Skip to main content

Advertisement

Log in

Task-oriented distributed data fusion in autonomous wireless sensor networks

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

The evolution of sensor node capabilities makes distributed data fusion possible in autonomous wireless sensor networks (WSNs) for various purposes. We propose a framework of task-oriented distributed data fusion, and investigate the assignments of heterogeneous sensors on nodes in the network, so that system performance can adapt the dynamics of tasks and the topology of self-organised networks. This work provides an approach to improving the fusion performance based on partial information from WSNs. Such a task-oriented autonomous wireless sensor network can be a part of the infrastructure for cloud computing through the Internet. A hierarchy of linguistic decision trees is used to map the distributed information fusion. The performance evaluation is done from five aspects, quality of estimates, computing scalability, real-time performance, data flow, and energy consumption. Four classic decision-making problems in the UCI machine learning repository are used as the virtual measures from WSNs to demonstrate the merits of the proposed system compared with the central fusion models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Asuncion A, Newman DJ (2007) UCI machine learning repository. University of California, Department of Information and Computer Science, Irvine, CA. http://archive.ics.uci.edu/ml/datasets.html

  • Bar-Shalom Y (1990) Multitarget-multisensor tracking: advanced applications, vol 1. Artech House, Norwood

    Google Scholar 

  • Campello RJGB, Amaral WC (2006) Hierarchical fuzzy relational models: linguistic interpretation and universal approximation. IEEE Trans Fuzzy Syst 14(3):446–453

    Article  Google Scholar 

  • Castanedo F, Gomez-Romero J, Patricio MA, Garcia J, Molina JM (2012) Distributed data and information fusion in visual sensor networks. In: Hall D, Chong CY, Chong J, Liggins M (eds) Distributed data fusion for network-centric operations. CRC Press, Boca Raton

    Google Scholar 

  • Chen M, Kwon T, Yuan Y, Leung VCM (2006) Mobile agent based wireless sensor networks. J Comput 1(1):14–21

    Article  Google Scholar 

  • Cui S, Xiao J, Goldsmith AJ, Luo ZQ, Poor HV (2007) Estimation diversity and energy efficiency in distributed sensing. IEEE Trans Signal Process 55(9):4683–4695

    Article  MathSciNet  Google Scholar 

  • Dantu K, Sukhatme G (2006) Rethinking data fusion-based services in tiered sensor network. In: Proceedings of third workshop on embedded sensor networks (EmNets 06), Cambridge, MA, USA

  • De Angelis A, Fischione C (2011) A distributed information fusion method for localization based on Pareto optimization. In: Proceedings of international conference on distributed computing in sensor systems and workshops (DCOSS), Barcelona, 27–29 June 2011, pp 1–8. doi:10.1109/DCOSS.2011.5982155

  • Hand D, Hill RJ (2001) A simple generalisation of the area under the ROC curve for multiple class classification problems. Mach Learn 45:171–186

    Article  MATH  Google Scholar 

  • Hall D, Chong CY, Llinas J, Liggins M (2012) (eds) Distributed data fusion for network-centric operations, CRC Press, Boca Raton

  • He H, Lawry J (2013) The linguistic attribute hierarchy and its optimisation for classification. Soft Comput. doi:10.1007/s00500-013-1179-3

  • He H, Lawry J (2009a) Optimal cascade hierarchies of linguistic decision trees for decision making. In: Proceedings of IAENG international conference on artificial intelligence and applications (ICAIA’09), Hong Kong, 1–6 Mar 2009

  • He H, Lawry J (2009b) Optimal cascade linguistic attribute hierarchies for information propagation. IAENG Int J Comput Sci 36(2):129–136

    Google Scholar 

  • He H, Zhu Z, Mäkinen (2012) Task-oriented distributed decision making in wireless sensor networks. In: Proceedings of international conference of intelligent human machine systems and cybernetics, vol 2. (IHMSC2012), Nan Chang, China, 26–27 Aug 2012, pp 381–386

  • He H, Zhu Z, Mäkinen E (2009) A neural network model to minimise the connected dominating set for self-configuration of wireless sensor networks. IEEE Trans Neural Netw 20(6):973–982

    Article  Google Scholar 

  • Jansche M (2005) Maximum expected F-measure training of logistic regression models. In: Proceedings of the conference on human language technology and empirical methods in natural language processing, Vancouver, British Columbia, Canada, Oct 2005, pp 692–699

  • Jeffrey RC (1965) The logic of decision. Gordon and breach. The University of Chicago Press, New York

    Google Scholar 

  • Jourdan L, Dhaenens C, Talbi E (2001) A genetic algorithm for feature selection in data-mining for genetics. In: Proceedings of the 4th Metaheuristics international conference (MIC’2001), Porto, Portugal, July 2001

  • Kohavi R, John GH (1997) Wrappers for feature subset selection. Artif Intell 97(1–2):273–324

    Article  MATH  Google Scholar 

  • Kumar A, Wolenetz M, Agarwalla B, Shin J, Hutto F, Paul A, Ramachandran U (2008) DFuse: a framework for distributed data fusion. In: Proceedings of the 1st international conference on embedded networked sensor systems, Los Angeles, CA, Nov 2003, 114–125

  • Lawry J (2006) Modeling and reasoning with vague concepts. In: Kacprzyk J (ed) Springer, New York

  • Lawry J (2004) A framework for linguistic modeling. Artif Intell 155:1–39

    Article  MathSciNet  MATH  Google Scholar 

  • Lawry J, He H (2008) Multi-attribute decision making based on label semantics. Int J Uncertain Fuzziness Knowl Based Syst 16(2):69–86

  • Li XL, Kang H, Cao JN (2008) Coordinated workload scheduling in hierarchical sensor networks for data fusion applications. J Comput Sci Technol 23(3):355–364

    Article  Google Scholar 

  • Little MA, McSharry PE, Hunter EJ, Ramig LO (2009) Suitability of dysphonia measurements for telemonitoring of Parkinson’s disease. IEEE Trans Biomed Eng 56(4):1015–1022. doi:10.1109/TBME.2008.2005954

    Article  Google Scholar 

  • Luo Y, Zhu Y, Luo D, Zhou J, Song E, Wang D (2008) Globally optimal multisensor distributed random parameter matrices Kalman filtering fusion with applications. Sensors 8:8086–8103. doi:10.3390/s8128086

    Article  Google Scholar 

  • Olfati-Saber R (2007) Distributed Kalman filtering and sensor fusion in sensor networks. Netw Embed Sens Control LNCIS 331:157–167

    Article  MathSciNet  Google Scholar 

  • Predd JB, Kulkarni SB, Poor HV (2006) Distributed learning in wireless sensor networks. IEEE Signal Process Mag 23(4):56–69

    Article  Google Scholar 

  • Quinlan JR (1986) Induction of decision trees. Mach Learn 1:81–106

    Google Scholar 

  • Qin Z, Lawry J (2005) Decision tree learning with fuzzy labels. Inf Sci 172:91–129

    Article  MathSciNet  MATH  Google Scholar 

  • Rabbat M, Nowak R (2004) Distributed optimization in sensor networks. In: Proceedings of the 3rd international symposium on information processing in sensor networks, vol 2004. Berkeley, California, USA, pp 20–27

  • Tseng YC, Kuo SP, Lee HW, Huang CF (2003) Location tracking in a wireless sensor network by mobile agents and its data fusion strategies. In: Proceedings of the second international workshop on information processing in sensor networks, vol 2003. (IPSN2003), Palo Alto, CA, USA, pp 625–641

  • Wang TY, Han YS, Varshney PK, Chen PN (2005) Distributed fault-tolerant classification in wireless sensor networks. IEEE J Sel Areas Commun 23(4):724–734

    Article  Google Scholar 

  • Wun A, Petrovi M, Jacobsen HA (2007) A system for semantic data fusion in sensor networks. In: Proceedings of the 2007 inaugural international conference on distributed event-based systems, Toronto, Ontario, Canada, 2007, pp 75–79

  • Wu X, Tian Z (2006) Optimized data fusion in bandwidth and energy constrained sensor networks. In: Proceedings of 2006 IEEE international conference on acoustics, speech and signal processing (ICASSP 2006), Toulouse, 14–19 May 2006, vol 4. doi:10.1109/ICASSP.2006.1661068

  • Yang J, Honavar V (1997) Feature subset selection using a genetic algorithm. IEEE Intell Syst 13(2):44–49

  • Zhang K, Li C, Zhang W (2013) Wireless sensor data fusion algorithm based on the sensor scheduling and batch estimate. Int J Future Comput Commun 2(4):333–337

    Article  Google Scholar 

  • Zweig MH, Campbell G (1993) Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clinical Chemistry 39:561–577

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongmei He.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, H., Zhu, Z. & Mäkinen, E. Task-oriented distributed data fusion in autonomous wireless sensor networks. Soft Comput 19, 2305–2319 (2015). https://doi.org/10.1007/s00500-014-1421-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-014-1421-7

Keywords

Navigation