Advertisement

The Broadcast Message Complexity of Secure Multiparty Computation

  • Sanjam GargEmail author
  • Aarushi Goel
  • Abhishek Jain
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11921)

Abstract

We study the broadcast message complexity of secure multiparty computation (MPC), namely, the total number of messages that are required for securely computing any functionality in the broadcast model of communication.

MPC protocols are traditionally designed in the simultaneous broadcast model, where each round consists of every party broadcasting a message to the other parties. We show that this method of communication is sub-optimal; specifically, by eliminating simultaneity, it is, in fact, possible to reduce the broadcast message complexity of MPC.

More specifically, we establish tight lower and upper bounds on the broadcast message complexity of n-party MPC for every \(t<n\) corruption threshold, both in the plain model as well as common setup models. For example, our results show that the optimal broadcast message complexity of semi-honest MPC can be much lower than 2n, but necessarily requires at least three rounds of communication. We also extend our results to the malicious setting in setup models.

Notes

Acknowledgments

The first author is supported in part from DARPA/ARL SAFEWARE Award W911NF15C0210, AFOSR Award FA9550-15-1-0274, AFOSR Award FA9550-19-1-0200, AFOSR YIP Award, NSF CNS Award 1936826, DARPA and SPAWAR under contract N66001-15-C-4065, a Hellman Award and research grants by the Okawa Foundation, Visa Inc., and Center for Long-Term Cybersecurity (CLTC, UC Berkeley). The second and third authors are supported in part by NSF SaTC grant 1814919 and Darpa Safeware grant W911NF-15-C-0213. The views expressed are those of the authors and do not reflect the official policy or position of the funding agencies.

References

  1. 1.
    Ananth, P., Choudhuri, A.R., Goel, A., Jain, A.: Round-optimal secure multiparty computation with honest majority. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 395–424. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-96881-0_14CrossRefGoogle Scholar
  2. 2.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In: 20th Annual ACM Symposium on Theory of Computing, pp. 1–10. ACM Press, Chicago, 2–4 May 1988Google Scholar
  3. 3.
    Benhamouda, F., Lin, H.: k-round multiparty computation from k-round oblivious transfer via garbled interactive circuits. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 500–532. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78375-8_17CrossRefGoogle Scholar
  4. 4.
    Boyle, E., Chung, K.-M., Pass, R.: Large-scale secure computation: multi-party computation for (Parallel) RAM programs. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 742–762. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48000-7_36CrossRefGoogle Scholar
  5. 5.
    Boyle, E., Gilboa, N., Ishai, Y.: Group-based secure computation: optimizing rounds, communication, and computation. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 163–193. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56614-6_6CrossRefGoogle Scholar
  6. 6.
    Boyle, E., Gilboa, N., Ishai, Y., Lin, H., Tessaro, S.: Foundations of homomorphic secret sharing. In: Karlin, A.R. (ed.) ITCS 2018: 9th Innovations in Theoretical Computer Science Conference, vol. 94, pp. 21:1–21:21. LIPIcs, Cambridge, 11–14 January 2018Google Scholar
  7. 7.
    Boyle, E., Goldwasser, S., Tessaro, S.: Communication locality in secure multi-party computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 356–376. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36594-2_21CrossRefGoogle Scholar
  8. 8.
    Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols (extended abstract). In: 20th Annual ACM Symposium on Theory of Computing, pp. 11–19. ACM Press, Chicago, 2–4 May 1988Google Scholar
  9. 9.
    Chor, B., Kushilevitz, E.: A communication-privacy tradeoff for modular addition. Inf. Process. Lett. 45(4), 205–210 (1993).  https://doi.org/10.1016/0020-0190(93)90120-XMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Cleve, R.: Limits on the security of coin flips when half the processors are faulty (extended abstract). In: 18th Annual ACM Symposium on Theory of Computing, pp. 364–369. ACM Press, Berkeley, 28–30 May 1986Google Scholar
  11. 11.
    Cramer, R., Damgård, I., Nielsen, J.B.: Multiparty computation from threshold homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–300. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44987-6_18CrossRefGoogle Scholar
  12. 12.
    Damgård, I., Nielsen, J.B., Ostrovsky, R., Rosén, A.: Unconditionally secure computation with reduced interaction. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 420–447. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49896-5_15CrossRefGoogle Scholar
  13. 13.
    Damgård, I., Nielsen, J.B., Polychroniadou, A., Raskin, M.: On the communication required for unconditionally secure multiplication. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 459–488. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53008-5_16CrossRefGoogle Scholar
  14. 14.
    Dodis, Y., Halevi, S., Rothblum, R.D., Wichs, D.: Spooky encryption and its applications. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 93–122. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53015-3_4CrossRefGoogle Scholar
  15. 15.
    Garay, J., Ishai, Y., Ostrovsky, R., Zikas, V.: The price of low communication in secure multi-party computation. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 420–446. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63688-7_14CrossRefzbMATHGoogle Scholar
  16. 16.
    Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indistinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 74–94. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54242-8_4CrossRefGoogle Scholar
  17. 17.
    Garg, S., Srinivasan, A.: Garbled protocols and two-round MPC from bilinear maps. In: 58th Annual Symposium on Foundations of Computer Science, pp. 588–599. IEEE Computer Society Press (2017)Google Scholar
  18. 18.
    Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 468–499. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78375-8_16CrossRefGoogle Scholar
  19. 19.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th Annual ACM Symposium on Theory of Computing, pp. 218–229. ACM Press, New York City, 25–27 May 1987Google Scholar
  20. 20.
    Dov Gordon, S., Liu, F.-H., Shi, E.: Constant-round MPC with fairness and guarantee of output delivery. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 63–82. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48000-7_4CrossRefGoogle Scholar
  21. 21.
    Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: computing without simultaneous interaction. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 132–150. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22792-9_8CrossRefGoogle Scholar
  22. 22.
    Ishai, Y., Mittal, M., Ostrovsky, R.: On the message complexity of secure multiparty computation. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10769, pp. 698–711. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-76578-5_24CrossRefGoogle Scholar
  23. 23.
    Mittal, M.: Necessary and sufficient conditions for general interaction patterns for MPC. UCLA thesis for Master of Science in Computer Science (2017)Google Scholar
  24. 24.
    Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 735–763. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49896-5_26CrossRefGoogle Scholar
  25. 25.
    Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th Annual Symposium on Foundations of Computer Science, pp. 162–167. IEEE Computer Society Press, Toronto, 27–29 October 1986Google Scholar

Copyright information

© International Association for Cryptologic Research 2019

Authors and Affiliations

  1. 1.University of CaliforniaBerkeleyUSA
  2. 2.Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations