Skip to main content

What’s New About the Old Bonneville Basin? Fresh Insights About the Modern Limnogeology of Great Salt Lake

  • Chapter
  • First Online:
Limnogeology: Progress, Challenges and Opportunities

Part of the book series: Syntheses in Limnogeology ((SYNLIMNO))

Abstract

Located in the Great Basin Desert within the North American continental interior, the Great Salt Lake (GSL) is a remnant of freshwater Palaeolake Bonneville, and today is the fourth largest perennial and closed basin lake in the world. More than a century of study on the Pleistocene megalake and its modern hypersaline environment (latitude 40.7° to 41.7°N, longitude 111.9° to 113.1°W) has significantly contributed to what we know about lake systems, sediments, and Quaternary climate change. Ongoing geolimnological work on GSL is lively and diverse; there is much progress, this review paper highlights select key themes of interest. Some recent studies aim to quantify hypersaline lake water properties and hydrodynamics in context of human activities (e.g., pressures from transportation, mining, development), as science-informed monitoring and managing GSL waters has become a greater priority for extractive industries, resource managers, environmentalists, and regulating officials. Copious research leverages new technologies and methods to identify and describe microbes living in the GSL and its brine, including halophiles, halobacteria, fungi, and viruses. The GSL’s self-sustaining microbial ecology drives the high productivity of the lake, which has cascading global impacts for millions of migratory birds that stop at this oasis to feed. Furthermore, the question of what extremophiles live in each niche of the modern saline ecosystem in relation to salts and carbonate organosedimentary sedimentary systems is broadly relevant for understanding the deep rock record, the nature of early Earth evolution, and for astrobiological prospection as we aim to find life on other planets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References Cited

  • Aldrich, T. W., & Paul, D. S. (2002). Avian ecology of Great Salt Lake. Great Salt Lake: An overview of change. Special publication of the Utah Department of Natural Resources, Salt Lake City, Utah, pp. 343–374.

    Google Scholar 

  • Allen, E. E., & Banfield, J. F. (2005). Community genomics in microbial ecology and evolution. Nature Reviews Microbiology, 3, 489–498.

    Article  Google Scholar 

  • Almeida-Dalmet, S., & Baxter, B. K. (2020). Unexpected complexity at salinity saturation: Microbial diversity of the North Arm of the Great Salt Lake. In B. K. Baxter & J. K. Butler (Eds.), Great Salt Lake biology: A terminal lake in a time of change (pp. 119–144). Springer. https://doi.org/10.1007/978-3-030-40352-2_5.

  • Arnow, T., & Stephens, D. W. (1990). Hydrologic characteristics of the Great Salt Lake, Utah, 1847–1986. U.S. Geological Survey Water-Supply Paper, 2332, pp. 1–32.

    Google Scholar 

  • Barnes, B. D., & Wurtsbaugh, W. A. (2015). The effects of salinity on plankton and benthic communities in the Great Salt Lake, Utah, USA: A microcosm experiment. Canadian Journal of Fisheries and Aquatic Sciences, 72(6), 807–817. https://doi.org/10.1139/cjfas-2014-0396.

    Article  Google Scholar 

  • Baumgartner, L. K., Dupraz, C., Buckley, D. H., Spear, J. R., Pace, N. R., & Visscher, P. T. (2009). Microbial species richness and metabolic activities in hypersaline microbial mats: Insight into biosignature formation through lithification. Astrobiology, 9, 861–874.

    Article  Google Scholar 

  • Baxter, B. K. (2018). Great Salt Lake microbiology: a historical perspective. International Microbiology, 21(3), 79–95. https://doi.org/10.1007/s10123-018-0008-z. Epub 2018 Jun 4.PMID: 30810951.

    Article  Google Scholar 

  • Baxter, B. K., & Butler, J. K. (2020). Great Salt Lake biology: A terminal Lake in a time of change (514 p). Cham, Springer Dordrecht. Switzerland

    Google Scholar 

  • Baxter, B. K., Litchfield, C. D., Sowers, K., Griffith, J. D., Dassarma, P. A., & Dassarma, S. (2005). Microbial diversity of Great Salt Lake. In N. Gunde-Cimerman, A. Oren, & A. Plemenitaš (Eds.), Adaptation to life at high salt concentrations in Archaea, Bacteria, and Eukarya (pp. 9–35). Dordrecht, the Netherlands: Springer.

    Google Scholar 

  • Bedford, D. (2009). The Great Salt Lake: America’s Aral Sea? Environment, 51, 8–19. https://doi.org/10.3200/ENVT.51.5.8-21.

    Article  Google Scholar 

  • Beer, L. L., Pepe-Raney, C., Zvenigorodsky, N., Nicoll, K., Meuser, J. M., Posewitz, M. C., Ghirardi, M., Baxter, B. K., & Spear, J. R. (2010). Mats, microbialites and mud: biodiversity of Great Salt Lake beyond pink water. Poster at Joint Genome Institute, User’s Meeting, March 24–26, Walnut Creek, CA. http://www.jgi.doe.gov/meetings/usermeeting/2010/JGI-UM5-abstracts.pdf

  • Beisner, K., Naftz, D. L., Johnson, W. P., & Diaz, X. (2009). Selenium and trace element mobility affected by periodic displacement of stratification in the Great Salt Lake, Utah. Science of the Total Environment, 407, 5263–5273.

    Article  Google Scholar 

  • Bekker, M. F., DeRose, R. J., Buckley, B. M., Kjelgren, R. K., & Gill, N. S. (2014). A 576-year Weber River streamflow reconstruction from tree rings for water resource risk assessment in the Wasatch front, Utah. Journal of the American Water Resources Association (JAWRA), 1–11. https://doi.org/10.1111/jawr.12191.

  • Belovsky, G. E., Stephens, D., Perschon, C., Birdsey, P., Paul, D., Naftz, D., Baskin, R., Larson, C., Mellison, C., Luft, J., Mosley, R., Mahon, H., Van Leuwen, J., & Allen, D. V. (2011). The Great Salt Lake Ecosystem (Utah, USA): Long term data and a structural equation approach. Ecosphere, 2(33), 31–40.

    Google Scholar 

  • Benison, K. C., & Bowen, B. B. (2006). Acid saline lake systems give clues about past environments and the search for life on Mars. Icarus, 183, 225–229.

    Article  Google Scholar 

  • Bioeconomics, Inc. (2012). Economic Significance of the Great Salt Lake to the State of Utah. Report Prepared for the State of Utah Great Salt Lake Advisory Council. DWQ-2012-006864, 50 p.

    Google Scholar 

  • Bosak, T., Knoll, A. H., & Petrof, A. P. (2013). The meaning of stromatolites. Annual Review of Earth and Planetary Sciences, 41, 21–44. https://doi.org/10.1146/annurev-earth-042711-105327.

    Article  Google Scholar 

  • Boyd, E. S., Yu, R.-Q., Barkay, T., Hamilton, T. L., Baxter, B. K., Naftz, D. L., & Marvin-DiPasquale, M. (2017). Effect of salinity on mercury methylating benthic microbes and their activities in Great Salt Lake, Utah. Science of the Total Environment, 581–582, 495–506. https://doi.org/10.1016/j.scitotenv.2016.12.157.

    Article  Google Scholar 

  • Cannon, J. S., & Cannon, M. A. (2002). The Southern Pacific railroad trestle – past and present. In J. W. Gwynn (Ed.), Great Salt Lake, an overview of change (pp. 283–294). Salt Lake City: Special Publication of the Utah Department of Natural Resources Salt Lake City, Utah.

    Google Scholar 

  • Carozzi, A. V. (1962). Observations on algal biostromes in the Great Salt Lake, Utah. Journal of Geology, 70, 246–252.

    Article  Google Scholar 

  • Carroll, A. R., & Bohacs, K. M. (1999). Stratigraphic classification of ancient lakes: Balancing tectonic and climatic controls. Geology, 27, 99–102.

    Article  Google Scholar 

  • Catling, D. C., Claire, M. W., Zahnle, K. J., Quinn, R. C., Clark, B. C., Hecht, M. H., & Kounaves, S. (2010). Atmospheric origins of perchlorate on Mars and in the Atacama. Journal of Geophysical Research Planets, 115, E00E11. https://doi.org/10.1029/2009JE003425.

    Article  Google Scholar 

  • Chan, M. A., Nicoll, K., Ormö, J., Okubo, C., & Komatsu, G. (2011). Utah’s geologic and geomorphic analogs to Mars—An overview for planetary exploration. In W. B. Garry & J. E. Bleacher (Eds.), Analogs for planetary exploration: Geological Society of America Special Paper 483 (pp. 349–375). https://doi.org/10.1130/2011.2483(22).

    Chapter  Google Scholar 

  • Clegg, J. S., & Trotman, C. (2002). Physiological and biochemical aspects of Artemia ecology. In T. J. Abatzopoulos, J. A. Beardmore, J. S. Clegg, P. Sorgeloos (Eds.), Artemia basic and applied biology (pp. 129–170). Dordrecht, Springer: Netherlands. 

    Google Scholar 

  • Conover, M. R., & Bell, M. E. (2020). Importance of Great Salt Lake to pelagic birds: Eared grebes, phalaropes, gulls, ducks and white pelicans. In B. K. Baxter & J. K. Butler (Eds.), Great Salt Lake biology: A terminal Lake in a time of change (pp. 263–309). Springer. https://doi.org/10.1007/978-3-030-40352-2_8.

  • Daines, L. L. (1910). Physiological experiments on some algae of Great Salt Lake. M.A. thesis, Department of Botany, University of Utah, 14 p.

    Google Scholar 

  • Diaz, X., Johnson, W. P., & Naftz, D. L. (2009). Selenium mass balance in the Great Salt Lake, Utah. Science of the Total Environment, 407, 2333–2341.

    Article  Google Scholar 

  • Dodson, S., & Frey, D. (2001). Cladoceran and other branchiopoda. In J. H. Thorp & A. P. Covich (Eds.), Ecology and classification of North American freshwater invertebrates (pp. 723–776). San Diego, Academic Press. Ch. 20.

    Google Scholar 

  • Domagalski, J. L., Orem, W. H., & Eugster, H. P. (1989). Organic geochemistry and brine composition in Great Salt, Mono, and Walker Lakes. Geochimica et Cosmochimica Acta, 53, 2857–2872.

    Article  Google Scholar 

  • Dundas, I. (1998). Was the environment for primordial life hypersaline? Extremophiles, 2, 375–377.

    Article  Google Scholar 

  • Dunham, E. C., Fones, E. M., Fang Yihang, L. M. R., Steuer, C., Fox, N., Willis, M., Walsh, A., Colman, D. R., Baxter, B. K., Lageson, D., Mogk, D., Rupke, A., Huifang, X., & Boyd, E. S. (2020). An ecological perspective on dolomite formation in Great Salt Lake, Utah. Frontiers in Earth Science, 8, 24. https://doi.org/10.3389/feart.2020.00024. https://www.frontiersin.org/article/10.3389/feart.2020.00024.

    Article  Google Scholar 

  • Eardley, A. J. (1938). Sediments of Great Salt Lake, Utah. AAPG Bulletin, 22, 1305–1411.

    Google Scholar 

  • Foster, J. S., & Mobberley, J. M. (2010). Past, present, and future: Microbial mats as models for astrobiological research. In J. Seckbach & A. Oren (Eds.), Cellular origin, life in extreme habitats and astrobiology: Microbial Mats: Modern and ancient microorganisms in stratified systems (pp. 563–582). Dordrecht, Springer.

    Google Scholar 

  • Frederick, E. (1924). On the bacterial flora of Great Salt Lake and the viability of other microorganisms in Great Salt Lake water. M.S. thesis, Department of Bacteriology, University of Utah, 73 p.

    Google Scholar 

  • Freeman, M. L. (2014). Flow reversal events and statistical modeling of flow dynamics of hypersaline water across a constructed causeway, Great Salt Lake, Utah, USA. MS Thesis, University of Utah, 76 p. https://collections.lib.utah.edu/details?id=196660&facet_setname_s=%22ir_etd%22&q=saltair

  • Frémont, J. C. (1845). Report of the exploring expedition to the Rocky Mountains in the year 1842 and to Oregon and North California in the years 1843–44: printed by order of the Senate of the United States (Vol. 174). Washington: Gales & Seaton.

    Google Scholar 

  • GBIF Secretariat (2019). GBIF Backbone Taxonomy. Checklist dataset https://doi.org/10.15468/39omei accessed via GBIF.org on 2021-01-11.

  • Gilbert, G. K. (1890). Lake Bonneville: U.S. Geological Survey, Monograph 1, 248 p.

    Google Scholar 

  • Glotch, T. D., Bandfield, J. L., Tornabene, L. L., et al. (2010). Distribution and formation of chlorides and phyllosilicates in Terra Sirenum, Mars. Geophysical Research Letters, 37, L16202.

    Article  Google Scholar 

  • Grant, W. D. (2004). Life at low water activity. Philosophical Transactions of the Royal Society B, 359, 1249–1267.

    Article  Google Scholar 

  • Grayson, D. K. (2011). The Great Basin: A natural prehistory (432 p). Berkeley: University of California Press.

    Book  Google Scholar 

  • Gwynn, J. W. (2002). The railroads proximate to Great Salt Lake, Utah. In J. W. Gwynn (Ed.), Great Salt Lake, an overview of change (pp. 273–281). Salt Lake City: Special Publication of the Utah Department of Natural Resources.

    Chapter  Google Scholar 

  • Gwynn, J. W. (2012). A lake divided—a history of the Southern Pacific Railroad causeway and its effect on Great Salt Lake, Utah. http://geology.utah.gov/utahgeo/gsl/lakedivided.htm.

  • Hahl, D. C., & Handy, A. H. (1969). Chemical and physical variations of the brine, Great Salt Lake, Utah, 1963-1966. Utah Geological Survey Water Resource Bulletin, 12, 1–33.

    Google Scholar 

  • Hahnenberger, M., & Nicoll, K. (2012). Meteorological characteristics of dust storm events in the eastern Great Basin of Utah, U.S.A. Atmospheric Environment, 60, 601–612. https://doi.org/10.1016/j.atmosenv.2012.06.029.

    Article  Google Scholar 

  • Hahnenberger, M., & Nicoll, K. (2014). Geomorphic and land cover identification of dust sources in the eastern Great Basin of Utah, U.S.A. Geomorphology, 204, 657–672. https://doi.org/10.1016/j.geomorph.2013.09.013.

    Article  Google Scholar 

  • Halley, R. B. (1976). Textural variation within Great Salt Lake algal mounds. Developments in Sedimentology, 20, 435–445.

    Google Scholar 

  • Hecht, M. H., Kounaves, S. P., Quinn, R. C., West, S. J., Young, S. M. M., Ming, D. W., Catling, D. C., Clark, B. C., Boynton, W. V., Hoffman, J., Deflores, L. P., Gospodinova, K., Kapit, J., & Smith, P. H. (2009). Detection of perchlorate and the soluble chemistry of Martian soil at the Phoenix lander site. Science, 325, 64–67. https://doi.org/10.1126/science.1172466pmid:19574385.

    Article  Google Scholar 

  • Hoehler, T. M. (2001). The role of microbial mats in the early Earth. Nature, 412, 324–327.

    Article  Google Scholar 

  • Horgan, B. H. N., Anderson, R. B., Dromart, G., Amador, E. S., & Rice, M. S. (2020). The mineral diversity of Jezero crater: Evidence for possible lacustrine carbonates on Mars. Icarus, 339, 113526. https://doi.org/10.1016/j.icarus.2019.113526.

    Article  Google Scholar 

  • Ingalls, M., Frantz, C. M., Snell, K. E., & Trower, E. J. (2020). Carbonate facies-specific stable isotope data record climate, hydrology, and microbial communities in Great Salt Lake, UT. Geobiology, 00, 1–28. https://doi.org/10.1111/gbi.12386.

    Article  Google Scholar 

  • Ingvorsen, K., & Brandt, K. K. (2002). Anaerobic microbiology and sulfur cycling in hypersaline sediments with special reference to Great Salt Lake. In J. W. Gwynn (Ed.), Great salt Lake, an overview of change (pp. 387–400). Salt Lake City: Special Publication of the Utah Department of Natural Resources.

    Google Scholar 

  • Jakobsen, T. F., Kjeldsen, K. U., & Ingvorsen, K. (2006). Desulfohalobium utahense sp. nov., a moderately halophilic, sulfate-reducing bacterium isolated from Great Salt Lake. Journal of Systematic and Evolutionary Microbiology, 56, 2063–2069.

    Article  Google Scholar 

  • Javor, B. (1989). Hypersaline environments. Microbiology and biogeochemistry. Berlin: Springer.

    Book  Google Scholar 

  • Jones, E. F., & Wurtsbaugh, W. A. (2014). The Great Salt Lake’s monimolimnion and its importance for mercury bioaccumulation in brine shrimp (Artemia franciscana). Limnology and Oceanography, 59, 141–155.

    Article  Google Scholar 

  • Jellison, R., Williams, W. D., Timms, B., Alcocer, J., Aladin, N. V. (2008). Salt lakes: values, threats, and future. Pages 94–110 in N. V. C. Polunin, editor. Aquatic ecosystems: trends and global prospects. Cambridge University Press, Cambridge, United Kingdom. p. 94–110. https://doi.org/10.1017/CBO9780511751790.010

  • Kanik, M., Munro-Ehrlich, M., Fernandes-Martins, M. C., Payne, D., Gianoulias, K., Keller, L., Kubacki, A., Lindsay, M. R., Baxter, B. K., Vanden Berg, M. D., Colman, D. R., & Boyd, E. S. (2020). Unexpected abundance and diversity of phototrophs in Mats from morphologically variable Microbialites in Great Salt Lake, Utah. Applied and Environmental Microbiology, 86(10), e00165-20. https://doi.org/10.1128/AEM.00165-20. Print 2020 May 5 (embargoed). PMID: 32198176.

    Article  Google Scholar 

  • Kjeldsen, K. U., Loy, A., Jakobsen, T. F., Thomsen, T. R., Wagner, M., & Ingvorsen, K. (2007). Diversity of sulfate-reducing bacteria from an extreme hypersaline sediment, Great Salt Lake (Utah). FEMS Microbiology Ecology, 60, 287–298.

    Article  Google Scholar 

  • Larson, C. A., & Belovsky, G. E. (2013). Salinity and nutrients influence species richness and evenness of phytoplankton communities in microcosm experiments from Great Salt Lake, Utah, USA. Journal of Plankton Research, 35, 1154–1166.

    Article  Google Scholar 

  • Lee, C. J. D., McMullan, P. E., O’Kane, C. J., Stevenson, A., Santos, I. C., Roy, C., Ghosh, W., Mancinelli, R. L., Mormile, M. R., McMullan, G., Banciu, H. L., Fares, M. A., Benison, K. C., Oren, A., Dyall-Smith, M. L., & Hallsworth, J. E. (2018). NaCl-saturated brines are thermodynamically moderate, rather than extreme, microbial habitats. FEMS Microbiology Reviews, 42, 672–693. https://doi.org/10.1093/femsre/fuy026.

    Article  Google Scholar 

  • Lindsay, M. R., Anderson, C., Fox, N., Scofield, G., Allen, J., Anderson, E., Bueter, L., Poudel, S., Sutherland, K., Munson-McGee, J. H., Van Nostrand, J. D., Zhou, J., Spear, J. R., Baxter, B. K., Lageson, D. R., & Boyd, E. S. (2017). Microbialite response to an anthropogenic salinity gradient in Great Salt Lake, Utah. Geobiology, 15(1), 131–145. https://doi.org/10.1111/gbi.12201. Epub 2016 Jul 14. PMID: 27418462.

    Article  Google Scholar 

  • Lindsay, M. R., Johnston, R. E., Baxter, B. K., & Boyd, E. S. (2019). Effects of salinity on microbialite-associated production in Great Salt Lake, Utah. Ecology, 100(3), e02611. https://doi.org/10.1002/ecy.2611. Epub 2019 Feb 21. PMID: 30636291.

    Article  Google Scholar 

  • Lindsay, M. R., Dunham, E. C., & Boyd, E. S. (2020). Microbialites of Great Salt Lakes. In B. K. Baxter & J. K. Butler (Eds.), Great salt Lake biology: A terminal Lake in a time of change (pp. 87–118). Springer. https://doi.org/10.1007/978-3-030-40352-2_4.

  • Litchfield, C. D., & Gillevet, P. M. (2002). Microbial diversity and complexity in hypersaline environments. Journal of Industrial Microbiology & Biotechnology, 28, 48–56.

    Article  Google Scholar 

  • Louderback, L. A., & Rhode, D. E. (2009). 15,000 years of vegetation change in the Bonneville basin: The blue Lake pollen record. Quaternary Science Reviews, 28(3–4), 308–326., ISSN 0277-3791. https://doi.org/10.1016/j.quascirev.2008.09.027.

    Article  Google Scholar 

  • Loving, B. L., Waddell, K. M., & Miller, C. W. (2000). Water and salt balance of Great Salt Lake, Utah, and simulation of water and salt movement through the causeway, 1987–1998. U.S. Geological Survey Water-Resources Investigations Report. (2000–4221).

    Google Scholar 

  • Lyle, M., et al. (2012). Out of the tropics: The Pacific, Great Basin lakes, and late Pleistocene water cycle in the Western United States. Science, 337, 1629–1633.

    Article  Google Scholar 

  • Madison, R. J. (1970). Effects of a causeway on the chemistry of the brine in Great Salt Lake, Utah. Utah Geological Survey Water-Resource Bulletin, 14, 52.

    Google Scholar 

  • Mancinelli, R. L. (2005a). Microbial life in brines, evaporites and saline sediments: The search for life on Mars. In T. Tokano (Ed.), Water on Mars and life Berlin (pp. 277–298). Germany: Springer.

    Chapter  Google Scholar 

  • Mancinelli, R. L. (2005b). Halophiles: A terrestrial analog for life in brines on Mars. In N. Gunde-Cimerman, A. Plemenitaš, & A. Oren (Eds.), Adaptation to life at high salt concentrations in archaea, Bacteria and Eukarya. Volume 9 in the series on cellular origins, life in extreme habitats and astrobiology (COLE) (pp. 137–149). Dordrecht, the Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Marden, B.; Brown, P.; and Bosteels, T. 2020. Great salt Lake Artemia: Ecosystem functions and services with a global reach. in Baxter, B.K. and Butler, J.K.. Great Salt Lake biology: A terminal Lake in a time of change. Springer 175–237. https://doi.org/10.1007/978-3-030-40352-2_7.

  • Maszczyk, P., & Wurtsbaugh, W. (2017). Brine shrimp grazing and fecal production increase sedimentation to the deep brine layer (monimolimnion) of Great Salt Lake, Utah. Hydrobiologia, 802, 7–22. https://doi.org/10.1007/s10750-017-3235-y.

    Article  Google Scholar 

  • Meuser, J. E., Baxter, B. K., Spear, J. R., Peters, J. W., Posewitz, M. C., & Boyd, E. S. (2013). Contrasting patterns of community assembly in the stratified water column of Great Salt Lake, Utah. Microbial Ecology, 66, 268–280.

    Article  Google Scholar 

  • Mohammed, I. N., & Tarboton, D. G. (2011). On the interaction between bathymetry and climate in the system dynamics and preferred levels of the Great Salt Lake. Water Resources Research, 47, W02525. https://doi.org/10.1029/2010WR009561.

    Article  Google Scholar 

  • Mohammed, I. N., & Tarboton, D. G. (2012). An examination of the sensitivity of the Great Salt Lake to changes in inputs. Water Resources Research, 48(11). https://doi.org/10.1029/2012WR011908.

  • Møller, M. F., Kjeldsen, K. U., & Ingvorsen, K. (2010). Marinimicrobium haloxylanilyticum sp. nov., a new moderately halophilic, polysaccharide degrading bacterium isolated from Great Salt Lake, Utah. Antonie Van Leeuwenhoek, 98, 553–565.

    Article  Google Scholar 

  • Moon, Y. I., Lall, U., & Kwon, H.-H. (2008). Non-parametric short-term forecasts of the Great Salt Lake using atmospheric indices. Journal of Climatology, 28, 361–370. https://doi.org/10.1002/joc.1533.

    Article  Google Scholar 

  • Naftz, D. L., Johnson, W. P., Freeman, M., Beisner, K., & Diaz, X. (2008). Estimation of selenium loads entering the South Arm Of Great Salt Lake, Utah (pp. 1–50). Reston: US Geological Survey.

    Google Scholar 

  • Naftz, D. L., Millero, F. J., Jones, B. F., & Green, W. R. (2011). An equation of state for hypersaline water in Great Salt Lake, Utah, USA. Aquatic Geochemistry, 17, 809–820.

    Article  Google Scholar 

  • Nicoll, K., & Finkelstein, D. B. (2014). Saline Lakes...A logical step in exploring habitability of “the final frontier”. PALAIOS, 29, 231–232. https://doi.org/10.2110/pal.2014.s0614.

  • Nicoll, K., & Keen-Zebert, A. (2016). Initial chronological determinations at an archaic site discovered near Stockton, Utah. Journal of Archaeological Science: Reports, 6, 418–423. https://doi.org/10.1016/jasrep.2016.02.026.

    Article  Google Scholar 

  • Nicoll, K., Yentsch, A., Rood, R., & Jones, K. P. (2014). Site formation and archaic geoarchaeology along the Jordan River, Great Salt Lake Valley, Utah USA. Quaternary International, 342, 214–225. https://doi.org/10.1016/j.quaint.2013.08.044.

    Article  Google Scholar 

  • Noffke, N. (2008). Turbulent lifestyle: Microbial mats on Earth’s sandy beaches – Today and 3 billion years ago. GSA Today, 18, 4–9.

    Google Scholar 

  • Noffke, N., Christian, D., Wacey, D., & Hazen, R. M. (2013). Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48 billion-year-old dresser formation, Pilbara, Western Australia. Astrobiology, 13, 103–1124. https://doi.org/10.1089/ast.2013.1030.

    Article  Google Scholar 

  • Null, S. E., & Wurtsbaugh, W. A. (2020). Water development, consumptive water uses and Great Salt Lake, pp. 1–21. In B. K. Baxter & J. K. Butler (Eds.), Great Salt Lake biology: A terminal Lake in a time of change (pp. 263–309). Springer. https://doi.org/10.1007/978-3-030-40352-2_1.

  • Ogata, E. M., Wurtsbaugh, W. A., Smith, T. N., & Durham, S. L. (2017). Bioassay analysis of nutrient and Artemia franciscana effects on trophic interactions in the Great Salt Lake, USA. Hydrobiologia, 788, 1–16.

    Article  Google Scholar 

  • Ohlendorf, H. M., DenBleyker, J., Moellmer, W. O., & Miller, T. (2009). Development of a site-specific standard for selenium in open waters of Great Salt Lake, Utah. Natural Resources and Environmental Issues, 15, Article 4. Available at: https://digitalcommons.usu.edu/nrei/vol15/iss1/4

  • Oren, A. (2009). Microbial diversity and microbial abundance in salt-saturated brines: Why are the waters of hypersaline lakes red? Natural Resources and Environmental Issues, 15, 247–255.

    Google Scholar 

  • Orosei, R., Lauro, S. E., Pettinelli, E., Cicchetti, A., Coradini, M., Cosciotti, B., Di Paolo, F., Flamini, E., Mattei, E., Pajola, M., Soldovieri, F., Cartacci, M., Cassenti, F., Frigeri, A., Giuppi, S., Martufi, R., Masdea, A., Mitri, G., Nenna, C., Noschese, R., Restano, M., & Seu, R. (2018). Radar evidence of subglacial liquid water on Mars. Science, 361, 490–493. https://doi.org/10.1126/science.aar7268.

    Article  Google Scholar 

  • Oviatt, C. G., & Shroder, J. (2016). Lake Bonneville: A scientific update. Developments in Earth Surface Processes (Vol. 20). Edited by Charles G. Oviatt, John F. Shroder. Amsterdam/New York: Elsevier, Pages 1–659 

    Google Scholar 

  • Oviatt, C. G., Madsen, D. B., Miller, D. M., Thompson, R. S., & McGeehin, J. P. (2015). Early Holocene Great Salt Lake, USA. Quaternary Research, 84, 57–68.

    Article  Google Scholar 

  • Peterson, C., & Gustin, M. (2008). Mercury in the air, water and biota at the Great Salt Lake (Utah, USA). Science of the Total Environment, 405, 255–268.

    Article  Google Scholar 

  • Post, F. J. (1977). Microbial ecology of Great Salt Lake. Microbial Ecology, 3, 143–165.

    Article  Google Scholar 

  • Post, F. J. (1980) Biology of the north arm. In: Gwynn JW (ed) Great Salt Lake: a scientific, historical and economic overview. Utah Geological and Mineral Survey, Salt Lake City, pp 314–321.

    Google Scholar 

  • Pugin, B., Blamey, J. M., Baxter, B. K., & Wiegel, J. (2012). Amphibacillus cookii sp. nov., a facultatively aerobic, spore-forming, moderately halophilic, alkalithermotolerant bacterium. International Journal of Systematic and Evolutionary Microbiology, 62, 2090–2096.

    Article  Google Scholar 

  • Reheis, M. C., Adams, K. D., Oviatt, C. G., Bacon, S. N. (2014). Pluvial lakes in the Great Basin of the western United States: a view from the outcrop. Quaternary Science Reviews 97, 33–57. https://doi.org/10.1016/j.quascirev.2014.04.012

  • Roberts, A. J. (2013). Avian diets in a saline ecosystem: Great Salt Lake, Utah, USA. Human–Wildlife Interactions, 7, 158–168. https://digitalcommons.usu.edu/hwi/vol7/iss1/15.

    Google Scholar 

  • Roney, H. C., Booth, G. M., & Cox, P. A. (2009). Competitive exclusion of cyanobacterial species in the Great Salt Lake. Extremophiles, 13, 355–361.

    Article  Google Scholar 

  • Rummel, J. D., Beaty, D. W., Jones, M. A., et al. (2014). A new analysis of Mars “special regions”: Findings of the second MEPAG Special Regions Science Analysis Group (SR-SAG2). Astrobiology, 14, 887–968.

    Article  Google Scholar 

  • Shope, C. L., & Angeroth, C. E. (2015). Calculating salt loads to Great Salt Lake and the associated uncertainties for water year 2013; updating a 48 year old standard. Science of the Total Environment, 536, 391–405. https://doi.org/10.1016/j.scitotenv.2015.07.015.

    Article  Google Scholar 

  • Skorko, K. W., Jewell, P. W., & Nicoll, K. (2012). Fluvial response to an historic low stand of the Great Salt Lake, Utah. Earth Surface Processes and Landforms, 37, 143–156. http://onlinelibrary.wiley.com/doi/10.1002/esp.2226/abstract.

    Article  Google Scholar 

  • Sorenson, E. D., & Hoven, H. M. (2020). Great Salt Lake shorebirds, their habitats, and food base. In B. K. Baxter & J. K. Butler (Eds.), Great Salt Lake biology: A terminal Lake in a time of change (pp. 263–309). Springer. https://doi.org/10.1007/978-3-030-40352-2_9.

  • Squyres, S. W., Grotzinger, J. P., Arvidson, R. E., et al. (2004). In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars. Science, 306, 1709–1714.

    Article  Google Scholar 

  • Stansbury, H. (1855). Exploration of the valley of the Great Salt Lake: Including a reconnaissance of a new route through the Rocky Mountains. Philadelphia: Lippincott, Gramabo & Co.

    Google Scholar 

  • Stevenson, A., Burkhardt, J., Cockell, C. S., et al. (2015). Multiplication of microbes below 0.690 water activity: Implications for terrestrial and extraterrestrial life. Environmental Microbiology, 17, 257–277.

    Article  Google Scholar 

  • Tazi, L., Breakwell, D. P., Harker, A. R., & Crandall, K. A. (2014). Life in extreme environments: Microbial diversity in Great Salt Lake, Utah. Extremophiles, 18, 525–535.

    Article  Google Scholar 

  • Torrentera, L., & Dodson, S. I. (2004). Ecology of the brine shrimp Artemia in the Yucatan, Mexico, salterns. Journal of Plankton Research, 26, 617–624.

    Article  Google Scholar 

  • Tosca, N. J., Knoll, A. H., & McLennan, S. M. (2008). Water activity and the challenge for life on early Mars. Science, 353, 1204–1207.

    Article  Google Scholar 

  • Tsai, C. R., Garcia, J. L., Patel, B. K., Cayol, J. L., Baresi, L., & Mah, R. A. (1995). Haloanaerobium alcaliphilum sp. nov., an anaerobic moderate halophile from the sediments of Great Salt Lake, Utah. International Journal of Systematic Bacteriology, 45, 301–307.

    Article  Google Scholar 

  • Union Pacific Railroad. (2013). USACE notification re imminent failure of east culvert. Union Pacific Railroad. http://www.waterquality.utah.gov/PublicNotices/docs/2013/UPRRCauseway/UPRRLtr21Oct2013USACENotificationreImminentFailureofEastCulvertFinal201310212.pdf

  • Utah Division of Forestry, Fire and State Lands. (2012). Draft Final Great Salt Lake Comprehensive Management Plan. 305.

    Google Scholar 

  • Vanden Berg, M. D., Chidsey, T. C., Jr., Eby, D. E., & Kelln, W. (2015). Characterization of microbialites in Bridger Bay, Antelope Island, Great Salt Lake, Utah. In M. R. Rosen, A. Cohen, M. Kirby, E. Gierlowski-Kordesch, S. Starratt, B. L. Valero Garcés, & J. Varekamp (Eds.), Sixth International Limnogeology Congress—Abstract Volume, Reno, Nevada, June 15–19, 2015: U.S. Geological Survey Open-File Report 2015–1092, pp. 216–217, https://doi.org/10.3133/ofr20151092

  • Vennin, E., Bouton, A., Bourillot, R., Pace, A., Roche, A., Brayard, A., Thomazo, C., Virgone, A., Gaucher, E. C., Desaubliaux, G., & Visscher, P. T. (2019). The lacustrine microbial carbonate factory of the successive Lake Bonneville and Great Salt Lake, Utah, USA. Sedimentology, 66, 165–204. https://doi.org/10.1111/sed.12499.

    Article  Google Scholar 

  • Waddell, K. M., & Bolke, E. L. (1973). The effects of restricted circulation on the salt balance of Great Salt Lake, Utah. Utah Geological Survey Water-Resource Bulletin, 18, 54.

    Google Scholar 

  • Waddell, K. M., & Fields, F. K. (1977). Model for evaluating the effect of dikes on the water and salt balance of Great Salt Lake, UT. Utah Geological Survey Water-Resource Bulletin, 21, 54.

    Google Scholar 

  • Wainø, M., Tindall, B. J., & Ingvorsen, K. (2000). Halorhabdus utahensis gen. nov., sp. nov., an aerobic, extremely halophilic member of the Archaea from Great Salt Lake, Utah. International Journal of Systematic and Evolutionary Microbiology, 50, 183–190.

    Article  Google Scholar 

  • Warren, J. K. (2010). Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits. Earth Science Reviews, 98, 217–268.

    Article  Google Scholar 

  • Warren, J. K. (2016). Evaporites: A geological compendium (2nd ed., 1813 pp). Berlin: Springer.

    Book  Google Scholar 

  • Weimer, B. C., Rompato, G., Parnell, J., et al. (2009). Microbial biodiversity of Great Salt Lake, Utah. Natural Resources and Environmental Issues, 15, 15–22.

    Google Scholar 

  • Wold, S. R., Thomas, B. E., & Waddell, K. M. (1997). Water and salt balance of the Great Salt Lake, Utah, and simulation of water and salt movement through the causeway. U.S. Geological Survey Water-Supply Paper, 2450, 64.

    Google Scholar 

  • Wurtsbaugh, W. A. (2009). Biostromes, brine flies, birds and the bioaccumulation of selenium in great salt Lake, Utah. Natural Resources & Environment, 15, 2.

    Google Scholar 

  • Wurtsbaugh, W. A., & Berry, T. S. (1990). Cascading effects of decreased salinity on the plankton chemistry and physics of the Great Salt Lake (Utah). Canadian Journal of Fisheries and Aquatic Science, 47(1), 100–109.

    Article  Google Scholar 

  • Wurtsbaugh, W. A., & Gliwicz, Z. M. (2001). Limnological control of brine shrimp population dynamics and cyst production in the Great Salt Lake, Utah. Hydrobiologia, 466, 119–132.

    Article  Google Scholar 

  • Wurtsbaugh, W. A., Gardberg, J., & Izdepski, C. (2011). Biostrome communities and mercury and selenium bioaccumulation in the Great Salt Lake (Utah, USA). Science of the Total Environment, 409, 4425–4434.

    Article  Google Scholar 

  • Yang, S., Johnson, W. P., Black, F., Rowland, R., Rumsey, C., & Piskadlo, A. (2020). Response of density stratification, aquatic chemistry, and methylmercury to engineered and hydrologic forcings in an endorheic Lake (Great Salt Lake, U.S.A.). Limnology and Oceanography, 65, 915–926. https://doi.org/10.1002/lno.11358.

    Article  Google Scholar 

Download references

Acknowledgments

This paper is written with thanks to, and admiration for Beth G.-K. The author thanks the two reviewers for their helpful comments and feedback. Special thanks to the editors for convening this volume – and for support of friends Michael, Dave, and Lisa.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nicoll, K. (2021). What’s New About the Old Bonneville Basin? Fresh Insights About the Modern Limnogeology of Great Salt Lake. In: Rosen, M.R., Finkelstein, D.B., Park Boush, L., Pla-Pueyo, S. (eds) Limnogeology: Progress, Challenges and Opportunities . Syntheses in Limnogeology. Springer, Cham. https://doi.org/10.1007/978-3-030-66576-0_9

Download citation

Publish with us

Policies and ethics