Skip to main content

Great Salt Lake as an Astrobiology Analogue for Ancient Martian Hypersaline Aqueous Systems

  • Chapter
  • First Online:
Great Salt Lake Biology

Abstract

Great Salt Lake (GSL), Utah, is a thalassohaline terminal lake that currently occupies the Bonneville Basin, a depression in the larger Great Basin area of the western United States. Natural processes and climate conditions create a dynamic ecosystem with shifting salinity gradients and lake levels. The hypersaline north arm of GSL provides a model for exploring the limits of life on Earth and for potential life on other space bodies, especially the ancient closed-basin systems on Mars. The north arm water features hundreds of species of halophilic microorganisms with cellular strategies that allow them to live in hypersaline environments and high doses of ultraviolet light. These microbes also survive desiccation and can become entrapped in minerals as they are formed. The modern GSL evaporitic environment, generated by halite and gypsum precipitation events, illuminates the initial steps in preservation of biological material over geologic time. These minerals accumulate on the desiccated shores, in the sediment, and in the surrounding evaporite deposits and have been shown to have biopreservation abilities, protecting halophilic cells and their molecules inside brine fluid inclusions within the crystal structure. Entrapment allows in situ analyses of microbial diversity, which can be studied as a function of salt mineral assemblage. Globally across Mars these same types of evaporite precipitation events took place in closed-basin lake systems where surface waters have evaporated, leaving behind mineral vein structures composed of gypsum and other sulfate salts that have been modified or dissolved from later fluid shallow subsurface activity. We have chosen GSL as our analogue for Martian late Noachian/early Hesperian closed basin systems due to the overlapping evaporite mineralogy and fluid activity. Here we explore the transference of biological material and organics from hypersaline GSL brine to the minerals as they form in the water. We draw parallels to the evaporites extensively mapped on Mars, which likely formed in a similar way. These observations and insights, taken together, suggest GSL is an appropriate analogue for the study of ancient salt lakes and evaporites discovered on Mars, and what is more, the halophilic archaea that live in Earth’s salty lake may be good models for life elsewhere in our solar system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adams TC (1964) Salt migration to the northwest body of Great Salt Lake, Utah. Science 143(3610):1027–1029

    CAS  PubMed  Google Scholar 

  • Allred A, Baxter BK (2019) Microbial life in hypersaline environments, Wood’s Hole Microbial Life Series. http://serc.carleton.edu/microbelife/extreme/hypersaline/index.html Accessed 25 May 2019

  • Almeida-Dalmet S, Baxter BK (2020) Unexpected complexity at salinity saturation: microbial diversity of the north arm of Great Salt Lake, Utah. In: Baxter BK, Butler JK (eds) Great Salt Lake biology: a terminal lake in a time of change. Springer, Cham

    Google Scholar 

  • Almeida-Dalmet S, Sikaroodi M, Gillevet PM, Litchfield CD, Baxter BK (2015) Temporal study of the microbial diversity of the north arm of Great Salt Lake, Utah, US. Microorganisms 3(3):310–326

    PubMed  PubMed Central  Google Scholar 

  • Andrews-Hanna JC, Lewis KW (2011) Early Mars hydrology: 2. Hydrologic evolution in the Noachian and Hesperian epochs. J Geophys Res 116:E02007. https://doi.org/10.1029/2010JE003709

    Article  Google Scholar 

  • Arts MT, Robarts RD, Kasai F, Waiser MJ, Tumber VP, Plante AJ, Rai H, De Lange HJ (2000) The attenuation of ultraviolet radiation in high dissolved organic carbon waters of wetlands and lakes on the northern Great Plains. Limnol Oceanogr 45:292–299

    CAS  Google Scholar 

  • Atwood G, Wambeam TJ, Anderson NJ (2016) The present as a key to the past: paleoshoreline correlation insights from Great Salt Lake. In: Oviatt CG, Shroder JF (eds) Lake Bonneville a scientific update. Elsevier, Dordrecht

    Google Scholar 

  • Bada JL (2001) State-of-the-art instruments for detecting extraterrestrial life. Proc Natl Acad Sci 98(3):797–800

    CAS  PubMed  Google Scholar 

  • Baxter BK, Butler JK (eds) (2020) Great salt Lake biology: a terminal lake in a time of change. Springer, Cham

    Google Scholar 

  • Baxter BK, Zalar P (2019) The extremophiles of Great Salt Lake: complex microbiology in a dynamic hypersaline ecosystem. In: Seckbach J, Rampelotto PH (eds) Model ecosystems in extreme environments. Elsevier, Dordrecht

    Google Scholar 

  • Baxter BK, Litchfield CD, Sowers K, Griffith JD, Dassarma PA, Dassarma S (2005) Microbial diversity of Great Salt Lake. Microbial diversity of Great Salt Lake. In: Gunde-Cimerman N, Oren A, Plemenitaš A (eds) Adaptation to life at high salt concentrations in archaea, bacteria, and eukarya. Cellular origin, life in extreme habitats and astrobiology, vol 9. Springer, Dordrecht, Netherlands, pp 9–25

    Google Scholar 

  • Baxter BK, Eddington B, Riddle MR, Webster TN, Avery BJ (2007) Great Salt Lake halophilic microorganisms as models for astrobiology: evidence for desiccation tolerance and ultraviolet radiation resistance. In: Hoover RB, Levin GV, Rozanov AY, Davies PCW (eds) Instruments, methods, and missions for astrobiology X, vol 6694. SPIE, Bellingham, WA, p 669415

    Google Scholar 

  • Baxter BK, Butler JK, Kleba B (2013) Worth your salt: halophiles in education. In: Vreeland RH (ed) Advances in understanding the biology of halophilic microorganisms. Springer, Dordrecht, Netherlands

    Google Scholar 

  • Beauheim RL, Roberts RM (2002) Hydrology and hydraulic properties of a bedded evaporite formation. J Hydrol 259:66–88

    Google Scholar 

  • Benison KC (2006) A Martian analogue in Kansas: comparing Martian strata with Permian acid saline lake deposits. Geology 34:385–388

    CAS  Google Scholar 

  • Benison KC, Jagniecki EA, Edwards TB, Mormile MR, Storrie-Lombardi MC (2008) “Hairy blobs:” microbial suspects preserved in modern and ancient extremely acid lake evaporites. Astrobiology 8(4):807–821

    CAS  PubMed  Google Scholar 

  • Blumthaler M, Ambach W, Ellinger R (1997) Increase in solar UV radiation with altitude. J Photochem Photobiol B Biol 39:130–134

    CAS  Google Scholar 

  • Boogaerts GL (2015) Preliminary characterization of the microbial community in the Bonneville Salt Flats. Thesis, The University of Alabama at Birmingham

    Google Scholar 

  • Bouvier A, Wadhwa M (2010) The age of the solar system redefined by the oldest Pb–Pb age of a meteoritic inclusion. Nat Geosci 3(9):637

    CAS  Google Scholar 

  • Boyd ES, Hamilton TL, Swanson KD, Howells AE, Baxter BK, Meuser JE, Posewitz MC, Peters JW (2014) [FeFe]-hydrogenase abundance and diversity along a vertical redox gradient in Great Salt Lake, USA. Int J Mol Sci 15:21947–21966

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boyd ES, Yu R-Q, Barkay T, Hamilton TL, Baxter BK, Naftz DL, Marvin-DiPasquale M (2017) Effect of salinity on mercury methylating benthic microbes and their activities in Great Salt Lake, Utah. Sci Total Environ 581–582:495–506. https://doi.org/10.1016/j.scitotenv.2016.12.157

    Article  CAS  PubMed  Google Scholar 

  • Brown AD (1976) Microbial water stress. Bacteriol Rev 40:803–846

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cannon JS, Cannon MA (2002) The southern Pacific railroad trestle - past and present. In: Gwynn JW (ed) Great Salt Lake: an overview of change. Utah Geological Survey, State of Utah Department of Natural Resources, Salt Lake City, UT, pp 283–294

    Google Scholar 

  • Carr MH, Wänke H (1992) Earth and Mars: water inventories as clues to accretional histories. Icarus 98(1):61–71

    CAS  Google Scholar 

  • Chan MA, Hinman NW, Potter-McIntyre SL, Schubert KE, Gillams RJ, Awramik SM, Boston PJ, Bower DM, Des Marais DJ, Farmer JD, Jia TZ, King PL, Hazen RM, Léveillé RJ, Papineau D, Rempfert KR, Sánchez-Román M, Spear JR, Southam G, Stern JC, Cleaves HJ (2019) Deciphering biosignatures in planetary contexts. Astrobiology 19(9):1075–1102

    Google Scholar 

  • Chen Y, Shenkar N, Ni P, Lin Y, Li S, Zhan A (2018) Rapid microevolution during recent range expansion to harsh environments. BMC Evol Biol 18(1):187

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clark BC, Morris RV, McLennan SM, Gellert R, Jolliff B, Knoll AH, Squyres SW, Lowenstein TK, Ming DW, Tosca NJ, Yen A (2005) Chemistry and mineralogy of outcrops at Meridiani Planum. Earth Planet Sci Lett 240(1):73–94

    CAS  Google Scholar 

  • Cockell CS, Raven JA (2004) Zones of photosynthetic potential on Mars and the early Earth. Icarus 169(2):300–310

    CAS  Google Scholar 

  • Cockell CS, Catling DC, Davis WL, Snook K, Kepner RL, Lee P, McKay CP (2000) The ultraviolet environment of Mars: biological implications past, present, and future. Icarus 146(2):343–359

    CAS  PubMed  Google Scholar 

  • Cohenour RE, Thompson KC (1966) Geologic setting of Great Salt Lake. Utah Geological Society, Salt Lake City, UT

    Google Scholar 

  • Collister JW, Schamel S (2002) Lipid composition of recent sediments from the Great Salt Lake. In: Gwynn JW (ed) Great Salt Lake: an overview of change. Special Publication of Utah Department of Natural Resources, Salt Lake City, UT, pp 127–142

    Google Scholar 

  • Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–187

    CAS  PubMed  Google Scholar 

  • Crosman ET, Horel JD (2009) Modis-derived surface temperature of the Great Salt Lake. Remote Sens Environ 113:73–81

    Google Scholar 

  • DasSarma S (2006) Extreme halophiles are models for astrobiology. Microbe 1(3):121–123

    Google Scholar 

  • Day J, Griffith JD, Baxter BK (2005) The revival of Halophilic Archaea from recently formed halite crystals obtained from Great Salt Lake, Utah. In: Proceedings of the National Conference on Undergraduate Research Lexington, Virginia, April 21–23

    Google Scholar 

  • Denner EB, McGentity TJ, Busse HJ, Grant WD, Wanner G, Stan-Lotter H (1994) Halococcus salifodinae sp. nov., an archaeal isolate from an Austrian salt mine. Int J Syst Evol Microbiol 44(4):774–780

    Google Scholar 

  • Domagalski JL, Orem WH, Eugster HP (1989) Organic geochemistry and brine composition in Great Salt, mono, and Walker Lakes. Geochim Cosmochim Acta 53(11):2857–2872

    CAS  Google Scholar 

  • Dundas ID, Larsen H (1963) A study on the killing by light of photosensitized cells of Halobacterium salinarium. Archices Microbiol 46:19–28

    CAS  Google Scholar 

  • Eardley AJ, Stringham B (1952) Selenite crystals in the clays of Great Salt Lake. J Sediment Petrol 22(4):234–238

    CAS  Google Scholar 

  • Ehlmann BL, Edwards CS (2014) Mineralogy of the Martian surface. Annu Rev Earth Planet Sci 42:291–315

    CAS  Google Scholar 

  • Ehlmann BL, Mustard JF, Murchie SL, Bibring JP, Meunier A, Fraeman AA, Langevin Y (2011) Subsurface water and clay mineral formation during the early history of Mars. Nature 479(7371):53–60

    CAS  PubMed  Google Scholar 

  • Fendrich C, Schink B (1988) Degradation of glucose, glycerol, and acetate by aerobic bacteria in surface water of Great Salt Lake, Utah, USA. Syst Appl Microbiol 11:94–96

    CAS  Google Scholar 

  • Fendrihan S, Stan-Lotter H (2004) Survival of halobacteria in fluid inclusions as a model of possible biotic survival in Martian halite. In: Teodorescu HN, Griebel HS (eds) Mars and planetary science and technology. Performantica Press, Iasi, Romania, pp 9–18

    Google Scholar 

  • Fendrihan S, Bérces A, Lammer H, Musso M, Rontó G, Polacsek TK, Holzinger A, Kolb C, Stan-Lotter H (2009) Investigating the effects of simulated Martian ultraviolet radiation on Halococcus dombrowskii and other extremely halophilic archaebacteria. Astrobiology 9(1):104–112

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fendrihan S, Dornmayr-Pfaffenhuemer M, Gerbl FW, Holzinger A, Grösbacher M, Briza P, Erler A, Gruber C, Plätzer K, Stan-Lotter H (2012) Spherical particles of halophilic archaea correlate with exposure to low water activity–implications for microbial survival in fluid inclusions of ancient halite. Geobiology 10(5):424–433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fish SA, Shepherd TJ, McGenity TJ, Grant WD (2002) Recovery of 16S ribosomal RNA gene fragments from ancient halite. Nature 420:432–436

    Google Scholar 

  • Friedberg EC (2003) DNA damage and repair. Nature 421:436–440

    PubMed  Google Scholar 

  • Galinski EA (1993) Compatible solutes of halophilic eubacteria: molecular principles, water-solute interaction, stress protection. Experientia 49(6–7):487–496

    CAS  Google Scholar 

  • Galinski EA (1995) Osmoadaptation in bacteria. Adv Microb Physiol 37:273–328

    CAS  Google Scholar 

  • Galinski EA, Trüper HG (1982) Betaine, a compatible solute in the extremely halophilic phototrophic bacterium Ectothiorhodospira halochloris. FEMS Microbiol Lett 13(4):357–360

    CAS  Google Scholar 

  • Gilmour D (1990) Halotolerant and halophilic microorganisms. In: Edwards C (ed) Microbiology of extreme environments. McGraw Hill, New York, pp 147–177

    Google Scholar 

  • Gornitz VM, Schreiber BC (1981) Displacive halite hoppers from the Dead Sea; some implications for ancient evaporite deposits. J Sediment Res 51(3):787–794

    Google Scholar 

  • Goudge TA, Mustard JF, Head JW, Fassett CI, Wiseman SM (2015) Assessing the mineralogy of the watershed and fan deposits of the Jezero crater paleolake system, Mars. J Geophys Res 120(4):775–805

    CAS  Google Scholar 

  • Grant WD (2004) Life at low water activity. Philos Trans R Soc Lond Ser B Biol Sci 359(1448):1249–1267

    CAS  Google Scholar 

  • Grant WD, Gemmell RT, McGenity TJ (1998) Halobacteria: the evidence for longevity. Extremophiles 2(3):279–287

    CAS  PubMed  Google Scholar 

  • Green RH, Taylor DM, Gustan EA, Fraser SJ, Olson RL (1971) Survival of microorganisms in a simulated Martian environment. Space Life Sci 3:12–24

    CAS  PubMed  Google Scholar 

  • Greer DC (1971) Annals map supplement fourteen: Great Salt Lake, Utah. Ann Assoc Am Geogr 61:214–215

    Google Scholar 

  • Griffith JD, Willcox S, Powers DW, Nelson R, Baxter BK (2008) Discovery of abundant cellulose microfibers encased in 250 Ma Permian halite: a macromolecular target in the search for life on other planets. Astrobiology 8(2):215–228

    CAS  PubMed  Google Scholar 

  • Grosberg RK, Strathmann RR (2007) The evolution of multicellularity: a minor major transition? Annu Rev Ecol Evol Syst 38:621–654

    Google Scholar 

  • Grotzinger JP, Gupta S, Malin MC, Rubin DM, Schieber J, Siebach K et al (2015) Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars. Science 350(6257):aac7575

    CAS  PubMed  Google Scholar 

  • Gruber C, Legat A, Pfaffenhuemer M, Radax C, Weidler G, Busse HJ, Stan-Lotter H (2004) Halobacterium noricense sp. nov., an archaeal isolate from a bore core of an alpine Permian salt deposit, classification of Halobacterium sp. NRC-1 as a strain of H. salinarum and emended description of H. salinarum. Extremophiles 8(6):431–439

    CAS  PubMed  Google Scholar 

  • Gwynn JW (1998) Great Salt Lake, Utah: chemical and physical variations of the brine and effects of the SPRR causeway, 1966-1996. In: Modern and ancient lake systems: new problems and perspectives. AAPG, Tulsa, OK, pp 71–90

    Google Scholar 

  • Hagen CA, Hawrylewicz EJ, Anderson BT, Cephus ML (1970) Effect of ultraviolet on the survival of bacteria airborne in simulated Martian dust clouds. Life Sci Space Res 8:53–58

    CAS  PubMed  Google Scholar 

  • Hammer UT (1986) Saline lake ecosystems of the world, vol. 59. Springer, Dordrecht

    Google Scholar 

  • Hansen AJ, Mitchell DL, Wiuf C, Paniker L, Brand TB, Binladen J, Gilichinsky DA, Rønn R, Willerslev E (2006) Crosslinks rather than strand breaks determine access to ancient DNA sequences from frozen sediments. Genetics 173(2):1175–1179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hays LE, Graham HV, Des Marais DJ, Hausrath EM, Horgan B, McCollom TM, Parenteau N, Potter-McIntyre SL, Williams AJ, Lynch KL (2017) Biosignature preservation and detection in Mars analog environments. Astrobiology 17(4):363–400

    PubMed  PubMed Central  Google Scholar 

  • Hebsgaard MB, Phillips M, Willerslev E (2005) Geologically ancient DNA: fact or artefact? Trends Microbiol 13:212–220

    CAS  PubMed  Google Scholar 

  • Holt RM, Powers DW (1990) Geological and hydrological studies of evaporites in the Northern Delaware Basin for the waste isolation pilot plant (WIPP), New Mexico: guidebook 14. In: Powers DW, Holt RM, Beauheim RL, Rempe N (eds) Geological Society of America Annual Meeting. Dallas Geological Society, Dallas, TX, pp 45–78

    Google Scholar 

  • Horneck G, Rettberg P, Reitz G, Wehner J, Eschweiler U, Strauch K, Panitz C, Starke V, Baumstark-Khan C (2001) Protection of bacterial spores in space, a contribution to the discussion on Panspermia. Origins Life Evol Biosph 31:527–547

    CAS  Google Scholar 

  • Hug LA et al (2016) A new view of the tree of life. Nat Microbiol 1:16048. https://doi.org/10.1038/nmicrobiol.2016.48

    Article  CAS  PubMed  Google Scholar 

  • Huovinen PS, Penttilä H, Soimasuo MR (2003) Spectral attenuation of solar ultraviolet radiation in humic lakes in Central Finland. Chemosphere 51:205–214

    CAS  PubMed  Google Scholar 

  • Hutt LD, Glavin DP, Bada JL, Mathies RA (1999) Microfabricated capillary electrophoresis amino acid chirality analyzer for extraterrestrial exploration. Anal Chem 71(18):4000–4006

    CAS  PubMed  Google Scholar 

  • Jakosky BM, Phillips RJ (2001) Mars’ volatile and climate history. Nature 412(6843):237

    CAS  PubMed  Google Scholar 

  • Jehlička J, Edwards HG, Oren A (2014) Raman spectroscopy of microbial pigments. Appl Environ Microbiol 80(11):3286–3295

    PubMed  PubMed Central  Google Scholar 

  • Johnson SS, Hebsgaard MB, Christensen TR, Mastepanov M, Nielsen R, Munch K, Rønn R (2007) Ancient bacteria show evidence of DNA repair. Proc Natl Acad Sci 104(36):14401–14405

    CAS  PubMed  Google Scholar 

  • Jolliff BL, Mittlefehldt DW, Farrand WH, Knoll AH, McLennan SM, Gellert R (2019) Chapter 10 - Mars exploration rover opportunity: water and other volatiles on ancient Mars in volatiles in the Martian crust 2019, 285–328. https://doi.org/10.1016/B978-0-12-804191-8.00010-6

  • Jones DL, Baxter BK (2016) Bipyrimidine signatures as a photoprotective genome strategy in G+ C-rich halophilic archaea. Life 6(3):37

    PubMed Central  Google Scholar 

  • Jones DL, Baxter BK (2017) DNA repair and photoprotection: mechanisms of overcoming environmental ultraviolet radiation exposure in halophilic archaea. Front Microbiol 8:1882

    PubMed  PubMed Central  Google Scholar 

  • Jones BF, Naftz DL, Spencer RJ, Oviatt CG (2009) Geochemical evolution of Great Salt Lake, Utah, USA. Aquat Geochem 15(1–2):95–121

    CAS  Google Scholar 

  • Keck W, Hassibe W (1979) The Great Salt Lake. U.S. Geological Survey, 25

    Google Scholar 

  • Kemp B, Tabish E, Wolford A, Jones D, Butler J, Baxter B (2018) The biogeography of Great Salt Lake halophilic archaea: testing the hypothesis of avian mechanical carriers. Diversity 10:124

    Google Scholar 

  • Kish A, DiRuggiero J (2012) DNA replication and repair in halophiles. In: Vreeland RH (ed) Advances in understanding the biology of halophilic microorganisms. Springer, Dordrecht, pp 163–198

    Google Scholar 

  • Kminek G, Bada JL, Pogliano K, Ward JF (2003) Radiation-dependent limit for the viability of bacterial spores in halite fluid inclusions and on Mars. Radiat Res 159:722–729

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kondo T, Sawatari C (1996) A Fourier transform infra-red spectroscopic analysis of the character of hydrogen bonds in amorphous cellulose. Polymer 37(3):393–399

    CAS  Google Scholar 

  • Koonin EV (2003) Comparative genomics, minimal gene-sets and the last universal common ancestor. Nat Rev Microbiol 1(2):127

    CAS  PubMed  Google Scholar 

  • Kronyak RE, Kah LC, Edgett KS, VanBommel SJ, Thompson LM, Wiens RC et al (2019) Mineral-filled fractures as indicators of multigenerational fluid flow in the Pahrump Hills member of the Murray formation, Gale crater, Mars. Earth Space Sci 6:238–265. https://doi.org/10.1029/2018EA000482

  • Kvien I, Tanem BS, Oksman K (2005) Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy. Biomacromolecules 6:3160–3165

    CAS  PubMed  Google Scholar 

  • Larsen H (1967) Biochemical aspects of extreme halophilism. Adv Microb Physiol 1:97–132

    CAS  Google Scholar 

  • Lazcano A, Forterre P (1999) The molecular search for the last common ancestor. J Mol Evol 49:411–412

    CAS  PubMed  Google Scholar 

  • Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362(6422):709–715

    CAS  Google Scholar 

  • Lindahl T, Nyberg B (1972) Rate of depurination of native deoxyribonucleic acid. Biochemistry 11(19):3610–3618

    CAS  PubMed  Google Scholar 

  • Lindsay MR, Anderson C, Fox N, Scofield G, Allen J, Anderson E, Bueter L, Poudel S, Sutherland K, Munson-McGee JH, Van Nostrand JD, Zhou J, Spear JR, Baxter BK, Lageson DR, Boyd ES (2017) Microbialite response to an anthropogenic salinity gradient in Great Salt Lake, Utah. Geobiology 15(1):131–145

    CAS  PubMed  Google Scholar 

  • Litchfield CD (1998) Survival strategies for microorganisms in hypersaline environments and their relevance to life on early Mars. Meteorit Planet Sci 33(4):813–819

    CAS  PubMed  Google Scholar 

  • Lowenstein TK (1988) Origin of depositional cycles in a Permian “saline giant”: the Salado (McNutt zone) evaporites of New Mexico and Texas. Geol Soc Am Bull 100:592–608

    CAS  Google Scholar 

  • Lowenstein TK, Schubert BA, Timofeeff MN (2011) Microbial communities in fluid inclusions and long-term survival in halite. Geol Soc Am Today 21(1):4–9

    Google Scholar 

  • Madison RJ (1970) Effects of a causeway on the chemistry of the brine in Great Salt Lake Utah. Water Resour Bull 14

    Google Scholar 

  • Maltagliati L, Montmessin F, Fedorova A, Korablev O, Forget F, Bertaux JL (2011) Evidence of water vapor in excess of saturation in the atmosphere of Mars. Science 333(6051):1868–1871

    CAS  PubMed  Google Scholar 

  • Mancinelli RL, Fahlen TF, Landheim R, Klovstad MR (2004) Brines and evaporites: analogues for Martian life. Adv Space Res 33(8):1244–1246

    CAS  Google Scholar 

  • McCready S, Marcello L (2003) Repair of UV damage in Halobacterium salinarum. Biochem Soc Trans 31(3):694–698. https://doi.org/10.1042/bst0310694

    Article  CAS  PubMed  Google Scholar 

  • McGenity TJ, Gemmell RT, Grant WD, Stan-Lotter H (2000) Origins of halophilic microorganisms in ancient salt deposits. Environ Microbiol 2(3):243–250

    CAS  PubMed  Google Scholar 

  • McLennan SM, Grotzinger JP (2008) The sedimentary rock cycle of Mars. In: The Martian surface: composition, mineralogy, and physical properties, vol 541. Cambridge University Press, Cambridge

    Google Scholar 

  • McLennan SM, Bell Iii JF, Calvin WM, Christensen PR, Clark BD, De Souza PA, Farmer J, Farrand WH, Fike DA, Gellert R, Ghosh A (2005) Provenance and diagenesis of the evaporite-bearing burns formation, Meridiani Planum, Mars. Earth Planet Sci Lett 240(1):95–121

    CAS  Google Scholar 

  • Meuser JE, Baxter BK, Spear JR, Peters JW, Posewitz MC, Boyd ES (2013) Contrasting patterns of community assembly in the stratified water column of Great Salt Lake, Utah. Microb Ecol 66(2):268–280

    CAS  PubMed  Google Scholar 

  • Milliken RE, Grotzinger JP, Thomson BJ (2010) Paleoclimate of Mars as captured by the stratigraphic record in Gale Crater. Geophys Res Lett 37(4). https://doi.org/10.1029/2009GL041870

  • Morán JI, Alvarez VA, Cyras VP, Vázquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15(1):149–159

    Google Scholar 

  • Mormile MR, Biesen MA, Gutierrez MC, Ventosa A, Pavlovich JB, Onstott TC, Fredrickson JK (2003) Isolation of Halobacterium salinarum retrieved directly from halite brine inclusions. Environ Microbiol 5(11):1094–1102

    PubMed  Google Scholar 

  • Murchie SL, Mustard JF, Ehlmann BL, Milliken RE, Bishop JL, McKeown NK, Noe Dobrea EZ, Seelos FP, Buczkowski DL, Wiseman SM, Arvidson RE (2009) A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars reconnaissance orbiter. J Geophys Res Planets 114(E2). https://doi.org/10.1029/2009JE003342

  • Naftz DL, Angeroth C, Kenney T, Waddell B, Darnall N, Silva S, Perschon C, Whitehead J (2008) Anthropogenic influences on the input and biogeochemical cycling of nutrients and mercury in Great Salt Lake, Utah, USA. Appl Geochem 23(6):1731–1744

    CAS  Google Scholar 

  • Naftz DL, Millero FJ, Jones BF, Green WR (2011) An equation of state for hypersaline water in Great Salt Lake, Utah, USA. Aquat Geochem 17:809–820

    CAS  Google Scholar 

  • Nobles DR, Romanovicz DK, Brown RM Jr (2001) Cellulose in cyanobacteria: origin of vascular plant cellulose synthase? Plant Physiol 127:529–542

    CAS  PubMed  PubMed Central  Google Scholar 

  • Norton CF, Grant WD (1988) Survival of halobacteria within fluid inclusions in salt crystals. J Gen Microbiol 134:1365–1373

    Google Scholar 

  • Norton CF, McGenity TJ, Grant WD (1993) Archaeal halophiles (halobacteria) from two British salt mines. Microbiology 139(5):1077–1081

    CAS  Google Scholar 

  • Null SE, Wurtsbaugh WA (2020) Water development, consumptive uses, and Great Salt Lake. In: Baxter BK, Butler JK (eds) Great Salt Lake biology: a terminal lake in a time of change. Springer, Cham

    Google Scholar 

  • Ojha L, Wilhelm MB, Murchie SL, McEwen AS, Wray JJ, Hanley J, Massé M, Chojnacki M (2015) Spectral evidence for hydrated salts in recurring slope lineae on Mars. Nat Geosci 8(11):829–832

    CAS  Google Scholar 

  • Okuda K, Kudlicka K, Kuga S, Brown RM Jr (1993) [beta]-Glucan synthesis in the cotton Fiber (I. identification of [beta]-1,4- and [beta]-1,3-glucans synthesized in vitro). Plant Physiol 101:1131–1142

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oren A (1993) Ecology of extremely halophilic microorganisms. In: Vreeland RH, Hochstein LI (eds) The biology of halophilic bacteria. CRC, Boca Raton, FL, pp 25–53

    Google Scholar 

  • Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63(2):334–348

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oviatt CG, Thompson RS, Kaufman DS, Bright J, Forester RM (1999) Reinterpretation of the Burmester Core, Bonneville Basin, Utah. Quat Res 52:180–184

    Google Scholar 

  • Pääbo S (1989) Ancient DNA: extraction, characterization, molecular cloning, and enzymatic amplification. Proceedings of the National Academy of Sciences of the United States of America (1939-1943). National Academy of Sciences, Washington, DC

    Google Scholar 

  • Pääbo S, Poinar H, Serre D, Jaenicke-Després V, Hebler J, Rohland N, Kuch M, Krause J, Vigilant L, Hofreiter M (2004) Genetic analyses from ancient DNA. Annu Rev Genet 38:645–679

    PubMed  Google Scholar 

  • Panieri G, Lugli S, Manzi V, Roveri M, Schreiber BC, Palinska KA (2010) Ribosomal RNA gene fragments from fossilized cyanobacteria identified in primary gypsum from the late Miocene, Italy. Geobiology 8(2):101–111

    CAS  PubMed  Google Scholar 

  • Park JS, Vreeland RH, Cho BC, Lowenstein TK, Timofeeff MN, Rosenzweig WD (2009) Haloarchaeal diversity in 23, 121 and 419 MYA salts. Geobiology 7(5):515–523

    CAS  PubMed  Google Scholar 

  • Parnell JJ, Rompato G, Crowl TA, Weimer BC, Pfrender ME (2011) Phylogenetic distance in Great Salt Lake microbial communities. Aquat Microb Ecol 64:267–273

    Google Scholar 

  • Pasteris JD, Freeman JJ, Wopenka B, Qi K, Ma Q, Wooley KL (2006) With a grain of salt: what halite has to offer to discussions on the origin of life. Astrobiology 6(4):625–643

    CAS  PubMed  Google Scholar 

  • Pawlowska MM, Butterfield NJ, Brocks JJ (2013) Lipid taphonomy in the proterozoic and the effect of microbial mats on biomarker preservation. Geology 41(2):103–106

    CAS  Google Scholar 

  • Penny D, Poole A (1999) The nature of the last universal common ancestor. Curr Opin Genet Dev 9(6):672–677

    CAS  PubMed  Google Scholar 

  • Perl SM (2019) Quantifying the threshold of biogenic detection in evaporites: constraining potential martian biomarker preservation via terrestrial analogues. University of Southern California, Ph.D. dissertation, Department of Earth Sciences

    Google Scholar 

  • Perl SM, McLennan SM, The Athena Science Team (2008) Comparison of secondary porosity and permeability from Eagle to Victoria craters, Meridiani Planum, Mars. Lunar and Planetary Science XXXIX, Abstract #2246, Lunar and Planetary Institute, Houston, TX

    Google Scholar 

  • Perl SM, McLennan SM, Grotzinger JP, Herkenhoff KE, the Athena Science Team (2007) Sedimentological constraints on an infiltrating paleowater table in the Burns Formation, Meridiani Planum, Mars. In: Seventh International Conference on Mars, Abstract #3298, Lunar and Planetary Institute, Houston (CD-ROM). http://www.lpi.usra.edu/meetings/7thmars2007/pdf/3298.pdf

  • Post FJ (1977) The microbial ecology of the Great Salt Lake. Microb Ecol 3:143–165

    CAS  PubMed  Google Scholar 

  • Post FJ, Stube JC (1988) A microcosm study of nitrogen utilization in the Great Salt Lake, Utah. Hydrobiolgia 158:89–100

    CAS  Google Scholar 

  • Powers DW, Vreeland RH, Rosenzweig WD (2001) How old are bacteria from the Permian age? Nature 411:155–156

    CAS  Google Scholar 

  • Radax C, Gruber C, Stan-Lotter H (2001) Novel haloarchaeal 16S rRNA gene sequences from Alpine Permo-Triassic rock salt. Extremophiles 5:221–228

    CAS  PubMed  Google Scholar 

  • Roedder E (1984) The fluids in salt. Am Mineral 69:413–439

    CAS  Google Scholar 

  • Rothschild LJ (1990) Earth analogues for Martian life. Icarus 88(1):246–260. https://doi.org/10.1016/0019-1035(90)90188-F

    Article  CAS  PubMed  Google Scholar 

  • Rupke AL, McDonald A (2012) Great Salt Lake Brine Chemistry Database, 1966–2011. Utah Geological Survey, State of Utah Department of Natural Resources, Salt Lake City, UT

    Google Scholar 

  • Sankaranarayanan K, Timofeeff MN, Spathis R, Lowenstein TK, Lum JK (2011) Ancient microbes from halite fluid inclusions: optimized surface sterilization and DNA extraction. PLOS One 6(6):e20683. https://doi.org/10.1371/journal.pone.0020683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satterfield CL, Lowenstein TK, Vreeland RH, Rosenzweig WD (2005) Paleobrine temperatures, chemistries, and paleoenvironments of Silurian Salina Formation F-1 salt, Michigan Basin, U.S.A., from petrography and fluid inclusions in halite. J Sediment Res 75:534–546

    CAS  Google Scholar 

  • Scharf C, Cronin L (2016) Quantifying the origins of life on a planetary scale. Proc Natl Acad Sci 113(29):8127–8132

    CAS  PubMed  Google Scholar 

  • Schopf JW, Farmer JD, Foster IS, Kudryavtsev AB, Gallardo VA, Espinoza C (2012) Gypsum-permineralized microfossils and their relevance to the search for life on Mars. Astrobiology 12(7):619–633

    CAS  PubMed  Google Scholar 

  • Schroeder GK, Lad C, Wyman P, Williams NH, Wolfenden R (2006) The time required for water attack at the phosphorus atom of simple phosphodiesters and of DNA. Proc Natl Acad Sci USA 103(11):4052–4055

    CAS  PubMed  Google Scholar 

  • Schubert BA, Lowenstein TK, Timofeeff MN (2009) Microscopic identification of prokaryotes in modern and ancient halite, Saline Valley and Death Valley, California. Astrobiology 9(5):467–482

    CAS  PubMed  Google Scholar 

  • Schubert BA, Lowenstein TK, Timofeeff MN, Parker MA (2010) Halophilic archaea cultured from ancient halite, Death Valley, California. Environ Microbiol 12(2):440–454

    CAS  PubMed  Google Scholar 

  • Schweitzer MH, Suo Z, Avci R, Asara JM, Allen MA, Arce FT, Horner JR (2007) Analyses of soft tissue from Tyrannosaurus rex suggest the presence of protein. Science 316(5822):277–280

    CAS  PubMed  Google Scholar 

  • Shroder JF, Cornwell K, Oviatt CG, Lowndes TC (2016) Landslides, alluvial fans, and dam failure at Red Rock pass: the outlet of Lake Bonneville. In: Oviatt CG, Shroder JF (eds) Lake Bonneville: a scientific update. Elsevier, Dordrecht

    Google Scholar 

  • Simoneit BR (2004) Biomarkers (molecular fossils) as geochemical indicators of life. Adv Space Res 33(8):1255–1261

    CAS  Google Scholar 

  • Skelley AM, Mathies RA (2003) Chiral separation of fluorescamine-labeled amino acids using microfabricated capillary electrophoresis devices for extraterrestrial exploration. J Chromatogr A 1021(1):191–199

    CAS  PubMed  Google Scholar 

  • Sonnenfeld P (1984) Brines and evaporites. University of California, Academic Press, Oakland, CA

    Google Scholar 

  • Spencer RJ, Eugster HP, Jones BF, Rettig SL (1985) Geochemistry of Great Salt Lake, Utah I: Hydrochemistry since 1850. Geochim Cosmochim Acta 49(3):727–737

    CAS  Google Scholar 

  • Squyres SW, Grotzinger JP, Arvidson RE, Bell JF, Calvin W, Christensen PR, Clark BC, Crisp JA, Farrand WH, Herkenhoff KE, Johnson JR (2004) In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars. Science 306(5702):709–1714

    Google Scholar 

  • Stan-Lotter H, McGenity TJ, Legat A, Denner EB, Glaser K, Stetter KO, Wanner G (1999) Very similar strains of Halococcus salifodinae are found in geographically separated Permo-Triassic salt deposits. Microbiology 145(12):3565–3574

    CAS  PubMed  Google Scholar 

  • Stan-Lotter H, McGenity TJ, Legat A, Denner EB, Glaser K, Stetter KO, Stutz J, Ackermann R, Fast JD, Barrie L (2002a) Atmospheric reactive chlorine and bromine at the Great Salt Lake, Utah. Geophys Res Lett 29(10). https://doi.org/10.1029/2002GL014812

  • Stan-Lotter H, Pfaffenhuemer M, Legat A, Busse H-J, Radax C, Gruber C (2002b) Halococcus dombrowskii sp. nov., an archaeal isolate from a Permo-Triassic alpine salt deposit. Int J Syst Bacteriol 52:1807–1814

    CAS  Google Scholar 

  • Stephens DW (1974) A summary of biological investigations concerning the Great Salt Lake, Utah (1861–1973). Great Basin Nat 34(3):Article 7

    Google Scholar 

  • Stephens DW (1990) Changes in lake levels, salinity and the biological community of Great Salt Lake (Utah, USA), 1847–1987. Dev Hydrobiol 59:139–146. https://doi.org/10.1007/BF0002694.

    Article  Google Scholar 

  • Stevenson A, Cray JA, Williams JP, Santos R, Sahay R, Neuenkirchen N, McClure CD, Grant IR, Houghton JD, Quinn JP, Timson DJ, Patil SV, Singhal RS, Antón J, Dijksterhuis J, Hocking AD, Lievens B, Rangel DEN, Voytek MA, Gunde-Cimerman N, Oren A, Timmis KN, McGenity TJ, Hallsworth JE (2015) Is there a common water-activity limit for the three domains of life? ISME J 9(6):1333–1351

    CAS  PubMed  Google Scholar 

  • Stube JC, Post FJ, Procella DB (1976) Nitrogen cycling in microcosms and application to the biology of the north arm of Great Salt Lake (Publication No. PRJSBA-016-1). Utah Water Research Laboratory, Utah State University, Logan, UT

    Google Scholar 

  • Sturm PA (1980) The Great Salt Lake brine system. In: Gwynn JW (ed) Great Salt Lake: a scientific, historical and economic overview. Utah Geological Survey, State of Utah Department of Natural Resources, Salt Lake City, UT, pp 147–162

    Google Scholar 

  • Stutz J, Ackermann R, Fast JD, Barrie L (2002) Atmospheric reactive chlorine and bromine at the Great Salt Lake, Utah. Geophys Res Lett 29(10):18–11

    Google Scholar 

  • Summons RE, Albrecht P, McDonald G, Moldowan JM (2008) Molecular biosignatures. In: Strategies of life detection. Springer, Dordrecht, pp 133–159

    Google Scholar 

  • Tazi L, Breakwell DP, Harker AR, Crandall KA (2014) Life in extreme environments: microbial diversity in Great Salt Lake, Utah. Extremophiles 18:525–535

    PubMed  Google Scholar 

  • Tosca NJ, Knoll AH, McLennan SM (2008) Water activity and the challenge for life on early Mars. Science 320(5880):1204–1207

    CAS  PubMed  Google Scholar 

  • Turk LJ (1970) Evaporation of Brine: A Field Study on the Bonneville Salt Flats, Utah. Water Resour Res 6(4):1209–1215. https://doi.org/10.1029/WR006i004p01209

    Article  Google Scholar 

  • United States Geological Survey (2019). https://ut.water.usgs.gov/greatsaltlake/salinity/. Accessed 04 Mar 2019

  • Van den Kerkhof AM, Hein UF (2001) Fluid inclusion petrography. Lithos 55(1):27–47

    Google Scholar 

  • Viviano-Beck CE, Seelos FP, Murchie SL, Kahn EG, Seelos KD, Taylor HW, Taylor K, Ehlmann BL, Wiseman SM, Mustard JF, Morgan MF (2014) Revised CRISM spectral parameters and summary products based on the currently detected mineral diversity on Mars. J Geophys Res Planets 119(6):1403–1431

    CAS  Google Scholar 

  • Vreeland RH, Rosenzweig WD, Powers DW (2000) Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature 407:897–900

    CAS  PubMed  Google Scholar 

  • Ward P (2007) Life as we do not know it: the NASA search for (and synthesis of) alien life. Penguin, New York

    Google Scholar 

  • Ward DM, Brock TD (1978) Hydrocarbon biodegradation in hypersaline environments. Appl Environ Microbiol 35:353–359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wardlaw NC, Schwerdtner WM (1966) Halite-anhydrite seasonal layers in the middle Devonian Prairie evaporite formation, Saskatchewan, Canada. Geol Soc Am Bull 77(4):331–342

    CAS  Google Scholar 

  • Weimer BC, Rompato G, Parnell J, Gann R, Ganesan B, Navas C, Gonzalez M, Clavel M, Albee-Scott S (2009) Microbial biodiversity of Great Salt Lake, Utah. Nat Resour Environ Issues 15:15–22

    Google Scholar 

  • Weiss MC, Sousa FL, Mrnjavac N, Neukirchen S, Roettger M, Nelson-Sathi S, Martin WF (2016) The physiology and habitat of the last universal common ancestor. Nat Microbiol 1(9):16116

    CAS  PubMed  Google Scholar 

  • Weitz CM, Bishop JL (2019) Formation of clays, ferrihydrite, and possible salts in Hydrae Chasma, Mars. Icarus. https://doi.org/10.1016/j.icarus.2018.09.007

  • White AL, Jahnke LS (2002) Contrasting effects of UV-A and UV-B on photosynthesis and photoprotection of β-carotene in two Dunaliella spp. Plant Cell Physiol 43(8):877–884

    CAS  PubMed  Google Scholar 

  • Wiens RC, Newell R, Clegg SM, Sharma SK, Misra A, Bernardi P, Maurice S, McCabe K, Cais P (2017, March) The SuperCam Remote Raman Spectrometer for Mars 2020. In Proceedings of the 48th Lunar and Planetary Science Conference.

    Google Scholar 

  • Wierzchos J, Ascaso C, McKay CP (2006) Endolithic cyanobacteria in Halite Rocks from the hyperarid core of the Atacama Desert. Astrobiology 6(3):415–422. https://doi.org/10.1089/ast.2006.6.415

    Article  PubMed  Google Scholar 

  • Willerslev E, Hansen AJ, Rønn R, Brand TB, Barnes I, Wiuf C, Gilichinsky D, Mitchell D, Cooper A (2004) Long-term persistence of bacterial DNA. Curr Biol 14(1):R9–R10

    CAS  PubMed  Google Scholar 

  • Winters YD (2013) Haloarchaeal survival and preservation of biomaterials (carotenoids) in ancient halite (Doctoral Dissertation). State University of New York at Binghamton, Binghamton, NY

    Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51(2):221

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wurtsbaugh WA, Miller C, Null SE, DeRose RJ, Wilcock P, Hahnenberger M, Howe F, Moore J (2017) Decline of the world’s saline lakes. Nat Geosci 10(11):816

    CAS  Google Scholar 

  • Ye C, Glotch TD (2018) Spectral properties of chloride salt-bearing assemblages: implications for detection limits of minor phases in chloride-bearing deposits on Mars. JGR Planets 124:209–222. https://doi.org/10.1029/2018JE005859

Download references

Acknowledgments

Funding for some of the work reported here was from the NASA Utah Space Grant Consortium to B.K.B. (NNX15A124H, Sub-Award 10037896WEST), and the Caltech/JPL Presidents and Directors Research Fund award to S.M.P. We would like to thank Jaimi Butler for her assistance with sample collection efforts in 2014. These samples led to the original proof of concept for in situ modern biogenic preservation and its application to potential extant halophilic life. We are also indebted to Aaron Celestian for his analyses in mineral–microbe systems, mineral precipitation experiments, and his continued collaborations in our ongoing investigations. Finally, we would like to thank Frank Corsetti for investigation guidance and support since the beginning of this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott M. Perl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Perl, S.M., Baxter, B.K. (2020). Great Salt Lake as an Astrobiology Analogue for Ancient Martian Hypersaline Aqueous Systems. In: Baxter, B., Butler, J. (eds) Great Salt Lake Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-40352-2_16

Download citation

Publish with us

Policies and ethics