Advertisement

Medium Access Control Protocols for Mission Critical Wireless Sensor Networks

  • Gayatri Sakya
  • Pradeep Kumar SinghEmail author
Chapter
  • 33 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1132)

Abstract

Wireless sensor networks have variety of applications in military and civilian tracking, habitat monitoring, patient monitoring and industrial control and automation. Many protocols have been developed to support these applications. For applications such as gas leakage detection system, volcanic activities alerts, fire safety systems, border surveillance and tsunami alert systems where apart from energy saving, timely information delivery is also important, an efficient MAC protocol is required. These are termed as mission critical applications. Reducing energy consumption, efficient utilization of bandwidth, Throughput, Latency, Scalability and Adaptability, Reliability, and Degree of Intelligence are the most important parameters of a good MAC protocol designed for mission critical applications. The degree of intelligence is the parameter which is novel to these protocols and will be provided by introducing the Machine learning and Artificial Intelligence. The chapter addresses the design issues for MAC layer, different MAC protocols designed for wireless sensor networks, mission Critical Applications of WSNs and the performance parameters required for Mission Critical MAC Protocols. Various MAC protocols based on contention based and contention free channel access mechanism are discussed in detail in the chapter. Now we are in the era, where each application demands intelligence and automation. For this purpose, there is need to design smart protocols adaptive to critical scenarios. In the chapter the existing MAC protocols and the performance parameters for a mission critical MAC protocol such as throughput, packet delivery ratio, packet loss rate, efficient bandwidth utilization, scalability and adaptability are discussed. A review of machine learning techniques is also done which shows that MAC protocols may be enhanced for their suitability in mission critical scenarios. The chapter also discussed the case study of one mission critical MAC protocol and its comparison with SMAC protocol. The application of mission critical MAC protocol in pipeline leakage detection system is also discussed with its design model. Finally the chapter ends with discussion of recent issues and challenges and future scope of intelligent ML based MAC protocol design.

Keywords

Mission critical Wireless sensor networks MAC protocols Machine learning techniques Performance parameters Pipeline leakage 

Notes

Acknowledgement

This research is funded by AKTU Lucknow (U.P.) as award of grant under “Collaborative Research Innovation Program (CRIP) funding through TEQUIP-III of AKTU” 2019-20. The reference number of grant is AKTU/Dean-PGSR/2019/CRIP/44.

References

  1. 1.
    Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor networks. IEEE Commun. Mag. 40(8), 102–114 (2002)CrossRefGoogle Scholar
  2. 2.
    Yick, J., Mukherjee, B., Ghosal, D.: Wireless sensor network survey. Comput. Netw. 52(12), 2292–2330 (2008)CrossRefGoogle Scholar
  3. 3.
    Kazem, S., Daniel, M., Taineb, Z.: Wireless Sensor Networks: Technology, Protocols, and Applications. Wiley, Hoboken (2007)Google Scholar
  4. 4.
    LAN-MAN Standards Committee of the IEEE Computer Society, Wireless LAN medium access control (MAC) and physical layer (PHY) specification. IEEE, New York (1997). (IEEE Std 802.11-1997 edition)Google Scholar
  5. 5.
    Demirkol, I., Ersoy, C., Alagoz, F.: MAC protocols for wireless sensor networks: a survey. IEEE Commun. Mag. 44(4), 115–121 (2006)CrossRefGoogle Scholar
  6. 6.
    Ye, W., Heidemann, J., Estrin, D.: An energy-efficient MAC protocol for wireless sensor networks. In: Proceedings of the IEEE INFOCOM, New York, NY, vol. 3, pp. 1567–1576, June 2002Google Scholar
  7. 7.
    Ye, W., Heidemann, J., Estrin, D.: Medium access control with coordinated adaptive sleeping for wireless sensor networks. IEEE/ACM Trans. Netw. 12(3), 493–506 (2004)CrossRefGoogle Scholar
  8. 8.
    Ameen, M.A., Islam, S.M.R., Kwak, K.: Energy saving mechanisms for MAC protocols in wireless sensor networks. Int. J. Distrib. Sens. Netw. 6(1), 163413 (2010)CrossRefGoogle Scholar
  9. 9.
    Suriyachai, P., Roedig, U., Scott, A.: A survey of MAC protocols for mission-critical applications in wireless sensor networks. IEEE Commun. Surv. Tutor. 14(2), 240–264 (2012). (Second Quarter)CrossRefGoogle Scholar
  10. 10.
    Karl, H., Willig, A.: Protocols and Architectures for Wireless Sensor Networks. Wiley, Hoboken (2005)CrossRefGoogle Scholar
  11. 11.
    Mishra, S.C., Woungang, I., Mishra, S.: Guide to Wireless Sensor Networks. Springer, London (2009)CrossRefGoogle Scholar
  12. 12.
    Ali, M., Böhm, A., Jonsson, M.: Wireless sensor networks for surveillance applications – a comparative survey of MAC protocols. In: The Fourth International Conference on Wireless and Mobile Communications, Athens, pp. 399–403 (2008)Google Scholar
  13. 13.
    Stoianov, I., Nachman, L., Madden, S., Tokmouline, T.: PIPENET: a wireless sensor network for pipeline monitoring. In: 6th International Symposium on Information Processing in Sensor Networks, Cambridge, MA, pp. 264–273 (2007)Google Scholar
  14. 14.
    Casey, K., Lim, A., Dozier, G.: A sensor network architecture for tsunami detection and response. Int. J. Distrib. Sens. Netw. 4(1), 27–42 (2008)CrossRefGoogle Scholar
  15. 15.
    Tan, R., Xing, G., Chen, J., Song, W.Z., Huang, R.: Quality-driven volcanic earthquake detection using wireless sensor networks. In: 2010 31st IEEE Real-Time Systems Symposium, San Diego, CA, pp. 271–280 (2010)Google Scholar
  16. 16.
    Kumar, S., Raghavan, V.S., Deng, J.: Medium access control protocols for ad hoc wireless networks: a survey. AdHoc Netw. 4(3), 326–358 (2006)Google Scholar
  17. 17.
    Jamieson, K., Balakrishnan, H., Tay, C.: Sift: a mac protocol for event-driven wireless sensor networks. ESWN 6, 260–275 (2006)Google Scholar
  18. 18.
    El-Hoiydi, A., Decotignie, J.D.: WiseMAC: an ultra low power MAC protocol for multi-hop wireless sensor networks. In: Algorithmic Aspects of Wireless Sensor Networks (ALGOSENSORS 2004). Lecture Notes in Computer Science, vol. 3121, pp. 81–31. Springer, Berlin (2004)CrossRefGoogle Scholar
  19. 19.
    Lu, G., Krishnamachari, B., Raghavendra, C.S.: An adaptive energy-efficient and low-latency MAC for data gathering in wireless sensor networks. In: Proceedings of the 18th International Parallel and Distributed Processing Symposium, p. 224, April 2004Google Scholar
  20. 20.
    Li, Y., Ye, W., Heidemann, J.: Energy and latency control in low duty cycle MAC protocols. In: Proceedings of IEEE Wireless Communications and Networking Conference, New Orleans, LA, USA, vol. 2, pp. 676–682 (2005)Google Scholar
  21. 21.
    Hussain, S.W., Khan, T., Zaidi, S.M.H.: Latency and energy efficient MAC (LEEMAC) protocol for event critical applications in WSNs. In: Proceedings of International Symposium on Collaborative Technologies and Systems, Las Vegas, NV, USA, pp. 370–378 (2006)Google Scholar
  22. 22.
    Dam, T.V., Langendoen, K.: An adaptive energy-efficient MAC protocol for wireless sensor networks. In: The First ACM Conference on Embedded Networked Sensor Systems (Sensys 2003), Los Angeles, CA, USA, pp. 171–180, November 2003Google Scholar
  23. 23.
    Rajendran, V., Obraczka, K., Aceves, J.J.: Energy efficient, collision-free medium access control for wireless sensor networks. In: Proceedings of ACM (SenSys 2003), Los Angeles, California, pp. 181–192, November 2003Google Scholar
  24. 24.
    Lin, P., Qiao, C., Wang, X.: Medium access control with a dynamic duty cycle for sensor networks. In: IEEE Wireless Communications and Networking Conference, vol. 3, pp. 1534–1539, 21–25 March 2004Google Scholar
  25. 25.
    Ezzedine, T., Miladi, M., Bouallegue, R.: An energy-latency-efficient MAC protocol for wireless sensor networks. Int. J. Electr. Comput. Eng. 4(13), 816–821 (2009)Google Scholar
  26. 26.
    Tseng, H.W., Yang, S.H., Chuang, P.Y., Wu, H.K., Chen, G.H.: An energy consumption analytic model for a wireless sensor MAC protocol. In: Proceedings of the IEEE Vehicular Technology Conference (VTC 2004), pp. 4533–4537 (2004)Google Scholar
  27. 27.
    Hamady, F., Sabra, M., Sabra, Z., Kayssi, A., Chehab, A., Mansour, M.: Enhancement of the S-MAC protocol for wireless sensor networks. In: 2010 International Conference on Energy Aware Computing, Cairo, pp. 1–4 (2010)Google Scholar
  28. 28.
    Ammar, I., Awan, I., Min, G.: An improved S-MAC protocol based on parallel transmission for wireless sensor networks. In: Proceedings of 13th International Conference on Network-Based Information Systems (NBIS 2010), pp. 48–54. IEEE Computer Society, Washington (2010)Google Scholar
  29. 29.
    Xia, F., Zhao, W., Sun, Y., Tian, Y.C.: Fuzzy logic control based QoS management in wireless sensor/actuator networks. Sensors 7, 3179–3191 (2007). (Basel Switzerland)CrossRefGoogle Scholar
  30. 30.
    Yusuf, M., Haider, T.: Energy-aware fuzzy routing for wireless sensor networks. In: Proceedings of the IEEE Symposium on Emerging Technologies, pp. 63–69 (2005)Google Scholar
  31. 31.
    Misra, S., Mohanta, D.: Adaptive listen for energy-efficient medium access control in wireless sensor networks. J. Multimed. Tools Appl. 47(1), 121–145 (2010)CrossRefGoogle Scholar
  32. 32.
    Mishra, C.K., Acharya, B.M., Das, K., Pati, P.S.: EX-SMAC: an adaptive low latency energy efficient MAC protocol. Int. J. Comput. Sci. Eng. IJCSE 3(4), 1485–1489 (2011)Google Scholar
  33. 33.
    Ramakrishnan, S., Mullen, J.: Impact of sleep in wireless sensor MAC protocol. In: Vehicular Technology Conference, VTC2004-Fall. IEEE 60th Conference, vol. 7 (2004)Google Scholar
  34. 34.
    Ramchand, V., Lobiyal, D.K.: An analytical model for power control T-MAC protocol. Int. J. Comput. Appl. 12(1), 975–8887 (2010)Google Scholar
  35. 35.
    Arisha, K.A., Youssef, M.A., Younis, M.F.: Energy aware TDMA based MAC for sensor network. In: IEEE Workshop on Integrated Management of Power Aware Communications Computing and Networking (2002)Google Scholar
  36. 36.
    Barroso, A., Roedig, U., Sreenan, C.: μ-MAC: an energy efficient medium access control for wireless sensor networks. In: Proceedings of the Second European Workshop on Wireless Sensor Networks, pp. 70–80 (2005)Google Scholar
  37. 37.
    Campelli, L., Capone, A., Cesana, M., Ekici, E.: A receiver oriented MAC protocol for wireless sensor networks. In: Proceedings of IEEE MASS 2007, pp. 1–10, 8–11 October 2007Google Scholar
  38. 38.
    Rhee, I., Warrier, A., Aia, M., Min, J.: ZMAC: a hybrid MAC for wireless sensor networks. In: Proceedings of the Third ACM Conference on Embedded Networked Sensor System (Sensys 2005), pp. 90–101 (2005)Google Scholar
  39. 39.
    Hamid, M.A., Wadud, M., Chong, I.: A schedule-based multi-channel MAC protocol for wireless sensor networks. Sensors 10, 9466–9480 (2010)CrossRefGoogle Scholar
  40. 40.
    Zhou, G., Huang, C., Yan, T., He, T., Stankovic, J.A., Abdelzaher, T.F.: MMSN: multi-frequency media access control for wireless sensor networks. In: Proceedings of IEEE INFOCOM, 25TH IEEE International Conference on Computer Communications, Barcelona, Spain, pp. 1–13 (2006)Google Scholar
  41. 41.
    Incel, O.D., Dulman, S., Jansen, P.: Multi-channel Support for dense wireless sensor networking. In: EUROSSC, LNCS, vol. 4272, pp. 1–14 (2006)Google Scholar
  42. 42.
    Chen, X., Han, P., He, Q.S., Tu, S.L., Chen, Z.L.: A multi-channel MAC protocol for wireless sensor networks. In: The Sixth IEEE International Conference on Computer and Information Technology (CIT 2006), Seoul, p. 224 (2006)Google Scholar
  43. 43.
    Incel, O.D., Jansen, P.G., Mullender, S.J.: MC-LMAC: a multi-channel mac protocol for wireless sensor networks. Technical Report TR-CTIT-08-61, Centre for Telematics and Information Technology, University of Twente, Enschede (2008)Google Scholar
  44. 44.
    Du, S., Saha, A.K., Johnson, D.B.: RMAC: a routing-enhanced duty-cycle MAC protocol for wireless sensor networks. In: Proceedings of the 26th IEEE International Conference on Computer Communications, pp. 1478–1486 (2007)Google Scholar
  45. 45.
    Cho, K.T., Bahk, S.: Optimal hop extended MAC protocol for wireless sensor networks. Comput. Netw. 56, 1458–1469 (2012)CrossRefGoogle Scholar
  46. 46.
    SCADDS: Scalable Coordination Architectures for Deeply Distributed Systems web page. http://www.isi.edu/scadds/projects/smac/
  47. 47.
    The Network Simulator - ns-2 homepage. http://www.isi.edu/nsnam/ns/
  48. 48.
    The VINT project. The NS Manual. UC Berkeley, LBL, USC/ISI, and Xerox PARC. http://www.isi.edu/nsnam/ns/doc/ns_doc.pdf
  49. 49.
    Greis, M.: Tutorial for the network simulator ns. http://www.isi.edu/nsnam/ns/tutorial/index.html
  50. 50.
    Smac-users – Discussions by users of S-MAC web page. http://mailman.isi.edu/mailman/listinfo/smac-users
  51. 51.
    Energy Model Update in ns-2 web page. http://www.isi.edu/ilense/software/smac/ns2_energy.html
  52. 52.
  53. 53.
    Alotaibi, B., Elleithy, K.: A new MAC address spoofing detection technique based on random forests. Sensors 16(3), 1–14 (2016)CrossRefGoogle Scholar
  54. 54.
    Habib, C., Makhoul, A., Darazi, R., Salim, C.: Self-adaptive data collection and fusion for health monitoring based on body sensor networks. IEEE Trans. Ind. Inf. 12(6), 2342–2352 (2016)CrossRefGoogle Scholar
  55. 55.
    Pérez-Solano, J.J., Felici-Castell, S.: Adaptive time window linear regression algorithm for accurate time synchronization in wireless sensor networks. Ad Hoc Netw. 24, 92–108 (2015)CrossRefGoogle Scholar
  56. 56.
    Rezaee, A.A., Pasandideh, F.: A fuzzy congestion control protocol based on active queue management in wireless sensor networks with medical applications. Wirel. Pers. Commun. 98(1), 815–842 (2018)CrossRefGoogle Scholar
  57. 57.
    Sharma, A., Kakkar, A.: Forecasting daily global solar irradiance generation using machine learning. Renew. Sustain. Energy Rev. 82(P3), 2254–2269 (2018)CrossRefGoogle Scholar
  58. 58.
    Sakya, G., Sharma, V.: ADMC-MAC: energy efficient adaptive MAC protocol for mission critical applications in WSN. Sustain. Comput. Inform. Syst. 23, 21–28 (2019).  https://doi.org/10.1016/j.suscom.2019.05.001. (ISSN 2210-5379)CrossRefGoogle Scholar
  59. 59.
    Vining, G.G., Peck, E.A., Montgomery, D.C.: Introduction to Linear Regression Analysis, vol. 821. Wiley, Hoboken (2012)zbMATHGoogle Scholar
  60. 60.
    Sun, W., Yuan, X., Wang, J., Li, Q., Chen, L., Mu, D.: End-to-end data delivery reliability model for estimating and optimizing the link quality of industrial WSNs. IEEE Trans. Autom. Sci. Eng. 15, 1127–1137 (2017)CrossRefGoogle Scholar
  61. 61.
    Song, X., Wang, C., Gao, J., Hu, X.: DLRDG: distributed linear regression-based hierarchical data gathering framework in wireless sensor network. Neural Comput. Appl. 23(7–8), 1999–2013 (2013)CrossRefGoogle Scholar
  62. 62.
    He, H., Zhu, Z., Mäkinen, E.: Task-oriented distributed data fusion in autonomous wireless sensor networks. Soft. Comput. 19(8), 2305–2319 (2015)CrossRefGoogle Scholar
  63. 63.
    Belgiu, M., Drăguţ, L.: Random forest in remote sensing: a review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 114, 24–31 (2016)CrossRefGoogle Scholar
  64. 64.
    Elghazel, W.: Wireless sensor networks for Industrial health assessment based on a random forest approach. Automatic. Université de Franche-Comté (2015). (English. NNT: 2015BESA2055. tel01725629)Google Scholar
  65. 65.
    Alrajeh, N.A., Khan, S., Mauri, J.L., Loo, J.: Artificial neural network based detection of energy exhaustion attacks in wireless sensor networks capable of energy harvesting. Ad Hoc Sens. Wirel. Netw. 22(1–2), 109–133 (2014)Google Scholar
  66. 66.
    Shu, J., Liu, S., Liu, L., Zhan, L., Hu, G.: Research on link quality estimation mechanism for wireless sensor networks based on support vector machine. Chin. J. Electron. 26(2), 377–384 (2017)CrossRefGoogle Scholar
  67. 67.
    Gholipour, M., Haghighat, A.T., Meybodi, M.R.: Hop-by-hop congestion avoidance in wireless sensor networks based on genetic support vector machine. Neurocomputing 223, 63–76 (2017)CrossRefGoogle Scholar
  68. 68.
    Kumar, D.P., Amgoth, T., Annavarapu, C.S.R.: Machine learning algorithms for wireless sensor networks: a survey. Inf. Fusion 49, 1–25 (2019)CrossRefGoogle Scholar
  69. 69.
    Sakya, G., Sharma, V.: MAC protocol with regression based dynamic duty cycle feature for mission critical applications in WSN. Int. J. Adv. Comput. Sci. Appl. 8(6), 198–206 (2017). (E-SCI, Thomson Reuters, Web of Science)Google Scholar
  70. 70.
    Singh, P., Paprzycki, M., Bhargava, B., Chhabra, J., Kaushal, N., Kumar, Y. (eds.): FTNCT 2018. Communications in Computer and Information Science, vol. 958. Springer, Singapore (2018)Google Scholar
  71. 71.
    Sun, Y., Peng, M., Zhou, Y., Huang, Y., Mao, S.: Application of machine learning in wireless networks: key techniques and open issues. IEEE Commun. Surv. Tutor. 21, 3072–3108 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringJSS Academy of Technical EducationNoidaIndia
  2. 2.Department of Computer Science and EngineeringJaypee University of Information TechnologyWaknaghat, SolanIndia

Personalised recommendations