inheritance. Acta Paediatr (Oslo, Norway: 1992). 2009;98(8):1365–8.

    Article  Google Scholar 

  33. Zirn B, Kress W, Grimm T, Berthold LD, Neubauer B, Kuchelmeister K, et al. Association of homozygous LMNA mutation R471C with new phenotype: mandibuloacral dysplasia, progeria, and rigid spine muscular dystrophy. Am J Med Genet A. 2008;146a(8):1049–54.

    Article  PubMed  Google Scholar 

  34. Lombardi F, Gullotta F, Columbaro M, Filareto A, D'Adamo M, Vielle A, et al. Compound heterozygosity for mutations in LMNA in a patient with a myopathic and lipodystrophic mandibuloacral dysplasia type A phenotype. J Clin Endocrinol Metab. 2007;92(11):4467–71.

    Article  CAS  PubMed  Google Scholar 

  35. Dittmer TA, Sahni N, Kubben N, Hill DE, Vidal M, Burgess RC, et al. Systematic identification of pathological lamin A interactors. Mol Biol Cell. 2014;25(9):1493–510.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chu WK, Hickson ID. RecQ helicases: multifunctional genome caretakers. Nat Rev Cancer. 2009;9(9):644–54.

    Article  CAS  PubMed  Google Scholar 

  37. de Renty C, Ellis NA. Bloom’s syndrome: why not premature aging?: a comparison of the BLM and WRN helicases. Ageing Res Rev. 2017;33:36–51.

    Article  PubMed  CAS  Google Scholar 

  38. Huang S, Lee L, Hanson NB, Lenaerts C, Hoehn H, Poot M, et al. The spectrum of WRN mutations in Werner syndrome patients. Hum Mutat. 2006;27(6):558–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Takemoto M, Mori S, Kuzuya M, Yoshimoto S, Shimamoto A, Igarashi M, et al. Diagnostic criteria for Werner syndrome based on Japanese nationwide epidemiological survey. Geriatr Gerontol Int. 2013;13(2):475–81.

    Article  PubMed  Google Scholar 

  40. Oshima J, Sidorova JM, Monnat RJ Jr. Werner syndrome: clinical features, pathogenesis and potential therapeutic interventions. Ageing Res Rev. 2017;33:105–14.

    Article  CAS  PubMed  Google Scholar 

  41. Yu CE, Oshima J, Fu YH, Wijsman EM, Hisama F, Alisch R, et al. Positional cloning of the Werner’s syndrome gene. Science (New York, NY). 1996;272(5259):258–62.

    Article  CAS  Google Scholar 

  42. Bernstein KA, Gangloff S, Rothstein R. The RecQ DNA helicases in DNA repair. Annu Rev Genet. 2010;44:393–417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Oshima J, Martin GM, Hisama FM. Werner syndrome. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, et al., editors. GeneReviews((R)). Seattle: University of Washington, Seattle University of Washington; 1993. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved.

    Google Scholar 

  44. Melcher R, von Golitschek R, Steinlein C, Schindler D, Neitzel H, Kainer K, et al. Spectral karyotyping of Werner syndrome fibroblast cultures. Cytogenet Cell Genet. 2000;91(1-4):180–5.

    Article  CAS  PubMed  Google Scholar 

  45. Brosh RM Jr, Opresko PL, Bohr VA. Enzymatic mechanism of the WRN helicase/nuclease. Methods Enzymol. 2006;409:52–85.

    Article  CAS  PubMed  Google Scholar 

  46. Cunniff C, Bassetti JA, Ellis NA. Bloom’s syndrome: clinical spectrum, molecular pathogenesis, and cancer predisposition. Mol Syndromol. 2017;8(1):4–23.

    Article  CAS  PubMed  Google Scholar 

  47. Hickson ID, Mankouri HW. Processing of homologous recombination repair intermediates by the Sgs1-Top3-Rmi1 and Mus81-Mms4 complexes. Cell Cycle (Georgetown, Tex). 2011;10(18):3078–85.

    Article  CAS  Google Scholar 

  48. Tikoo S, Sengupta S. Time to bloom. Genome Integrity. 2010;1(1):14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang LL, Plon SE. Rothmund-Thomson syndrome. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, LJH B, Stephens K, et al., editors. GeneReviews((R)). Seattle: University of Washington; 1993. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved.

    Google Scholar 

  50. Wang LL, Gannavarapu A, Kozinetz CA, Levy ML, Lewis RA, Chintagumpala MM, et al. Association between osteosarcoma and deleterious mutations in the RECQL4 gene in Rothmund-Thomson syndrome. J Natl Cancer Inst. 2003;95(9):669–74.

    Article  CAS  PubMed  Google Scholar 

  51. Wang LL, Worley K, Gannavarapu A, Chintagumpala MM, Levy ML, Plon SE. Intron-size constraint as a mutational mechanism in Rothmund-Thomson syndrome. Am J Hum Genet. 2002;71(1):165–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Larizza L, Roversi G, Volpi L. Rothmund-Thomson syndrome. Orphanet J Rare Dis. 2010;5:2.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Gupta S, De S, Srivastava V, Hussain M, Kumari J, Muniyappa K, et al. RECQL4 and p53 potentiate the activity of polymerase gamma and maintain the integrity of the human mitochondrial genome. Carcinogenesis. 2014;35(1):34–45.

    Article  CAS  PubMed  Google Scholar 

  54. Croteau DL, Singh DK, Hoh Ferrarelli L, Lu H, Bohr VA. RECQL4 in genomic instability and aging. Trends Genet. 2012;28(12):624–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lu L, Jin W, Wang LL. Aging in Rothmund-Thomson syndrome and related RECQL4 genetic disorders. Ageing Res Rev. 2017;33:30–5.

    Article  CAS  PubMed  Google Scholar 

  56. Mann MB, Hodges CA, Barnes E, Vogel H, Hassold TJ, Luo G. Defective sister-chromatid cohesion, aneuploidy and cancer predisposition in a mouse model of type II Rothmund-Thomson syndrome. Hum Mol Genet. 2005;14(6):813–25.

    Article  CAS  PubMed  Google Scholar 

  57. Karikkineth AC, Scheibye-Knudsen M, Fivenson E, Croteau DL, Bohr VA. Cockayne syndrome: clinical features, model systems and pathways. Ageing Res Rev. 2017;33:3–17.

    Article  CAS  PubMed  Google Scholar 

  58. Scheibye-Knudsen M, Croteau DL, Bohr VA. Mitochondrial deficiency in Cockayne syndrome. Mech Ageing Dev. 2013;134(5-6):275–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tan WH, Baris H, Robson CD, Kimonis VE. Cockayne syndrome: the developing phenotype. Am J Med Genet A. 2005;135(2):214–6.

    Article  PubMed  Google Scholar 

  60. Cleaver JE. Cancer in xeroderma pigmentosum and related disorders of DNA repair. Nat Rev Cancer. 2005;5(7):564–73.

    Article  CAS  PubMed  Google Scholar 

  61. Velez-Cruz R, Zadorin AS, Coin F, Egly JM. Sirt1 suppresses RNA synthesis after UV irradiation in combined xeroderma pigmentosum group D/Cockayne syndrome (XP-D/CS) cells. Proc Natl Acad Sci U S A. 2013;110(3):E212–20.

    Article  CAS  PubMed  Google Scholar 

  62. Hebra F. On diseases of the skin, including the exanthemata. London: The New Sydenham Society; 1868. p. 399.

    Google Scholar 

  63. Black JO. Xeroderma Pigmentosum. Head Neck Pathol. 2016;10(2):139–44.

    Article  PubMed  PubMed Central  Google Scholar 

  64. de Boer J, Hoeijmakers JH. Nucleotide excision repair and human syndromes. Carcinogenesis. 2000;21(3):453–60.

    Article  PubMed  Google Scholar 

  65. Lambert WC, Gagna CE, Lambert MW. Trichothiodystrophy: photosensitive, TTD-P, TTD, Tay syndrome. Adv Exp Med Biol. 2010;685:106–10.

    Article  CAS  PubMed  Google Scholar 

  66. Ahmed A, Almohanna H, Griggs J, Tosti A. Genetic hair disorders: a review. Dermatol Ther (Heidelb). 2019;9(3):421–48.

    Article  Google Scholar 

  67. Mitchell SJ, Scheibye-Knudsen M, Longo DL, de Cabo R. Animal models of aging research: implications for human aging and age-related diseases. Ann Rev Anim Biosci. 2015;3:283–303.

    Article  CAS  Google Scholar 

  68. Tigges J, Krutmann J, Fritsche E, Haendeler J, Schaal H, Fischer JW, et al. The hallmarks of fibroblast ageing. Mech Ageing Dev. 2014;138:26–44.

    Article  CAS  PubMed  Google Scholar 

  69. Goldman RD, Shumaker DK, Erdos MR, Eriksson M, Goldman AE, Gordon LB, et al. Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A. 2004;101(24):8963–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liu Y, Rusinol A, Sinensky M, Wang Y, Zou Y. DNA damage responses in progeroid syndromes arise from defective maturation of prelamin A. J Cell Sci. 2006;119(Pt 22):4644–9.

    Article  CAS  PubMed  Google Scholar 

  71. Scaffidi P, Misteli T. Lamin A-dependent nuclear defects in human aging. Science (New York, NY). 2006;312(5776):1059–63.

    Article  CAS  Google Scholar 

  72. Liu GH, Barkho BZ, Ruiz S, Diep D, Qu J, Yang SL, et al. Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome. Nature. 2011;472(7342):221–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bergo MO, Gavino B, Ross J, Schmidt WK, Hong C, Kendall LV, et al. Zmpste24 deficiency in mice causes spontaneous bone fractures, muscle weakness, and a prelamin A processing defect. Proc Natl Acad Sci USA. 2002;99(20):13049–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pendas AM, Zhou Z, Cadinanos J, Freije JM, Wang J, Hultenby K, et al. Defective prelamin A processing and muscular and adipocyte alterations in Zmpste24 metalloproteinase-deficient mice. Nat Genet. 2002;31(1):94–9.

    Article  CAS  PubMed  Google Scholar 

  75. Capell BC, Collins FS. Human laminopathies: nuclei gone genetically awry. Nat Rev Genet. 2006;7(12):940–52.

    Article  CAS  PubMed  Google Scholar 

  76. Liu B, Wang J, Chan KM, Tjia WM, Deng W, Guan X, et al. Genomic instability in laminopathy-based premature aging. Nat Med. 2005;11(7):780–5.

    Article  CAS  PubMed  Google Scholar 

  77. Yang SH, Bergo MO, Toth JI, Qiao X, Hu Y, Sandoval S, et al. Blocking protein farnesyltransferase improves nuclear blebbing in mouse fibroblasts with a targeted Hutchinson-Gilford progeria syndrome mutation. Proc Natl Acad Sci U S A. 2005;102(29):10291–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Varga R, Eriksson M, Erdos MR, Olive M, Harten I, Kolodgie F, et al. Progressive vascular smooth muscle cell defects in a mouse model of Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A. 2006;103(9):3250–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hernandez L, Roux KJ, Wong ES, Mounkes LC, Mutalif R, Navasankari R, et al. Functional coupling between the extracellular matrix and nuclear lamina by Wnt signaling in progeria. Dev Cell. 2010;19(3):413–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yang SH, Meta M, Qiao X, Frost D, Bauch J, Coffinier C, et al. A farnesyltransferase inhibitor improves disease phenotypes in mice with a Hutchinson-Gilford progeria syndrome mutation. J Clin Invest. 2006;116(8):2115–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mounkes LC, Kozlov S, Hernandez L, Sullivan T, Stewart CL. A progeroid syndrome in mice is caused by defects in A-type lamins. Nature. 2003;423(6937):298–301.

    Article  CAS  PubMed  Google Scholar 

  82. Osorio FG, Barcena C, Soria-Valles C, Ramsay AJ, de Carlos F, Cobo J, et al. Nuclear lamina defects cause ATM-dependent NF-kappaB activation and link accelerated aging to a systemic inflammatory response. Genes Dev. 2012;26(20):2311–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhang H, Kieckhaefer JE, Cao K. Mouse models of laminopathies. Aging Cell. 2013;12(1):2–10.

    Article  CAS  PubMed  Google Scholar 

  84. Osorio FG, Navarro CL, Cadiñanos J, López-Mejía IC, Quirós PM, Bartoli C, et al. Splicing-directed therapy in a new mouse model of human accelerated aging. Sci Transl Med. 2011;3(106):106ra7.

    Article  CAS  Google Scholar 

  85. Villa-Bellosta R, Rivera-Torres J, Osorio FG, Acin-Perez R, Enriquez JA, Lopez-Otin C, et al. Defective extracellular pyrophosphate metabolism promotes vascular calcification in a mouse model of Hutchinson-Gilford progeria syndrome that is ameliorated on pyrophosphate treatment. Circulation. 2013;127(24):2442–51.

    Article  CAS  PubMed  Google Scholar 

  86. Lebel M, Leder P. A deletion within the murine Werner syndrome helicase induces sensitivity to inhibitors of topoisomerase and loss of cellular proliferative capacity. Proc Natl Acad Sci U S A. 1998;95(22):13097–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Massip L, Garand C, Turaga RV, Deschênes F, Thorin E, Lebel M. Increased insulin, triglycerides, reactive oxygen species, and cardiac fibrosis in mice with a mutation in the helicase domain of the Werner syndrome gene homologue. Exp Gerontol. 2006;41(2):157–68.

    Article  CAS  PubMed  Google Scholar 

  88. Chang S, Multani AS, Cabrera NG, Naylor ML, Laud P, Lombard D, et al. Essential role of limiting telomeres in the pathogenesis of Werner syndrome. Nat Genet. 2004;36(8):877–82.

    Article  CAS  PubMed  Google Scholar 

  89. van der Pluijm I, Garinis GA, Brandt RM, Gorgels TG, Wijnhoven SW, Diderich KE, et al. Impaired genome maintenance suppresses the growth hormone--insulin-like growth factor 1 axis in mice with Cockayne syndrome. PLoS Biol. 2007;5(1):e2.

    Article  PubMed  CAS  Google Scholar 

  90. Gorgels TG, van der Pluijm I, Brandt RM, Garinis GA, van Steeg H, van den Aardweg G, et al. Retinal degeneration and ionizing radiation hypersensitivity in a mouse model for Cockayne syndrome. Mol Cell Biol. 2007;27(4):1433–41.

    Article  CAS  PubMed  Google Scholar 

  91. Jaarsma D, van der Pluijm I, de Waard MC, Haasdijk ED, Brandt R, Vermeij M, et al. Age-related neuronal degeneration: complementary roles of nucleotide excision repair and transcription-coupled repair in preventing neuropathology. PLoS Genet. 2011;7(12):e1002405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. van der Horst GT, Meira L, Gorgels TG, de Wit J, Velasco-Miguel S, Richardson JA, et al. UVB radiation-induced cancer predisposition in Cockayne syndrome group A (Csa) mutant mice. DNA Repair (Amst). 2002;1(2):143–57.

    Article  Google Scholar 

  93. van der Horst GT, van Steeg H, Berg RJ, van Gool AJ, de Wit J, Weeda G, et al. Defective transcription-coupled repair in Cockayne syndrome B mice is associated with skin cancer predisposition. Cell. 1997;89(3):425–35.

    Article  PubMed  Google Scholar 

  94. Chester N, Babbe H, Pinkas J, Manning C, Leder P. Mutation of the murine Bloom’s syndrome gene produces global genome destabilization. Mol Cell Biol. 2006;26(17):6713–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pickar-Oliver A, Gersbach CA. The next generation of CRISPR-Cas technologies and applications. Nat Rev Mol Cell Biol. 2019;20(8):490–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Crunkhorn S. Muscular dystrophy: new exon-skipping strategy rescues dystrophin. Nat Rev Drug Discov. 2015;14(4):236.

    Article  CAS  PubMed  Google Scholar 

  97. Lee JM, Nobumori C, Tu Y, Choi C, Yang SH, Jung HJ, et al. Modulation of LMNA splicing as a strategy to treat prelamin A diseases. J Clin Invest. 2016;126(4):1592–602.

    Article  PubMed  PubMed Central  Google Scholar 

  98. McNally EM, Wyatt EJ. Welcome to the splice age: antisense oligonucleotide-mediated exon skipping gains wider applicability. J Clin Invest. 2016;126(4):1236–8.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Cao K, Blair CD, Faddah DA, Kieckhaefer JE, Olive M, Erdos MR, et al. Progerin and telomere dysfunction collaborate to trigger cellular senescence in normal human fibroblasts. J Clin Invest. 2011;121(7):2833–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Graziotto JJ, Cao K, Collins FS, Krainc D. Rapamycin activates autophagy in Hutchinson-Gilford progeria syndrome: implications for normal aging and age-dependent neurodegenerative disorders. Autophagy. 2012;8(1):147–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ramos FJ, Chen SC, Garelick MG, Dai DF, Liao CY, Schreiber KH, et al. Rapamycin reverses elevated mTORC1 signaling in lamin A/C-deficient mice, rescues cardiac and skeletal muscle function, and extends survival. Sci Transl Med. 2012;4(144):144ra03.

    Article  CAS  Google Scholar 

  102. Liao CY, Anderson SS, Chicoine NH, Mayfield JR, Academia EC, Wilson JA, et al. Rapamycin reverses metabolic deficits in lamin A/C-deficient mice. Cell Rep. 2016;17(10):2542–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Harhouri K, Navarro C, Depetris D, Mattei MG, Nissan X, Cau P, et al. MG132-induced progerin clearance is mediated by autophagy activation and splicing regulation. EMBO Mol Med. 2017;9(9):1294–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Basso AD, Kirschmeier P, Bishop WR. Lipid posttranslational modifications. Farnesyl transferase inhibitors. J Lipid Res. 2006;47(1):15–31.

    Article  CAS  PubMed  Google Scholar 

  105. Toth JI, Yang SH, Qiao X, Beigneux AP, Gelb MH, Moulson CL, et al. Blocking protein farnesyltransferase improves nuclear shape in fibroblasts from humans with progeroid syndromes. Proc Natl Acad Sci U S A. 2005;102(36):12873–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Harhouri K, Frankel D, Bartoli C, Roll P, De Sandre-Giovannoli A, Levy N. An overview of treatment strategies for Hutchinson-Gilford Progeria syndrome. Nucleus (Austin, Tex). 2018;9(1):246–57.

    PubMed Central  Google Scholar 

  107. Christie M, Chang CW, Rona G, Smith KM, Stewart AG, Takeda AA, et al. Structural biology and regulation of protein import into the nucleus. J Mol Biol. 2016;428(10 Pt A):2060–90.

    Article  CAS  PubMed  Google Scholar 

  108. Cobb AM, Larrieu D, Warren DT, Liu Y, Srivastava S, Smith AJ, et al. Prelamin A impairs 53BP1 nuclear entry by mislocalizing NUP153 and disrupting the Ran gradient. Aging Cell. 2016;15(6):1039–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ishizawa J, Kojima K, Hail N Jr, Tabe Y, Andreeff M. Expression, function, and targeting of the nuclear exporter chromosome region maintenance 1 (CRM1) protein. Pharmacol Ther. 2015;153:25–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kirkinezos IG, Moraes CT. Reactive oxygen species and mitochondrial diseases. Semin Cell Dev Biol. 2001;12(6):449–57.

    Article  CAS  PubMed  Google Scholar 

  111. Xiong ZM, Choi JY, Wang K, Zhang H, Tariq Z, Wu D, et al. Methylene blue alleviates nuclear and mitochondrial abnormalities in progeria. Aging Cell. 2016;15(2):279–90.

    Article  CAS  PubMed  Google Scholar 

  112. Wang T, Kang W, Du L, Ge S. Rho-kinase inhibitor Y-27632 facilitates the proliferation, migration and pluripotency of human periodontal ligament stem cells. J Cell Mol Med. 2017;21(11):3100–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kubben N, Zhang W, Wang L, Voss TC, Yang J, Qu J, et al. Repression of the antioxidant NRF2 pathway in premature aging. Cell. 2016;165(6):1361–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Gordon LB, Kleinman ME, Miller DT, Neuberg DS, Giobbie-Hurder A, Gerhard-Herman M, et al. Clinical trial of a farnesyltransferase inhibitor in children with Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A. 2012;109(41):16666–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Capell BC, Erdos MR, Madigan JP, Fiordalisi JJ, Varga R, Conneely KN, et al. Inhibiting farnesylation of progerin prevents the characteristic nuclear blebbing of Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A. 2005;102(36):12879–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Mehta IS, Bridger JM, Kill IR. Progeria, the nucleolus and farnesyltransferase inhibitors. Biochem Soc Trans. 2010;38(Pt 1):287–91.

    Article  CAS  PubMed  Google Scholar 

  117. Yang SH, Qiao X, Fong LG, Young SG. Treatment with a farnesyltransferase inhibitor improves survival in mice with a Hutchinson-Gilford progeria syndrome mutation. Biochim Biophys Acta. 2008;1781(1-2):36–9.

    Article  CAS  PubMed  Google Scholar 

  118. Larrieu D, Britton S, Demir M, Rodriguez R, Jackson SP. Chemical inhibition of NAT10 corrects defects of laminopathic cells. Science. 2014;344(6183):527–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Larrieu D, Viré E, Robson S, Breusegem SY, Kouzarides T, Jackson SP. Inhibition of the acetyltransferase NAT10 normalizes progeric and aging cells by rebalancing the Transportin-1 nuclear import pathway. Sci Signal. 2018;11(537):eaar5401.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Balmus G, Larrieu D, Barros AC, Collins C, Abrudan M, Demir M, et al. Targeting of NAT10 enhances healthspan in a mouse model of human accelerated aging syndrome. Nat Commun. 2018;9(1):1700.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Lee SJ, Jung YS, Yoon MH, Kang SM, Oh AY, Lee JH, et al. Interruption of progerin-lamin A/C binding ameliorates Hutchinson-Gilford progeria syndrome phenotype. J Clin Invest. 2016;126(10):3879–93.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Cao K, Graziotto JJ, Blair CD, Mazzulli JR, Erdos MR, Krainc D, et al. Rapamycin reverses cellular phenotypes and enhances mutant protein clearance in Hutchinson-Gilford progeria syndrome cells. Sci Transl Med. 2011;3(89):89ra58.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Bilateral Agreement CNR (Italy)/CINVESTAV (Mexico), Grant/Award Number: CNR2018/4. Geriatric National Institute, Mexico, Grant/Award Number: INGER-DICRECITES-008-2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bulmaro Cisneros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

García-Aguirre, I., Monterrubio-Ledezma, F., Alamillo-Iniesta, A., Castro-Obregón, S., Cisneros, B. (2020). Molecular Basis of Progeroid Diseases. In: Gomez-Verjan, J., Rivero-Segura, N. (eds) Clinical Genetics and Genomics of Aging. Springer, Cham. https://doi.org/10.1007/978-3-030-40955-5_10

Download citation

Publish with us

Policies and ethics