Skip to main content

Electrochemical Treatment of Antibiotics in Wastewater

  • Chapter
  • First Online:
Antibiotics and Antimicrobial Resistance Genes

Abstract

Antibiotics are vital for the healthcare of human and animals; these products are used to prevent, alleviate and cure disease and give a better way of living. However, after administration a large fraction of these products are excreted unchanged into water bodies, and nobody knows about the ultimate destination of these chemical compounds. Similarly the possible adverse effects due to the presence of these chemical to environment and human health are unknown due to lack of information. Most of the antibiotics products are reached to water bodies unaltered and known as active pharmaceutical ingredient. These products are transformed into metabolites and even into some other compounds through natural process which occurs in aquatic environment. Currently different technologies such as physical, chemical and biological or advance oxidation processes are used to treat the antibiotics. Some of these technologies are time consuming, ineffective and non-adequate for the emerging contaminants; furthermore few methods like AOPs (Advance Oxidation Processes) are innovative and efficient but they are expensive, need high energy and produced reactive or unstable oxidant which are not able to remove refractory contaminants. Therefore it needs an innovative green technologies which enable to decontaminate the water containing antibiotics. The electrochemical technologies offer an alternative way to treat these pollutants; the major process are electro-oxidation, electro-reduction, electrocoagulation, electro-Fenton, photoelectron-Fenton, sono-electrochemical, etc. The electrochemical technologies have some advantages over the other oxidation processes, like easily operation, high efficiency, coupling with other process, and low temperature required for its operation; moreover it can be powered with the help of solar panel to decrease the energy consumption. However still exist some challenges to overcome like designing and cost of electrode, improving the basic scientific understanding and in some cases the production of toxic intermediates. This study explores the electrochemical technologies and their application towards treatment of antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelmalek F, Torres RA, Combet E, Petrier C, Pulgarin C, Addou A (2008) Gliding arc discharge (GAD) assisted catalytic degradation of Bisphenol A in solution with ferrous ions. Sep Purif Technol 63(1):30–37

    Google Scholar 

  • Africa A, Dalvie M, London L (2006) Usage of endocrine disrupting pesticides in south African agriculture. Epidemiology 114(1):s331–s311

    Article  Google Scholar 

  • Alonso-Magdalena P, Morimoto S, Ripoll C, Fuentes E, Nadal A (2006) The estrogenic effect of Bisphenol a disrupts pancreatic Beta-cell function in vivo and induces insulin resistance. Environ Health Perspect 114:106–112

    Article  CAS  Google Scholar 

  • Alves PA, Malpass GRP, Johansen HD, Azevedo EB, Gomes LM, Vilela WFD, Motheo AJ (2010) Photo-assisted electrochemical degradation of real textile wastewater. Water Sci Technol 61:491–498

    Google Scholar 

  • Babuponnusami A, Muthukumar K (2014) A review on Fenton and improvements to the Fenton process for wastewater treatment. J Environ Chem Eng 2(1):557–572

    Article  CAS  Google Scholar 

  • Bai X, Yang L, Hagfeldt A, Johansson EMJ, Jin P (2019) D35-TiO2 Nano-crystalline film as a high performance visible-light Photocatalyst towards the degradation of Bis-phenol a. Chem Eng J 355:999–1010

    Article  CAS  Google Scholar 

  • Baird C (1999) Environmental chemistry, 2nd edn. Freeman and Company, New York

    Google Scholar 

  • Banerjee S, Dionysiou DD, Pillai SC (2015) Self-cleaning applications of TiO2 by photo-induced Hydrophilicity and Photocatalysis. Appl Catal B Environ 176–177:396–428

    Article  CAS  Google Scholar 

  • Barceló D (2003) Emerging pollutants in water analysis. TrAC Trends Anal Chem 22(10):xiv–xvi

    Article  CAS  Google Scholar 

  • Barceló D, Petrovic M (2008) Emerging contaminants from industrial and municipal waste. Springer, Berlin

    Book  Google Scholar 

  • Barhoumi N, Olvera-Vargas H, Oturan N, Huguenot D, Gadri A, Ammar S, Brillas E, Oturan MA (2017) Kinetics of oxidative degradation/mineralization pathways of the antibiotic tetracycline by the novel heterogeneous electro-Fenton process with solid catalyst chalcopyrite. Appl Catal B Environ 209:637–647

    Google Scholar 

  • Bataineh H, Pestovsky O, Bakac A (2012) PH-induced mechanistic changeover from hydroxyl radicals to Iron(Iv) in the Fenton reaction. Chem Sci 3:1594

    Article  CAS  Google Scholar 

  • Bessegato GG, Cardoso JC, da Silva BF, Zanoni MVB (2016) Combination of photoelectrocatalysis and ozonation: a novel and powerful approach applied in acid yellow 1 mineralization. Appl Catal B Environ 180:161–168

    Article  CAS  Google Scholar 

  • Bessegato GG, Guaraldo TT, Zanoni MVB (2014) Enhancement of photoelectrocatalysis efficiency by using nanostructured electrodes. In: Modern electrochemical methods in Nano, Surface and Corrosion Science. InTech. https://doi.org/10.5772/58333

  • Birkhøj M, Christine N, Kirsten J, Jacobsen H, Andersen HR, Dalgaard M, Vinggaard AM (2004) The combined Antiandrogenic effects of five commonly used pesticides. Toxicol Appl Pharmacol 201(1):10–20

    Google Scholar 

  • Bonfatti F, Ferro S, Lavezzo F, Malacarne M, Lodi G, De Battisti A (2000a) Electrochemical incineration of glucose as a model organic substrate. II. Role of active chlorine mediation. J Electrochem Soc 147:592–596

    Google Scholar 

  • Bonfatti F, De Battisti A, Ferro S, Lodi G, Osti S (2000b) Anodic mineralization of organic substrates in chloride-containing aqueous media. Electrochim Acta 46(2–3):305–314

    Google Scholar 

  • Borràs N, Arias C, Oliver R, Brillas E (2013) Anodic oxidation, electro-Fenton and photoelectro-Fenton degradation of cyanazine using a boron-doped diamond anode and an oxygen-diffusion cathode. J Electroanal Chem 689:158–167

    Article  CAS  Google Scholar 

  • Boye B, Dieng MM, Brillas E (2003) Anodic oxidation, electro-Fenton and Photoelectro-Fenton treatments of 2, 4, 5-Trichlorophenoxyacetic acid. J Electroanal Chem 557:135–146

    Article  CAS  Google Scholar 

  • Brain RA, Johnson DJ, Richards SM, Hanson ML, Sanderson H, Lam MW, Young C, Mabury SA, Sibley PK, Solomon KR (2004) Microcosm evaluation of the effects of an eight pharmaceutical mixture to the aquatic Macrophytes Lemna Gibba and Myriophyllum Sibiricum. Aquat Toxicol 70(1):23–40

    Google Scholar 

  • Brillas E, Sirés I (2012) Electrochemical remediation technologies for waters contaminated by pharmaceutical residues. In: Environmental chemistry for a sustainable world, pp 297–346

    Chapter  Google Scholar 

  • Brillas E, Garrido JA, Rodriguez RM, Arias C, Cabot PL, Centellas F (2008) Wastewaters by electrochemical advanced oxidation processes using a BDD anode and Electrogenerated H2O2 with Fe (II) and UVA light as catalysts. Port Electrochim Acta 26(1):15–46

    Google Scholar 

  • Brillas E, Sauleda R, Casado J (1998) Degradation of 4-Chlorophenol by anodic oxidation, electro-Fenton, photoelectro-Fenton, and peroxi-coagulation processes. J Electrochem Soc 145(3):759–765

    Article  CAS  Google Scholar 

  • Brillas E, Sirés I, Oturan M a (2009) Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem Rev 109(12):6570–6631

    Article  CAS  Google Scholar 

  • Brown KD, Kulis J, Thomson B, Chapman TH, Mawhinney DB (2006) Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico. Sci Total Environ 366:772–783

    CAS  Google Scholar 

  • Bila DM, Dezotti M (2007) Desreguladores endócrinos no meio ambiente: efeitos e conseqüências. Quim. Nova 30, 651–666. https://doi.org/10.1590/S0100-40422007000300027

    Google Scholar 

  • Cañizares P, Sáez C, Sánchez-Carretero A, Rodrigo MA (2009) Synthesis of novel oxidants by electrochemical technology. J Appl Electrochem 39(11):2143

    Article  CAS  Google Scholar 

  • Carneiro PA, Osugi ME, Sene JJ, Anderson MA, Zanoni MVB (2004) Evaluation of color removal and degradation of a reactive textile Azo dye on Nanoporous TiO2 thin-film electrodes. Electrochim Acta 49(22–23):3807–3820

    Article  CAS  Google Scholar 

  • Carneiro, Patricia a, Marly E. Osugi, Cecílio S. Fugivara, Nivaldo Boralle, Maysa Furlan, and Maria Valnice B. Zanoni. (2005) Evaluation of different electrochemical methods on the oxidation and degradation of reactive blue 4 in aqueous solution. Chemosphere 59(3):431–439

    Google Scholar 

  • Catanho M, Malpass GRP, Motheo AJ (2006) Photoelectrochemical treatment of the dye reactive red 198 using DSA® electrodes. Appl Catal B Environ 62(3–4):193–200

    Article  CAS  Google Scholar 

  • Chen G (2004) Electrochemical technologies in wastewater treatment. Sep Purif Technol 38(1):11–41

    Article  CAS  Google Scholar 

  • Chen S, Zheng Y, Wang S, Chen X (2011) Ti/RuO2–Sb2O5–SnO2 electrodes for chlorine evolution from seawater. Chem Eng J 172(1):47–51

    Article  CAS  Google Scholar 

  • Chen X, Chen G, Yue PL (2003) Anodic oxidation of dyes at novel Ti/B-diamond electrodes. Chem Eng Sci 58(3–6):995–1001

    Article  CAS  Google Scholar 

  • Chen Y, Hongyi L, Weijing L, Yong T, Yaohui Z, Weiqing H, Lianjun W (2014) Electrochemical degradation of nitrobenzene by anodic oxidation on the constructed TiO2-NTs/SnO2-Sb/PbO2 electrode. Chemosphere 113:48

    Google Scholar 

  • Chen Y, Aimin W, Yanyu Z, Ruige B, Xiujun T, Jiuyi L (2017) Electro-Fenton degradation of antibiotic ciprofloxacin (CIP): formation of Fe3+-CIP chelate and its effect on catalytic behavior of Fe2+/Fe3+ and CIP mineralization. Electrochim Acta 256:185–195

    Google Scholar 

  • Comninellis C (1994) Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochim Acta 39(11–12):1857–1862

    Article  CAS  Google Scholar 

  • Cui, Yuqi, Qi Meng, Xiaoyong Deng, Qiuling Ma, Huixuan Zhang, Xiuwen Cheng, Xiaoli Li, Mingzheng Xie, and Qingfeng Cheng.(2016) Fabrication of platinum nano-crystallites decorated TiO2 Nano-tube array photoelectrode and its enhanced photoelectrocatlytic performance for degradation of aspirin and mechanism. J Ind Eng Chem 43:177–184

    Google Scholar 

  • Dai Q, Xia Y, Chen J (2016) Mechanism of enhanced electrochemical degradation of highly concentrated aspirin wastewater using a rare earth La-Y co-doped PbO 2 electrode. Electrochim Acta 188:871–881

    Article  CAS  Google Scholar 

  • Dietrich M, Franke M, Stelter M, Braeutigam P (2017) Degradation of endocrine disruptor bisphenol a by ultrasound-assisted electrochemical oxidation in water. Ultrason Sonochem 39:741–749

    Article  CAS  Google Scholar 

  • El-Ghenymy, Abdellatif, Nihal Oturan, Mehmet A. Oturan, José Antonio Garrido, Pere Luis Cabot, Francesc Centellas, Rosa Maria Rodriguez, and Enric Brillas. (2013) Comparative electro-Fenton and UVA photoelectro-Fenton degradation of the antibiotic sulfanilamide using a stirred BDD/air-diffusion tank reactor. Chem Eng J 234:115–123

    Google Scholar 

  • Faust BC, Zepp RG (1993) Photochemistry of aqueous Iron (III)-Polycarboxylate complexes: roles in the chemistry of atmospheric and surface waters. Environ Sci Technol 27(12):2517–2522

    Article  CAS  Google Scholar 

  • Feng CH, Li FB, Mai HJ, Li XZ (2010) Bio-electro-Fenton process driven by microbial fuel cell for wastewater treatment. Environ Sci Technol 44:1875

    Article  CAS  Google Scholar 

  • Feng J, Johnson DC (1990) Electrocatalysis of anodic oxygen-transfer reactions: Fe-doped beta-lead dioxide electrodeposited on noble metals. J Electrochem Soc 137(2):507–510

    Article  CAS  Google Scholar 

  • Ferrag-Siagh F, Fourcade F, Soutrel I, Aït-Amar H, Djelal H, Amrane A (2013) Tetracycline degradation and mineralization by the coupling of an electro-Fenton pretreatment and a biological process. J Chem Technol Biotechnol 88:1380–1386

    Google Scholar 

  • Flox C, Cabot P-L, Centellas F, Garrido JA, Rodriguez RM, Arias C, Brillas E (2007) Solar Photoelectro-Fenton degradation of cresols using a flow reactor with a boron-doped diamond anode. Appl Catal B Environ 75(1–2):17–28

    Google Scholar 

  • Flox C, Ammar S, Arias C, Brillas E, Vargas-Zavala AV, Abdelhedi R (2006) Electro-Fenton and Photoelectro-Fenton degradation of indigo carmine in acidic aqueous medium. Appl Catal B Environ 67(1–2):93–104

    Google Scholar 

  • Garcia-Segura S, Cavalcanti EB, Brillas E (2014) Mineralization of the antibiotic chloramphenicol by solar Photoelectro-Fenton: from stirred tank reactor to solar pre-pilot plant. Appl Catal B Environ 144:588–598

    Article  CAS  Google Scholar 

  • Ganiyu SO, Oturan N, Raffy S, Esposito G, van Hullebusch ED, Cretin M, Oturan MA (2017) Use of sub-stoichiometric titanium oxide as a ceramic electrode in anodic oxidation and electro-Fenton degradation of the Beta-blocker propranolol: degradation kinetics and mineralization pathway. Electrochim Acta 242:344–354

    Google Scholar 

  • Ganzenko O, Trellu C, Papirio S, Oturan N, Huguenot D, van Hullebusch ED, Esposito G, Oturan MA (2018) Bioelectro-Fenton: evaluation of a combined biological—advanced oxidation treatment for pharmaceutical wastewater. Environ Sci Pollut Res 25(21):20283–20292

    Google Scholar 

  • Ghiselli G, Jardim WF (2007) Interferentes Endócrinos No Ambiente. Química Nova 30(3):695–706

    Article  Google Scholar 

  • Ghoneim MM, El-Desoky HS, Zidan NM (2011) Electro-Fenton oxidation of sunset yellow FCF Azo-dye in aqueous solutions. Desalination 274(1–3):22–30

    Article  CAS  Google Scholar 

  • Gobel A, Athomsen A, McArdell CS, Joss A, Giger W (2005) Occurrence and sorption behavior of Sulfonamides, macrolides, and trimethoprim in activated sludge treatment. Environ Sci Technol 39(11):3981–3989

    Article  CAS  Google Scholar 

  • Gobel A, McArdell CS, Joss A, Siegrist H, Giger W (2007) Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies. Sci Total Environ 372(2–3):361–371

    Article  CAS  Google Scholar 

  • Grover DP, Zhang ZL, Readman JW, Zhou JL (2009) A comparison of three analytical techniques for the measurement of steroidal Estrogens in environmental water samples. Talanta 78(3):1204–1210

    Article  CAS  Google Scholar 

  • György F, Didier G, Christos C (1997) Anodic oxidation of organics on thermally prepared oxide electrodes. Curr Top Electrochem 5:71–91

    Google Scholar 

  • Haarstad K, Borch H (2004) Indications of hormonally active substances in municipal solid waste leachate: mobilization and effect studies from Sweden and Norway. J Environ Sci Health A Tox Hazard Subst Environ Eng 39:901–913

    Article  CAS  Google Scholar 

  • Hirsch R, Ternes T, Haberer K, Kratz K-l (1999) Occurrence of antibiotics in the aquatic environment. Sci Total Environ 225:109–118

    Article  CAS  Google Scholar 

  • Huang Y, Zhou T, Wu X, Mao J (2017) Efficient Sonoelectrochemical decomposition of sulfamethoxazole adopting common Pt/graphite electrodes: the mechanism and favorable pathways. Ultrason Sonochem 38:735–743

    Article  CAS  Google Scholar 

  • Hussain S, Gul S, Steter JR, Miwa DW, Motheo AJ (2015) Route of electrochemical oxidation of the antibiotic sulfamethoxazole on a mixed oxide anode. Environ Sci Pollut Res 22(19):15004–15015

    Article  CAS  Google Scholar 

  • Hussain S, Steter JR, Gul S, Motheo AJ (2017) Photo-assisted electrochemical degradation of Sulfamethoxazole using a Ti/Ru 0.3 Ti 0.7 O 2 anode: mechanistic and kinetic features of the process. J Environ Manag 201:153–162

    Article  CAS  Google Scholar 

  • Ibanez JG, Rajeshwar K, Swain GM (1994) Electrochemistry and the environment. J Appl Electrochem

    Google Scholar 

  • Jones OAH, Voulvoulis N, Lester JN (2005) Human pharmaceuticals in wastewater treatment processes. Crit Rev Environ Sci Technol 35(4):401–427

    Article  CAS  Google Scholar 

  • Kaur R, Kushwaha JP, Singh N (2019) Amoxicillin electro-catalytic oxidation using Ti/RuO2 anode: mechanism, oxidation products and degradation pathway. Electrochim Acta 296:856–866

    Article  CAS  Google Scholar 

  • Keenan CR, Sedlak DL (2008) Factors affecting the yield of oxidants from the reaction of nanonarticulate zero-valent iron and oxygen. Environ Sci Technol 42:1262

    Article  CAS  Google Scholar 

  • Kim Y., Kim, Y., Choi, K., Jung, J., Park, S., Kim, P.-G., Park, J., (2007) Aquatic toxicity of acetaminophen, carbamazepine, cimetidine, diltiazem and six major Sulfonamides, and their potential ecological risks in Korea. Environ Int 33(3):370–375

    Google Scholar 

  • Kondalkar, V. V, Mali, S.S., Mane, R.M., Dandge, P.B., Choudhury, S., Hong, C.K., Patil, P.S., Patil, S.R., Kim, J.H., Bhosale, P.N., (2014) Photoelectrocatalysis of cefotaxime using nanostructured TiO2 photoanode: identification of the degradation products and determination of the toxicity level. Ind Eng Chem Res 53(47):18152–18162

    Google Scholar 

  • Kuhn AT (1971) Electrolytic decomposition of cyanides, phenols and Thiocyanates in effluent streams-a literature review. J Appl Chem Biotechnol 21(2):29–34

    Article  CAS  Google Scholar 

  • Kumbhar SS, Mahadik MA, Shinde SS, Rajpure KY, Bhosale CH (2015) Fabrication of ZnFe2O4 films and its application in photoelectrocatalytic degradation of salicylic acid. J Photochem Photobiol B Biol 142:118–123

    Article  CAS  Google Scholar 

  • Kümmerer K (2008) Pharmaceuticals in the environment: sources, fate, effects and risks, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  • Kümmerer K, Henninger A (2003) Promoting resistance by the emission of antibiotics from hospitals and households into effluent. Clin Microbiol Infect 9:1203–1214

    Article  Google Scholar 

  • Kümmerer K (2010) Pharmaceuticals in the environment. Annu Rev Environ Resour 35(1):57–75

    Article  Google Scholar 

  • Lapworth DJ, Baran N, Stuart ME, Ward RS (2012) Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Elsevier Ltd

    Google Scholar 

  • Lee H, Lee HJ, Sedlak DL, Lee C (2013) PH-dependent reactivity of oxidants formed by iron and copper-catalyzed decomposition of hydrogen peroxide. Chemosphere, 92 (6): 652-658

    Google Scholar 

  • Levine AD, Meyer MT, Kish G (2006) Evaluation of the persistence of micropollutants through pure-oxygen activated sludge nitrification and denitrification. Water Environ Res 78(11):2276–2285

    Article  CAS  Google Scholar 

  • Li, D., Jia, J., Zheng, T., Cheng, X., Yu, X., (2016a) Construction and characterization of visible light active Pd Nano-crystallite decorated and CNS-co-doped TiO2 nanosheet array photoelectrode for enhanced photocatalytic degradation of acetylsalicylic acid. Appl Catal B Environ 188:259–271

    Article  CAS  Google Scholar 

  • Li, G., Nie, X., Chen, J., Wong, P.K., An, T., Yamashita, H., Zhao, H., (2016b) Enhanced simultaneous PEC eradication of bacteria and antibiotics by facilely fabricated high-activity {001} facets TiO2 mounted onto TiO2 nanotubular photoanode. Water Res 101:597–605

    Google Scholar 

  • Li X, Chen S, Angelidaki I, Zhang Y (2018) Bio-electro-Fenton processes for wastewater treatment: advances and prospects. Chem Eng J 354:492–506

    Article  CAS  Google Scholar 

  • Li X, Jin X, Zhao N, Angelidaki I, Zhang Y (2017) Novel bio-electro-Fenton technology for Azo dye wastewater treatment using microbial reverse-electrodialysis electrolysis cell. Bioresour Technol 228:322–329

    Article  CAS  Google Scholar 

  • Ling T, Huang B, Zhao M, Yan Q, Shen W (2016) Repeated oxidative degradation of methyl orange through bio-electro-Fenton in bioelectrochemical system (BES). Bioresour Technol 203:89

    Article  CAS  Google Scholar 

  • Liu L, Li R, Liu Y, Zhang J (2016) Simultaneous degradation of Ofloxacin and recovery of cu (II) by photoelectrocatalysis with highly ordered TiO2 nanotubes. J Hazard Mater 308:264–275

    Article  CAS  Google Scholar 

  • Liu N, Lu N, Yan S, Wang P, Xie Q (2019) Fabrication of G-C3N4/Ti3C2 composite and its visible-light Photocatalytic capability for ciprofloxacin degradation. Sep Purif Technol 211:782–789

    Article  CAS  Google Scholar 

  • Liu X, Zhou Y, Zhang J, Luo L, Yang Y, Huang H, Peng H, Tang L, Mu Y (2018) Insight into electro-Fenton and photo-Fenton for the degradation of antibiotics: mechanism study and research gaps. Chem Eng J 347:379–397

    Google Scholar 

  • Malpass GRP, Miwa DW, Machado SAS, Motheo AJ (2008) Decolourisation of real textile waste using electrochemical techniques: effect of electrode composition. J Hazard Mater 156(1–3):170–177

    Article  CAS  Google Scholar 

  • Malpass GRP, Miwa DW, Miwa ACP, Machado SAS, Motheo AJ (2009) Study of photo-assisted electrochemical degradation of carbaryl at dimensionally stable anodes (DSA). J Hazard Mater 167(1–3):224–229

    Article  CAS  Google Scholar 

  • Malpass GRP, Miwa DW, Gomes L, Azevedo EB, Vilela WFD, Fukunaga MT, Guimarães JR, Bertazzoli R, Machado S a S, Motheo a J (2010) Photo-assisted electrochemical degradation of the commercial herbicide atrazine. Water Sci Technol 62(12):2729–2736

    Google Scholar 

  • Mansour D, Fourcade F, Huguet S, Soutrel I, Bellakha Nl, Dachraoui M, Hauchard D, Amrane A (2014) Improvement of the activated sludge treatment by its combination with electro Fenton for the mineralization of Sulfamethazine. Int Biodeterior Biodegradation 88:29–36

    Google Scholar 

  • Mansour D, Fourcade F, Soutrel I, Hauchard D, Bellakhal N, Amrane A (2015) Relevance of a combined process coupling electro-Fenton and biological treatment for the remediation of sulfamethazine solutions – application to an industrial pharmaceutical effluent. Comptes Rendus Chimie 18(1):39–44

    Google Scholar 

  • Martínez-Huitle CA, Brillas E (2008) Electrochemical alternatives for drinking water disinfection. Angew Chem Int Ed Engl 47:1998–2005

    Article  CAS  Google Scholar 

  • Martínez-Huitle CA, Rodrigo MA, Sirés I, Scialdone O (2015) Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: a critical review. Chem Rev 115(24):13362–13407

    Article  CAS  Google Scholar 

  • Masters PA, O’Bryan TA, Zurlo J, Miller DQ, Joshi N (2003) Trimethoprimesulfamethoxazole revisited. Arch Intern Med 163(4):402–410

    Article  CAS  Google Scholar 

  • Meyer A, Sarcinelli P, Moreira J (1999) Are some Brazilian population groups subject to endocrine disrupters? Cad Saude Publica 15(4):845–850

    Article  CAS  Google Scholar 

  • Mora-Gomez J, Ortega E, Mestre S, Pérez-Herranz V, García-Gabaldón M (2019) Electrochemical degradation of norfloxacin using BDD and new Sb-doped SnO2 ceramic anodes in an electrochemical reactor in the presence and absence of a cation-exchange membrane. Sep Purif Technol 208:68–75

    Article  CAS  Google Scholar 

  • Moreira FC, Boaventura RAR, Brillas E, Vilar VJP (2015) Degradation of trimethoprim antibiotic by UVA Photoelectro-Fenton process mediated by Fe (III) – carboxylate complexes. Appl Catal B Environ 162:34–44

    Article  CAS  Google Scholar 

  • Mousset E, Trellu C, Oturan N, Rodrigo MA, Oturan MA (2017) Soil Remediation by Electro-Fenton Process. pp. 399–423. https://doi.org/10.1007/698_2017_38

  • Murillo-Sierra JC, Ruiz-Ruiz E, Hinojosa-Reyes L, Guzmán-Mar JL, Machuca-Martinez F, Hernández-Ramirez A (2018) Sulfamethoxazole mineralization by solar photo electro-Fenton process in a pilot plant. Catal Today 313:175–181

    Google Scholar 

  • Neppolian B, Ashokkumar M, Tudela I, González-Garcia J (2012) Hybrid Sonochemical treatment of contaminated wastewater: sonophotochemical and sonoelectrochemical approaches. Part I: description of the techniques. In: Advances in water treatment and pollution prevention. Springer, pp 267–302

    Google Scholar 

  • Nidheesh PV, Gandhimathi R (2012) Trends in electro-Fenton process for water and wastewater treatment: an overview. Desalination 299:1–15

    Article  CAS  Google Scholar 

  • Nilsson A, Ronlán A, Parker VD (1973) Anodic oxidation of phenolic compounds. Part III. Anodic hydroxylation of phenols. A simple general synthesis of 4-alkyl-4-hydroxycyclo-hexa-2,5-dienones from 4-alkylphenols. J Chem Soc Perkin Trans 1:2337–2345

    Article  Google Scholar 

  • Olvera-Vargas H, Cocerva T, Oturan N, Buisson D, Oturan MA (2016a) Bioelectro-Fenton: a sustainable integrated process for removal of organic pollutants from water: application to mineralization of Metoprolol. J Hazard Mater 319:13–23

    Article  CAS  Google Scholar 

  • Olvera-Vargas H, Oturan N, Buisson D, Oturan MA (2016b) A coupled bio-EF process for mineralization of the pharmaceuticals furosemide and ranitidine: feasibility assessment. Chemosphere 155:606–613

    Article  CAS  Google Scholar 

  • Olvera-Vargas H, Trellu C, Oturan N, Oturan MA (2017) Bio-electro-Fenton: a new combined process – principles and applications. In: Electro-Fenton Process. Springer, pp 29–56

    Google Scholar 

  • Oturan MA, Aaron J-J (2014) Advanced oxidation processes in water/wastewater treatment: principles and applications. A review. Crit Rev Environ Sci Technol 44(23):2577–2641

    Article  CAS  Google Scholar 

  • Oturan N, Oturan MA (2018) Electro-Fenton process: background, new developments, and applications. In: Electrochemical water and wastewater treatment. Elsevier, pp 193–221

    Google Scholar 

  • Panizza M (2010) Importance of electrode material in the electrochemical treatment of wastewater contaiining organic pollutants. In: Electrochemistry for the environment. Springer, New York, p 25

    Chapter  Google Scholar 

  • Panizza M, Cerisola G (2003) Electrochemical oxidation of 2-naphthol with in situ electro- generated active chlorine. Electrochim Acta 48:1515–1519

    Article  CAS  Google Scholar 

  • Panizza M, Cerisola G (2001) Removal of organic pollutants from industrial wastewater by Electrogenerated Fenton’s reagent. Water Res 35(16):3987–3992

    Article  CAS  Google Scholar 

  • Pelegrini R, Bertazzoli R (2002) Descoloração e Degradação de Poluentes OrgâNicos Em Soluções Aquosas Através Do Processo Fotoeletroquímico. Química Nova 25:477

    Google Scholar 

  • Pelegrini R, Peralta-Zamora P, de Andrade AR, Reyes J, Durán N (1999) Electrochemically assisted photocatalytic degradation of reactive dyes. Appl Catal B Environ 22(2):83–90

    Article  CAS  Google Scholar 

  • Peng X, Wang Z, Kuang W, Tan J, Li K (2006) A preliminary study on the occurrence and behavior of sulfonamides, ofloxacin and chloramphenicol antimicrobials in wastewaters of two sewage treatment plants in Guangzhou, China. Sci Total Environ 371(1–3):314–322

    Article  CAS  Google Scholar 

  • Peralta-Hernández JM, Meas-Vong Y, Rodríguez FJ, Chapman TW, Maldonado MI, Godínez LA (2006) In situ electrochemical and photo-electrochemical generation of the Fenton reagent: a potentially important new water treatment technology. Water Res 40:1754–1762

    Google Scholar 

  • Petrovic M, Barceló D (2006) Application of liquid chromatography/quadrupole time-of-flight mass spectrometry (LC-QqTOF-MS) in the environmental analysis. J Mass Spectrom 41:1259–1267

    Article  CAS  Google Scholar 

  • Pignatello JJ (1992) Dark and photoassisted Iron(3+)-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide. Environ Sci Technol 26(5):944–951

    Article  CAS  Google Scholar 

  • Pillai SC, McGuinness NB, Byrne C, Han C, Lalley J, Nadagouda M, Falaras P, Kontos AG, Gracia-Pinilla MA, O’Shea K, Mangalaraja RV, Christophoridis C, Triantis T, Hiskia A, Dionysiou DD (2017) Photocatalysis as an effective advanced oxidation process. In: Advanced oxidation processes for water treatment: fundamentals and applications, vol 16, pp 333–381

    Google Scholar 

  • Pollet B (2012) Power ultrasound in electrochemistry: from versatile laboratory tool to engineering solution. John Wiley & Sons

    Google Scholar 

  • Rahman MF, Yanful EK, Jasim SY (2009) Occurrences of endocrine disrupting compounds and pharmaceuticals in the aquatic environment and their removal from drinking water: challenges in the context of the developing world. Desalination 248:578–585

    Article  CAS  Google Scholar 

  • Rajeshwar K, Ibanez JG (1997) Environmental electrochemistry: fundamentals and applications in pollution sensors and Abatemen. Academic press, San Diego, CA

    Google Scholar 

  • Rajkumar D, Kim JG (2006) Oxidation of various reactive dyes with in situ electro-generated active chlorine for textile dyeing industry wastewater treatment. J Hazard Mater 136(2):203–212

    Article  CAS  Google Scholar 

  • Rajkumar D, Song BJ, Kim JG (2007) Electrochemical degradation of reactive blue 19 in chloride medium for the treatment of textile dyeing wastewater with identification of intermediate compounds. Dyes Pigments 72(1):1–7

    Article  CAS  Google Scholar 

  • Reemtsma T, Jekel M (2006) Organic pollutants in the water cycle: properties, occurrence, analysis and environmental relevance of polar compounds. Wiley-VCH

    Google Scholar 

  • Ren Y-Z, Wu ZL, Franke M, Braeutigam P, Ondruschka B, Comeskey DJ, King PM (2013) Sonoelectrochemical degradation of phenol in aqueous solutions. Ultrason Sonochem 20(2):715–721

    Google Scholar 

  • Ren Y-Z, Franke M, Anschuetz F, Ondruschka B, Ignaszak A, Braeutigam P (2014) Sonoelectrochemical degradation of triclosan in water. Ultrason Sonochem 21:2020–2025

    Google Scholar 

  • Ren Q, Yin C, Chen Z, Cheng M, Ren Y, Xie X, Li Y, Zhao X, Xu L, Yang H, Li W (2019) Efficient sonoelectrochemical decomposition of chlorpyrifos in aqueous solution. Microchem J 145:146–153

    Google Scholar 

  • Richard S, Moslemi S, Sipahutar H, Benachour N, Seralini G-E (2005) Differential effects of glyphosate and roundup on human placental cells and aromatase. Environ Health Perspect 113(6):716–720

    Article  CAS  Google Scholar 

  • Robert D, Malato S (2002) Solar photocatalysis: a clean process for water detoxification. Sci Total Environ 291:85–97

    Article  CAS  Google Scholar 

  • Rodrigo MA, Oturan N, Oturan MA (2014) Electrochemically assisted remediation of pesticides in soils and water: a review. Chem Rev 114(17):8720–8745

    Article  CAS  Google Scholar 

  • Rozendal RA, Leone E, Keller J, Rabaey K (2009) Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system. Electrochem Commun 11:1752

    Article  CAS  Google Scholar 

  • Sáez C, Rodrigo MA, Cañizares P (2008) Electrosynthesis of ferrates with diamond anodes. AICHE J 54(6):1600–1607

    Article  CAS  Google Scholar 

  • Salazar C, Ridruejo C, Brillas E, Yáñez J, Mansilla HD, Sirés I (2017) Abatement of the fluorinated antidepressant fluoxetine (Prozac) and its reaction by-products by electrochemical advanced methods. Appl Catal B Environ 203:189–198

    Google Scholar 

  • Sankara Narayanan TSN, Magesh G, Rajendran N (2003) Degradation of O-chlorophenol from aqueous solution by electro-Fenton process. Fresenius Environ Bull 12(7):776–780

    Google Scholar 

  • Serna-Galvis EA, Montoya-Rodríguez D, Isaza-Pineda L, Ibáñez M, Hernández F, Moncayo-Lasso A, Torres-Palma RA (2019) Sonochemical degradation of antibiotics from representative classes-considerations on structural effects, initial transformation products, antimicrobial activity and matrix. Ultrason Sonochem 50:157–165

    Google Scholar 

  • Serrano K, Michaud PA, Comninellis C, Savall A (2002) Electrochemical preparation of peroxodisulfuric acid using boron doped diamond thin film electrodes. Electrochim Acta 48(4):431–436

    Article  CAS  Google Scholar 

  • Sirés I, Brillas E, Oturan MA, Rodrigo MA, Panizza M (2014) Electrochemical advanced oxidation processes: today and tomorrow. A review. Environ Sci Pollut Res 21(14):8336–8367

    Article  CAS  Google Scholar 

  • Skold O (2001) Resistance to trimethoprim and sulfonamides. Vet Res 32(3–4):261–273

    Article  CAS  Google Scholar 

  • Socha A, Chrzescijanska E, Kusmierek E (2005) Electrochemical and Photoelectrochemical treatment of 1-Aminonaphthalene-3,6-disulphonic acid. Dyes Pigments 67:71–75

    Article  CAS  Google Scholar 

  • Socha A, Sochocka E, Podsiadły R, Sokołowska J (2006) Electrochemical and photoelectrochemical degradation of direct dyes. Color Technol 122(4):207–212

    Article  CAS  Google Scholar 

  • Socha A, Sochocka E, Podsiadły R, Sokołowska J (2007) Electrochemical and Photoelectrochemical treatment of C. I. Acid Violet 1. Dyes Pigments 73:390–393

    Article  CAS  Google Scholar 

  • Su Y-f, Wang G-B, Kuo DTF, Chang M-l, Shih Y-h (2016) Photoelectrocatalytic degradation of the antibiotic sulfamethoxazole using TiO2/Ti photoanode. Appl Catal B Environ 186:184–192

    Article  CAS  Google Scholar 

  • Suárez S, Carballa M, Omil F, Lema JM (2008) How are pharmaceutical and personal care products (PPCPs) removed from urban wastewaters. Rev Environ Sci Biotechnol 7:125–138

    Article  CAS  Google Scholar 

  • Sun J, Lu H, Du L, Lin H, Li H (2011) Anodic oxidation of anthraquinone dye alizarin red S at Ti/BDD electrodes. Appl Surf Sci 257(15):6667–6671

    Article  CAS  Google Scholar 

  • Sun Y, Pignatello JJ (1993) Photochemical reactions involved in the total mineralization of 2, 4-D by iron (3+)/hydrogen peroxide/UV. Environ Sci Technol 27(2):304–310

    Article  Google Scholar 

  • Sopaj F, Rodrigo MA, Oturan N, Podvorica FI, Pinson J, Oturan MA (2015) Influence of the anode materials on the electrochemical oxidation efficiency. Application to oxidative degradation of the pharmaceutical amoxicillin. Chem Eng J 262:286–294

    Google Scholar 

  • Tantis I, Bousiakou L, Frontistis Z, Mantzavinos D, Konstantinou I, Antonopoulou M, Karikas G-A, Lianos P (2015) Photocatalytic and Photoelectrocatalytic degradation of the drug omeprazole on nanocrystalline Titania films in alkaline media: effect of applied electrical Bias on degradation and transformation products. J Hazard Mater 294:57–63

    Google Scholar 

  • Tarr AM (2003) Chemical degradation methods for wastes and pollutants environmental and industrial applications. Marcel Dekker, New York

    Book  Google Scholar 

  • Thiam A, Sirés I, Brillas E (2015) Treatment of a mixture of food color additives (E122, E124 and E129) in different water matrices by UVA and solar photoelectro-Fenton. Water Res 81:178–187

    Article  CAS  Google Scholar 

  • Trivedi P, Vasudevan D (2007) Spectroscopic investigation of ciprofloxacin speciation at the goethite-water Interface. Environ Sci Technol 41:3153–3158

    Article  CAS  Google Scholar 

  • Tran N, Drogui P, Brar SK, De Coninck A (2017) Synergistic effects of ultrasounds in the sonoelectrochemical oxidation of pharmaceutical carbamazepine pollutant. Ultrason Sonochem 34:380–388

    Google Scholar 

  • U.S. Department of Defense (DoD) (2006) Emerging contaminants

    Google Scholar 

  • Vogler A (1993) O. Horváth, KL Stevenson: charge transfer photochemistry of coordination compounds, VCH, New York, Weinheim, 1993, ISBN 3–527–89564-7, 380 Pages, Price: DM 238.00. Berichte der Bunsengesellschaft für physikalische Chemie 97(9):1166

    Article  Google Scholar 

  • Wang H, Ren ZJ (2013) A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnol Adv 31:1796

    Article  CAS  Google Scholar 

  • Wang Q, Jin T, Hu Z, Zhou L, Zhou M (2013) TiO2-NTs/SnO2-Sb anode for efficient electrocatalytic degradation of organic pollutants: effect of TiO2-NTs architecture. Sep Purif Technol 102:180–186

    Article  CAS  Google Scholar 

  • Wang XQ, Liu CP, Yuan Y, Li F b (2014) Arsenite oxidation and removal driven by a bio-electro-Fenton process under neutral PH conditions. J Hazard Mater 275:200

    Article  CAS  Google Scholar 

  • Wensing M, Uhde E, Salthammer T (2005) Plastics additives in the indoor environment – flame retardants and plasticizers. Sci Total Environ 339(1–3):19–40

    Article  CAS  Google Scholar 

  • Xia Y, Dai Q (2018) Electrochemical degradation of antibiotic levofloxacin by PbO 2 electrode: kinetics, energy demands and reaction pathways. Chemosphere 205:215–222

    Article  CAS  Google Scholar 

  • Xie YB, Li XZ (2006) Interactive oxidation of Photoelectrocatalysis and electro-Fenton for Azo dye degradation using TiO2–Ti mesh and reticulated vitreous carbon electrodes. Mater Chem Phys 95(1):39–50

    Article  CAS  Google Scholar 

  • Xu N, Zhang Y, Tao H, Zhou S, Zeng Y (2013) Bio-electro-Fenton system for enhanced Estrogens degradation. Bioresour Technol 138:136

    Article  CAS  Google Scholar 

  • Xu, Nan, Shungui Zhou, Yong Yuan, Huan Qin, Yu Zheng, and Canwei Shu. (2011) Coupling of anodic biooxidation and Cathodic bioelectro-Fenton for enhanced swine wastewater treatment. Bioresource technology 102:7777

    Google Scholar 

  • Yang, Bo, Jiane Zuo, Peng Li, Kaijun Wang, Xin Yu, and Mengyu Zhang.(2016) Effective ultrasound electrochemical degradation of biological toxicity and refractory cephalosporin pharmaceutical wastewater. Chem Eng J 287:30–37

    Google Scholar 

  • Yang S, Cha J, Carlson K (2005) Simultaneous extraction and analysis of 11 tetracycline and Sulfonamide antibiotics in influent and effluent domestic wastewater by solid-phase extraction and liquid chromatography-electrospray ionization Tandemmass spectrometry. J Chromatogr A 1097(1–2):40–53

    Article  CAS  Google Scholar 

  • Yong XY, Gu DY, Wu YD, Yan ZY, Zhou J, Wu XY, Wei P, Jia HH, Zheng T, Yong YC (2017) Bio-Electron-Fenton (BEF) process driven by microbial fuel cells for Triphenyltin chloride (TPTC) degradation. J Hazard Mater 324:178

    Google Scholar 

  • Yousef MI, Salem MH, Ibrahim HZ, Helmi S, Seehy MA, Bertheussen K (1995) Toxic effects of carbofuran and glyphosate on semen characteristics in rabbits. J Environ Sci Health B. 30:513–534

    Google Scholar 

  • Yuan R, Ramjaun SN, Wang Z, Liu J (2011) Effects of chloride ion on degradation of acid Orange 7 by Sulfate radical-based advanced oxidation process: implications for formation of chlorinated aromatic compounds. J Hazard Mater 196:173–179

    Article  CAS  Google Scholar 

  • Zainal Z, Lee CY, Hussein MZ, Kassim A, Yusof NA (2005) Electrochemical-assisted Photodegradation of dye on TiO2 thin films: investigation on the effect of operational parameters. J Hazard Mater 118:197–203

    Article  CAS  Google Scholar 

  • Zanoni MVB, Sene JJ, Anderson MA (2003) Photoelectrocatalytic degradation of Remazol brilliant Orange 3R on titanium dioxide thin-film electrodes. J Photochem Photobiol A Chem 157(1):55–63

    Article  CAS  Google Scholar 

  • Zanoni MVB, Sene JJ, Selcuk H, Anderson MA (2004) Photoelectrocatalytic production of active chlorine on Nanocrystalline titanium dioxide thin-film electrodes. Environ Sci Technol 38(11):3203–3208

    Article  CAS  Google Scholar 

  • Zhang H, Fei C, Zhang D, Tang F (2007) Degradation of 4-Nitrophenol in aqueous medium by electro-Fenton method. J Hazard Mater 145(1–2):227–232

    Article  CAS  Google Scholar 

  • Zhang, Yanyu, Aimin Wang, Xiujun Tian, Zhenjun Wen, Hanjiao Lv, Desheng Li, and Jiuyi Li. (2016) Efficient mineralization of the antibiotic trimethoprim by solar assisted Photoelectro-Fenton process driven by a photovoltaic cell. J Hazard Mater 318:319–328

    Google Scholar 

  • Zhang Y, Wang Y, Angelidaki I (2015) Alternate switching between microbial fuel cell and microbial electrolysis cell operation as a new method to control H2O2 level in bioelectro-Fenton system. J Power Sources 291:108–116

    Article  CAS  Google Scholar 

  • Zhao, Xu, Jiuhui Qu, Huijuan Liu, Zhimin Qiang, Ruiping Liu, and Chengzhi Hu. (2009) Photoelectrochemical degradation of anti-inflammatory pharmaceuticals at Bi2MoO6 – boron-doped diamond hybrid electrode under visible light irradiation. Appl Catal B Environ 91(1–2):539–545

    Google Scholar 

  • Zhou M, Oturan MA, Sirés I (eds) (2018) Electro-Fenton Process. Springer Singapore, Singapore

    Google Scholar 

  • Zhu X, Tian J, Liu R, Chen L (2011) Optimization of Fenton and electro-Fenton oxidation of biologically treated coking wastewater using response surface methodology. Sep Purif Technol 81(3):444–450

    Article  CAS  Google Scholar 

  • Zhu X, Ni J (2009) Simultaneous processes of electricity generation and P-Nitrophenol degradation in a microbial fuel cell. Electrochem Commun 11(2):274–277

    Article  CAS  Google Scholar 

  • Zuo Y, Hoigne J (1992) Formation of hydrogen peroxide and depletion of oxalic acid in atmospheric water by photolysis of Iron (III)-Oxalato complexes. Environ Sci Technol 26(5):1014–1022

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajjad Hussain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hussain, S., Ullah Khan, S., Gul, S. (2020). Electrochemical Treatment of Antibiotics in Wastewater. In: Hashmi, M. (eds) Antibiotics and Antimicrobial Resistance Genes. Emerging Contaminants and Associated Treatment Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-40422-2_17

Download citation

Publish with us

Policies and ethics