Skip to main content
Log in

Route of electrochemical oxidation of the antibiotic sulfamethoxazole on a mixed oxide anode

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The appearance of pharmaceutical compounds and their bioactive transformation products in aquatic environments is becoming an issue of increasing concern. In this study, the electrochemical oxidation of the widely used antibiotic sulfamethoxazole (SMX) was investigated using a commercial mixed oxide anode (Ti/Ru0.3Ti0.7O2) and a single compartment filter press-type flow reactor. The kinetics of SMX degradation was determined as a function of electrolyte composition, applied current density, and initial pH. Almost complete (98 %) degradation of SMX could be achieved within 30 min of electrolysis in 0.1 mol L−1 NaCl solution at pH 3 with applied current densities ≥20 mA cm−2. Nine major intermediates of the reaction were identified by LC-ESI-Q-TOF-MS (e.g., C6H9NO2S (m/z = 179), C6H4NOCl (m/z = 141), and C6H6O2 (m/z = 110)). The degradation followed various routes involving cleavage of the oxazole and benzene rings by hydroxyl and/or chlorine radicals, processes that could occur before or after rupture of the N-S bond, followed by oxidation of the remaining moieties. Analysis of the total organic carbon content revealed that the antibiotic was partially mineralized under the conditions employed and some inorganic ions, including NO3 and SO4 2−, could be identified. The results presented herein demonstrate the efficacy of the electrochemical process using a Ti/Ru0.3Ti0.7O2 anode for the remediation of wastewater containing the antibiotic SMX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abellán MN, Bayarri B, Giménez J, Costa J (2007) Photocatalytic degradation of sulfamethoxazole in aqueous suspension of TiO2. Appl Catal B Environ 74(3-4):233–241

    Article  Google Scholar 

  • Alexy R, Kümpel T, Kümmerer K (2004) Assessment of degradation of 18 antibiotics in the closed bottle test. Chemosphere 57(6):505–512

    Article  CAS  Google Scholar 

  • Alves PA, Malpass GRP, Johansen HD, Azevedo EB, Gomes LM, Vilela WFD, Motheo AJ (2010) Photo-assisted electrochemical degradation of real textile wastewater. Water Sci Technol 61(2):491–498

    Article  CAS  Google Scholar 

  • Anderson PD, D’Aco VJ, Shanahan P, Chapra SC, Buzby ME, Cunningham VL, Duplessie BM, Hayes EP, Mastrocco FJ, Parke NJ, Rader JC, Samuelian JH, Schwab BW (2004) Screening analysis of human pharmaceutical compounds in U.S. surface waters. Environ Sci Technol 38(3):838–849

    Article  CAS  Google Scholar 

  • Aquino Neto S, de Andrade AR (2009) Electrooxidation of glyphosate herbicide at different DSA® compositions: pH, concentration and supporting electrolyte effect. Electrochim Acta 54(7):2039–2045

    Article  CAS  Google Scholar 

  • Aydin S, Ince B, Cetecioglu Z, Arikan O, Ozbayram EG, Shahi A, Ince O (2015) Combined effect of erythromycin, tetracycline and sulfamethoxazole on performance of anaerobic sequencing batch reactors. Bioresour Technol 186:207–214

    Article  CAS  Google Scholar 

  • Beltrán FJ, Aguinaco A, García-Araya JF, Oropesa A (2008) Ozone and photocatalytic processes to remove the antibiotic sulfamethoxazole from water. Water Res 42(14):3799–3808

    Article  Google Scholar 

  • Bolton JR, Bircher KG, Tumas W, Tolman CA (2001) Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric- and solar-driven systems (IUPAC technical report). Pure Appl Chem 73(4):627–637

    Article  CAS  Google Scholar 

  • Brain RA, Johnson DJ, Richards SM, Hanson ML, Sanderson H, Lam MW, Young C, Mabury SA, Sibley PK, Solomon KR (2004) Microcosm evaluation of the effects of an eight pharmaceutical mixture to the aquatic macrophytes Lemna gibba and Myriophyllum sibiricum. Aquat Toxicol 70(1):23–40

    Article  CAS  Google Scholar 

  • Carballa M, Omil F, Lema JM, Llompart M, García-Jares C, Rodríguez I, Gómez M, Ternes T (2004) Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Res 38(12):2918–2926

    Article  CAS  Google Scholar 

  • Cater SR, Stefan MI, Bolton JR, Safarzadeh-Amiri A (2000) UV/H2O2 treatment of methyl tert-butyl ether in contaminated waters. Environ Sci Technol 34(4):659–662

    Article  CAS  Google Scholar 

  • Daneshvar N, Aleboyeh A, Khataee AR (2005) The evaluation of electrical energy per order (E Eo) for photooxidative decolorization of four textile dye solutions by the kinetic model. Chemosphere 59(6):761–767

    Article  CAS  Google Scholar 

  • Dantas RF, Contreras S, Sans C, Esplugas S (2008) Sulfamethoxazole abatement by means of ozonation. J Hazard Mater 150(3):790–794

    Article  CAS  Google Scholar 

  • Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect 107(Suppl 6):907–938

    Article  CAS  Google Scholar 

  • De Amorim KP, Romualdo LL, Andrade LS (2013) Electrochemical degradation of sulfamethoxazole and trimethoprim at boron-doped diamond electrode: performance, kinetics and reaction pathway. Sep Purif Technol 120:319–327

    Article  Google Scholar 

  • Dirany A, Sirés I, Oturan N, Oturan MA (2010) Electrochemical abatement of the antibiotic sulfamethoxazole from water. Chemosphere 81(5):594–602

    Article  CAS  Google Scholar 

  • Dodd MC, Huang C-H (2004) Transformation of the antibacterial agent sulfamethoxazole in reactions with chlorine: kinetics, mechanisms, and pathways. Environ Sci Technol 38(21):5607–5615

    Article  CAS  Google Scholar 

  • Eleotério IC, Forti JC, de Andrade AR (2013) Electrochemical treatment of wastewater of veterinary industry containing antibiotics. Electrocatalysis 4(4):283–289

    Article  Google Scholar 

  • Esplugas S, Bila DM, Krause LGT, Dezotti M (2007) Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents. J Hazard Mater 149(3):631–642

    Article  CAS  Google Scholar 

  • Fabiańska A, Białk-Bielińska A, Stepnowski P, Stolte S, Siedlecka EM (2014) Electrochemical degradation of sulfonamides at BDD electrode: kinetics, reaction pathway and eco-toxicity evaluation. J Hazard Mater 280:579–587

    Article  Google Scholar 

  • Godfrey E, Woessner WW, Benotti MJ (2007) Pharmaceuticals in on-site sewage effluent and ground water, Western Montana. Ground Water 45(3):263–271

    Article  CAS  Google Scholar 

  • Gomes L, Miwa DW, Malpass GRP, Motheo AJ (2011) Electrochemical degradation of the dye reactive orange 16 using electrochemical flow-cell. J Braz Chem Soc 22(7):1299–1306

    Article  CAS  Google Scholar 

  • Guo W-Q, Yin R-L, Zhou X-J et al (2015) Sulfamethoxazole degradation by ultrasound/ozone oxidation process in water: kinetics, mechanisms, and pathways. Ultrason Sonochem 22:182–187

    Article  CAS  Google Scholar 

  • House J (2007) Principles of chemical kinetics, 2nd edn. Academic, San Diego

    Google Scholar 

  • Hu L, Flanders PM, Miller PL, Strathmann TJ (2007) Oxidation of sulfamethoxazole and related antimicrobial agents by TiO2 photocatalysis. Water Res 41(12):2612–2626

    Article  CAS  Google Scholar 

  • Ikehata K, Naghashkar NJ, El-Din MG (2006) Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: a review. Ozone Sci Eng 28(6):353–414

    Article  CAS  Google Scholar 

  • Khankhasaeva ST, Dambueva DV, Dashinamzhilova ET, Gil AV, Miguel AT, Maria N (2015) Fenton degradation of sulfanilamide in the presence of Al, Fe-pillared clay: catalytic behavior and identification of the intermediates. J Hazard Mater 293:21–29

    Article  CAS  Google Scholar 

  • Kim Y, Choi K, Jung J, Park S, Kim P-G, Park J (2007) Aquatic toxicity of acetaminophen, carbamazepine, cimetidine, diltiazem and six major sulfonamides, and their potential ecological risks in Korea. Environ Int 33(3):370–375

    Article  CAS  Google Scholar 

  • Kim K-S, Kam SK, Mok YS (2015) Elucidation of the degradation pathways of sulfonamide antibiotics in a dielectric barrier discharge plasma system. Chem Eng J 271:31–42

    Article  CAS  Google Scholar 

  • Klavarioti M, Mantzavinos D, Kassinos D (2009) Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ Int 35(2):402–417

    Article  CAS  Google Scholar 

  • Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: a national reconnaissance. Environ Sci Technol 36(6):1202–1211

    Article  CAS  Google Scholar 

  • Li S, Bejan D, McDowell MS, Bunce NJ (2008) Mixed first and zero order kinetics in the electrooxidation of sulfamethoxazole at a boron-doped diamond (BDD) anode. J Appl Electrochem 38:151–159

    Article  CAS  Google Scholar 

  • Lin H, Niu J, Xu J, Li Y, Pan Y (2013) Electrochemical mineralization of sulfamethoxazole by Ti/SnO2-Sb/Ce-PbO2 anode: kinetics, reaction pathways, and energy cost evolution. Electrochim Acta 97:167–174

    Article  CAS  Google Scholar 

  • Lindberg R, Jarnheimer PA, Olsen B, Johansson M, Tysklind M (2004) Determination of antibiotic substances in hospital sewage water using solid phase extraction and liquid chromatography/mass spectrometry and group analogue internal standards. Chemosphere 57(10):1479–1488

    Article  CAS  Google Scholar 

  • Malpass GRP, Motheo AJ (2001) Galvanostatic oxidation of formaldehyde-methanol solutions on Ti/Ru0.3Ti0.7O2 electrodes using a filter-press cell. J Appl Electrochem 31(12):1351–1357

    Article  CAS  Google Scholar 

  • Malpass GRP, Miwa DW, Machado SAS, Olivi P, Motheo AJ (2006) Oxidation of the pesticide atrazine at DSA® electrodes. J Hazard Mater 137(1):565–572

    Article  CAS  Google Scholar 

  • Malpass GRP, Miwa DW, Mortari DA, Machado SAS, Motheo AJ (2007) Decolorisation of real textile waste using electrochemical techniques: effect of the chloride concentration. Water Res 41(13):2969–2977

    Article  CAS  Google Scholar 

  • Malpass GRP, Miwa DW, Machado SAS, Motheo AJ (2008) Decolourisation of real textile waste using electrochemical techniques: effect of electrode composition. J Hazard Mater 156(1-3):170–177

    Article  CAS  Google Scholar 

  • Marken F, Neudeck A, Bond AM (2010) Cyclic voltammetry. In: Scholz F (ed) Electroanalytical methods. Springer, Berlin, pp 57–106

    Chapter  Google Scholar 

  • Martín de Vidales MJ, Robles-Molina J, Domínguez-Romero JC, Cañizares P, Sáez C, Molina-Díaz A, Rodrigo MA (2012) Removal of sulfamethoxazole from waters and wastewaters by conductive-diamond electrochemical oxidation. J Chem Technol Biotechnol 87:1441–1449

    Article  Google Scholar 

  • Miwa DW, Malpass GRP, Machado SAS, Motheo AJ (2006) Electrochemical degradation of carbaryl on oxide electrodes. Water Res 40(17):3281–3289

    Article  CAS  Google Scholar 

  • Motheo AJ, Pinhedo L (2000) Electrochemical degradation of humic acid. Sci Total Environ 256(1):67–76

    Article  CAS  Google Scholar 

  • Mouamfon MVN, Li W, Lu S, Qiu Z, Chen N, Lin K (2010) Photodegradation of sulphamethoxazole under UV-light irradiation at 254 nm. Environ Technol 31(5):489–494

    Article  Google Scholar 

  • Nikolaou A, Meric S, Fatta D (2007) Occurrence patterns of pharmaceuticals in water and wastewater environments. Anal Bioanal Chem 387(4):1225–1234

    Article  CAS  Google Scholar 

  • Panizza M (2010) Importance of electrode material in the electrochemical treatment of wastewater containing organic pollutants. In: Comninellis C, Chen G (eds) Electrochemistry for the environment. Springer, New York, pp 25–54

    Chapter  Google Scholar 

  • Panizza M, Cerisola G (2009) Direct and mediated anodic oxidation of organic pollutants. Chem Rev 109:6541–6569

    Article  CAS  Google Scholar 

  • Parra KN, Gul S, Aquino JM, Miwa DW, Motheo AJ (2015) Electrochemical degradation of tetracycline in artificial urine medium. J Solid State Electrochem. doi:10.1007/s10008-015-2833-8

    Google Scholar 

  • Pipi ARF, Aquino Neto S, Andrade AR (2013) Electrochemical degradation of diuron in chloride medium using DSA® based anodes. J Braz Chem Soc 24(8):1259–1266

    CAS  Google Scholar 

  • Rabiet M, Togola A, Brissaud F, Seidel JL, Budzinski H, Elbaz-Poulichet F (2006) Consequences of treated water recycling as regards pharmaceuticals and drugs in surface and ground waters of a medium-sized Mediterranean catchment. Environ Sci Technol 40(17):5282–5288

    Article  CAS  Google Scholar 

  • Rajeshwar K, Ibanez JG (1997) Environmental electrochemistry: fundamentals and applications in pollution sensors and abatement. Academic, San Diego

    Google Scholar 

  • Rajkumar D, Song BJ, Kim JG (2007) Electrochemical degradation of reactive blue 19 in chloride medium for the treatment of textile dyeing wastewater with identification of intermediate compounds. Dye Pigment 72(1):1–7

    Article  Google Scholar 

  • Richard J, Boergers A, vom Eyser C, Bester K, Tuerk J (2014) Toxicity of the micropollutants bisphenol A, ciprofloxacin, metoprolol and sulfamethoxazole in water samples before and after the oxidative treatment. Int J Hyg Environ Health 217(4–5):506–514

    Article  CAS  Google Scholar 

  • Ryan CC, Tan DT, Arnold WA (2011) Direct and indirect photolysis of sulfamethoxazole and trimethoprim in wastewater treatment plant effluent. Water Res 45(3):1280–1286

    Article  CAS  Google Scholar 

  • Segura PA, François M, Gagnon C, Sauvé S (2009) Review of the occurrence of anti-infectives in contaminated wastewaters and natural and drinking waters. Environ Health Perspect 117(5):675–684

    Article  CAS  Google Scholar 

  • Simond O, Schaller V, Comninellis C (1997) Theoretical model for the anodic oxidation of organics on metal oxide electrodes. Electrochim Acta 42(13-14):2009–2012

    Article  CAS  Google Scholar 

  • Sirés I, Brillas E (2012) Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: a review. Environ Int 40:212–229

    Article  Google Scholar 

  • Sirés I, Brillas E, Oturan MA, Rodrigo MA, Panizza M (2014) Electrochemical advanced oxidation processes: today and tomorrow. A review. Environ Sci Pollut Res Int 21:8336–8367

    Article  Google Scholar 

  • Souza FL, Aquino JM, Miwa DW, Rodrigo MA, Motheo AJ (2014) Electrochemical degradation of dimethyl phthalate ester on a DSA® electrode. J Braz Chem Soc 25(3):492–501

    CAS  Google Scholar 

  • Stackelberg PE, Furlong ET, Meyer MT, Zaugg SD, Henderson AK, Reissman DB (2004) Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant. Sci Total Environ 329(1-3):99–113

    Article  CAS  Google Scholar 

  • Trovó AG, Nogueira RFP, Agüera A, Fernandez-Alba AR, Sirtori C, Malato S (2009) Degradation of sulfamethoxazole in water by solar photo-Fenton. Chemical and toxicological evaluation. Water Res 43(16):3922–3931

    Article  Google Scholar 

  • Walter MV, Vennes JW (1985) Occurrence of multiple-antibiotic-resistant enteric bacteria in domestic sewage and oxidation lagoons. Appl Environ Microbiol 50(4):930–933

    CAS  Google Scholar 

  • Wang A, Li Y-Y, Estrada AL (2011) Mineralization of antibiotic sulfamethoxazole by photoelectro-Fenton treatment using activated carbon fiber cathode and under UVA irradiation. Appl Catal B Environ 102(3-4):378–386

    Article  CAS  Google Scholar 

  • Yang L, Yu LE, Ray MB (2008) Degradation of paracetamol in aqueous solutions by TiO2 photocatalysis. Water Res 42(13):3480–3488

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank The World Academy of Science (TWAS), Italy, and the National Council for Scientific and Technological Development (CNPq), Brazil, for financial support for this research. The authors are also grateful to BioCiTec/IQSC/USP for liquid chromatographic analyses performed on multiuser LC-MS equipment (FAPESP-2004/09498-2).

Compliance with ethical standards

All authors have approved the publication of the article in its present form.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur J. Motheo.

Additional information

Responsible editor: Bingcai Pan

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, S., Gul, S., Steter, J.R. et al. Route of electrochemical oxidation of the antibiotic sulfamethoxazole on a mixed oxide anode. Environ Sci Pollut Res 22, 15004–15015 (2015). https://doi.org/10.1007/s11356-015-4699-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4699-9

Keywords

Navigation