Skip to main content

Modulation of Tumor Immunity by Medicinal Plant or Functional Food-Derived Compounds

  • Chapter
  • First Online:
Medicinal Plants

Abstract

Most forms of conventional cancer treatments are accompanied by undesirable side effects. Moreover, due to tumor heterogeneity, resistance to treatment and subsequent recurrence is often inevitable. Therefore, there is a need for development of progressive forms of adjuvant therapeutics. The tumor micro-environment is composed of tumor cells and multiple stromal cell types, including immune cells, many of which can produce pro-tumor chemokines and cytokines. The production of these molecules can result in a cascade effect, signaling other cells to promote an anti-cytotoxic, pro-tumor inflammatory response which hinders the necessary immune response needed to eliminate neoplastic cells. The pro-tumor inflammatory response is a key component during the progressive development of cancer. The “hijacking” of the immune system in the tumor environment provides a target which can be used to revert the immune system back to a type 1, pro-cytotoxic response. Natural compounds found in many traditional foods and medicines have a proven history of being anti-inflammatory, a key component which can be utilized during cancer treatment. Application of specific natural compounds in conjunction with conventional medicine can provide an additional level of support via modulation of the immune system. Phytochemicals found in turmeric, soy, and Scutellaria have shown profound effects on attenuating and modulating inflammation. This chapter looks into the mechanism of action and prospects for using these phytochemicals as an immune-modulatory adjuvant in the treatment of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abernathy LM et al (2015) Soy isoflavones promote radioprotection of normal lung tissue by inhibition of radiation-induced activation of macrophages and neutrophils. J Thorac Oncol 10(12):1703–1712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abernathy LM et al (2017) Innate immune pathways associated with lung radioprotection by soy isoflavones. Front Oncol 7:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Anthony RM et al (2007) Protective immune mechanisms in helminth infection. Nat Rev Immunol 7(12):975–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banerjee S et al (2008) Multi-targeted therapy of cancer by genistein. Cancer Lett 269(2):226–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bharti AC et al (2003) Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor–κB and IκBα kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis. Blood 101(3):1053

    Article  CAS  PubMed  Google Scholar 

  • Bickel MM (1993) The role of interleukin-8 in inflammation and mechanisms of regulation. J Periodontol 64(5 suppl):456–460

    CAS  PubMed  Google Scholar 

  • Bradley JR (2008) TNF-mediated inflammatory disease. J Pathol 214(2):149–160

    Article  CAS  PubMed  Google Scholar 

  • Brouet I, Ohshima H (1995) Curcumin, an anti-tumor promoter and anti-inflammatory agent, inhibits induction of nitric oxide synthase in activated macrophages. Biochem Biophys Res Commun 206(2):533–540

    Article  CAS  PubMed  Google Scholar 

  • Chang A (2011) Chemotherapy, chemoresistance and the changing treatment landscape for NSCLC. Lung Cancer 71(1):3–10

    Article  PubMed  Google Scholar 

  • Charles A, Janeway JARM (2002) Innate immune recognition. Annu Rev Immunol 20:197–216

    Article  Google Scholar 

  • Charlton B, Lafferty KJ (1995) The Th1/Th2 balance in autoimmunity. Curr Opin Immunol 7(6):793–798

    Article  CAS  PubMed  Google Scholar 

  • Choi J-S et al (2004) Flavones mitigate tumor necrosis factor-α-induced adhesion molecule upregulation in cultured human endothelial cells: role of nuclear factor-κB. J Nutr 134(5):1013–1019

    Article  CAS  PubMed  Google Scholar 

  • Cortez-Retamozo V et al (2012) Origins of tumor-associated macrophages and neutrophils. Proc Natl Acad Sci U S A 109(7):2491–2496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damsker JM, Hansen AM, Caspi RR (2010) Th1 and Th17 cells: adversaries and collaborators. Ann N Y Acad Sci 1183:211–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dandawate S et al (2012) Scutellaria extract and wogonin inhibit tumor-mediated induction of T(reg) cells via inhibition of TGF-β1 activity. Cancer Immunol Immunother 61(5):701–711

    Article  CAS  PubMed  Google Scholar 

  • Davis JN, Kucuk O, Sarkar FH (1999) Genistein inhibits NF-kB activation in prostate cancer cells. Nutr Cancer 35(2):167–174

    Article  CAS  PubMed  Google Scholar 

  • Fan Y, Mao R, Yang J (2013) NF-κB and STAT3 signaling pathways collaboratively link inflammation to cancer. Protein Cell 4(3):176–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez de Simon B et al (1992) Importance of phenolic compounds for the characterization of fruit juices. J Agric Food Chem 40(9):1531–1535

    Article  CAS  Google Scholar 

  • Fridlender ZG, Albelda SM (2012) Tumor-associated neutrophils: friend or foe? Carcinogenesis 33(5):949–955

    Article  CAS  PubMed  Google Scholar 

  • Fridlender ZG et al (2009) Polarization of tumor-associated neutrophil (TAN) phenotype by TGF-β: “N1” versus “N2” TAN. Cancer Cell 16(3):183–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garg AD, Dudek AM, Agostinis P (2013) Cancer immunogenicity, danger signals, and DAMPs: what, when, and how? Biofactors 39(4):355–367

    Article  CAS  PubMed  Google Scholar 

  • Gong L et al (2003) Inactivation of NF-κB by genistein is mediated via Akt signaling pathway in breast cancer cells. Oncogene 22(30):4702–4709

    Article  CAS  PubMed  Google Scholar 

  • Gota VS et al (2010) Safety and pharmacokinetics of a solid lipid curcumin particle formulation in osteosarcoma patients and healthy volunteers. J Agric Food Chem 58(4):2095–2099

    Article  CAS  PubMed  Google Scholar 

  • Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140(6):883–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayden MSMSG (2004) Signaling to NF-κB. Genes Dev 18(18):2195–2224

    Article  CAS  PubMed  Google Scholar 

  • Hehlgans T, Pfeffer K (2005) The intriguing biology of the tumour necrosis factor/tumour necrosis factor receptor superfamily: players, rules and the games. Immunology 115(1):1–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoesel B, Schmid JA (2013) The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer 12:86–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain F, Sandeep M, Joshee N, Parajuli P (2016) Application of bioactive compounds from Scutellaria in neurologic disorders. In: The benefits of natural products for neurodegenerative diseases. Springer, Basel, pp 79–93

    Chapter  Google Scholar 

  • Janeway CAC (1989) The priming of helper T cells. Semin Immunol 1(1):13–20

    CAS  PubMed  Google Scholar 

  • Janssen K et al (1998) Effects of the flavonoids quercetin and apigenin on hemostasis in healthy volunteers: results from an in vitro and a dietary supplement study. Am J Clin Nutr 67(2):255–262

    Article  CAS  PubMed  Google Scholar 

  • Kaiko GE et al (2008) Immunological decision-making: how does the immune system decide to mount a helper T-cell response? Immunology 123(3):326–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kan X et al (2017) Scutellaria barbata D. Don extract inhibits the tumor growth through down-regulating of Treg cells and manipulating Th1/Th17 immune response in hepatoma H22-bearing mice. BMC Complement Altern Med 17:41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kolaczkowska E, Kubes P (2013) Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13(3):159–175

    Article  CAS  PubMed  Google Scholar 

  • Kwon Y (2014) Effect of soy isoflavones on the growth of human breast tumors: findings from preclinical studies. Food Sci Nutr 2(6):613–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacy P (2006) Mechanisms of degranulation in neutrophils. Allergy, Asthma Clin Immunol 2(3):98–108

    Article  Google Scholar 

  • Lafaille JJ (1998) The role of helper T cell subsets in autoimmune diseases. Cytokine Growth Factor Rev 9(2):139–151

    Article  CAS  PubMed  Google Scholar 

  • Lee ASJLYS (2013) Curcumin in various cancers. Biofactors 39(1):56–68

    Article  PubMed  CAS  Google Scholar 

  • Lemberkovics E (1998) Phytochemical evaluation of essential oils, medicinal plants and their preparations. Acta Pharm Hung 68(3):141–149

    CAS  PubMed  Google Scholar 

  • Lesinski GB et al (2015) Consumption of soy isoflavone enriched bread in men with prostate cancer is associated with reduced pro-inflammatory cytokines and immune suppressive cells. Cancer Prevent Res 8(11):1036–1044

    Article  CAS  Google Scholar 

  • Li YY (2002) Down-regulation of invasion and angiogenesis-related genes identified by cDNA microarray analysis of PC3 prostate cancer cells treated with genistein. Cancer Lett 186(2):157–164

    Article  CAS  PubMed  Google Scholar 

  • Liang Y-C et al (1999) Suppression of inducible cyclooxygenase and inducible nitric oxide synthase by apigenin and related flavonoids in mouse macrophages. Carcinogenesis 20(10):1945–1952

    Article  CAS  PubMed  Google Scholar 

  • Lotze MT et al (2007) The grateful dead: damage-associated molecular pattern molecules and reduction/oxidation regulate immunity. Immunol Rev 220(1):60–81

    Article  CAS  PubMed  Google Scholar 

  • Lu Y-C, Yeh W-C, Ohashi PS (2008) LPS/TLR4 signal transduction pathway. Cytokine 42(2):145–151

    Article  CAS  PubMed  Google Scholar 

  • MacEwan DJ (2002) TNF ligands and receptors – a matter of life and death. Br J Pharmacol 135(4):855–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mantovani A et al (2008) Cancer-related inflammation. Nature 454:436+

    Article  CAS  PubMed  Google Scholar 

  • Martinez FO, Gordon S (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 6:13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mayadas TN, Cullere X, Lowell CA (2014) The multifaceted functions of neutrophils. Annu Rev Pathol 9:181–218

    Article  CAS  PubMed  Google Scholar 

  • Messina M, Badger TM (2017) Health effects of isoflavones misrepresented. Food Chem 225:289–292

    Article  CAS  PubMed  Google Scholar 

  • Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8(12):958–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moudi M et al (2013) Vinca alkaloids. Int J Prev Med 4(11):1231–1235

    PubMed  PubMed Central  Google Scholar 

  • Newton K, Dixit VM (2012) Signaling in innate immunity and inflammation. Cold Spring Harb Perspect Biol 4(3):a006049

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nielsen SE et al (2007) Effect of parsley (Petroselinum crispum) intake on urinary apigenin excretion, blood antioxidant enzymes and biomarkers for oxidative stress in human subjects. Br J Nutr 81(6):447–455

    Article  Google Scholar 

  • Norn SS (2009) From willow bark to acetylsalicylic acid. Dan Medicinhist Arbog 37:79–98

    PubMed  Google Scholar 

  • Oberley TD (2002) Oxidative damage and cancer. Am J Pathol 160(2):403–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parajuli P et al (2011) Delayed growth of glioma by Scutellaria flavonoids involve inhibition of Akt, GSK-3 and NF-κB signaling. J Neuro-Oncol 101(1):15–24

    Article  Google Scholar 

  • Parameswaran N, Patial S (2010) Tumor necrosis factor-α signaling in macrophages. Crit Rev Eukaryot Gene Expr 20(2):87–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patil RH et al (2016) Anti-inflammatory effect of apigenin on LPS-induced pro-inflammatory mediators and AP-1 factors in human lung epithelial cells. Inflammation 39(1):138–147

    Article  CAS  PubMed  Google Scholar 

  • Pavese JM, Farmer RL, Bergan RC (2010) Inhibition of cancer cell invasion and metastasis by genistein. Cancer Metastasis Rev 29(3):465–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng YY (2014) Immune and anti-oxidant functions of ethanol extracts of Scutellaria baicalensis Georgi in mice bearing U14 cervical cancers. Asian Pac J Cancer Prev 15(10):4129–4133

    Article  PubMed  Google Scholar 

  • Pilaro AM et al (1994) TNF-alpha is a principal cytokine involved in the recruitment of NK cells to liver parenchyma. J Immunol 153(1):333

    CAS  PubMed  Google Scholar 

  • Prasad S, Aggarwal B (2011) Turmeric, the golden spice: from traditional medicine to modern medicine. In: Wachtel-Galor S, Benzie FF (eds) Herbal medicine: biomolecular and clinical aspects. CRC Press/Taylor & Francis, Boca Raton

    Google Scholar 

  • Rath PCP (1999) TNF-induced signaling in apoptosis. J Clin Immunol 19(6):350–364

    Article  CAS  PubMed  Google Scholar 

  • Reuter S et al (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49(11):1603–1616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roach JC et al (2005) The evolution of vertebrate toll-like receptors. Proc Natl Acad Sci U S A 102(27):9577–9582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabroe I et al (2008) The role of TLR activation in inflammation. J Pathol 214(2):126–135

    Article  CAS  PubMed  Google Scholar 

  • Sandur SK et al (2007) Role of prooxidants and antioxidants in the anti-inflammatory and apoptotic effects of curcumin (diferuloylmethane). Free Radic Biol Med 43(4):568–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singer AJ, Clark RAF (1999) Cutaneous wound healing. N Engl J Med 341(10):738–746

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Aggarwal BB (1995) Activation of transcription factor NF-κB is suppressed by curcumin (diferuloylmethane). J Biol Chem 270(42):24995–25000

    Article  CAS  PubMed  Google Scholar 

  • Storka A, Vcelar B, Klickovic U, Gouya G, Weisshaar S, Aschauer S, Bolger G, Helson L, Wolzt M (2015) Safety, tolerability and pharmacokinetics of liposomal curcumin in healthy humans. Int J Clin Pharmacol Ther 53:54–65

    Article  CAS  PubMed  Google Scholar 

  • Surh Y-J et al (2001) Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-κB activation. Mutat Res 480–481:243–268

    Article  PubMed  Google Scholar 

  • Takeuchi Y, Nishikawa H (2016) Roles of regulatory T cells in cancer immunity. Int Immunol 28(8):401–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang D et al (2012) PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol Rev 249(1):158–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Testa JR, Tsichlis PN (2005) AKT signaling in normal and malignant cells. Oncogene 24(50):7391–7393

    Article  CAS  PubMed  Google Scholar 

  • Thoppil RJ, Bishayee A (2011) Terpenoids as potential chemopreventive and therapeutic agents in liver cancer. World J Hepatol 3(9):228–249

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsan M-F (2006) Toll-like receptors, inflammation and cancer. Semin Cancer Biol 16(1):32–37

    Article  CAS  PubMed  Google Scholar 

  • Vivier E et al (2008) Functions of natural killer cells. Nat Immunol 9(5):503–510

    Article  CAS  PubMed  Google Scholar 

  • Wang J et al (2008) Genistein inhibits the development of atherosclerosis via inhibiting NF-κB and VCAM-1 expression in LDLR knockout mice. Can J Physiol Pharmacol 86(11):777–784

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Liang H, Zen K (2014a) Molecular mechanisms that influence the macrophage M1–M2 polarization balance. Front Immunol 5:614

    PubMed  PubMed Central  Google Scholar 

  • Wang J et al (2014b) Anti-inflammatory effects of Apigenin in lipopolysaccharide-induced inflammatory in acute lung injury by suppressing COX-2 and NF-kB pathway. Inflammation 37(6):2085–2090

    Article  CAS  PubMed  Google Scholar 

  • Waugh DJJ, Wilson C (2008) The interleukin-8 pathway in cancer. Clin Cancer Res 14(21):6735

    Article  CAS  PubMed  Google Scholar 

  • Wong CK et al (2001) Proinflammatory cytokines (IL-17, IL-6, IL-18 and IL-12) and Th cytokines (IFN-γ, IL-4, IL-10 and IL-13) in patients with allergic asthma. Clin Exp Immunol 125(2):177–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu JJ (2003) Natural killer cells and cancer. Adv Cancer Res 90:127–156

    Article  CAS  PubMed  Google Scholar 

  • Xu B, Yu L, Zhao L-Z (2017) Curcumin up regulates T helper 1 cells in patients with colon cancer. Am J Transl Res 9(4):1866–1875

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan Zhang YZ, Gu W, Sun B (2014) Th1/Th2 cell differentiation and molecular signals. In: Sun B (ed) T helper cell differentiation and their function. Springer, Berlin, pp 15–34

    Google Scholar 

  • Zhang J-M, An J (2007) Cytokines, inflammation and pain. Int Anesthesiol Clin 45(2):27–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X et al (2014) Flavonoid Apigenin inhibits lipopolysaccharide-induced inflammatory response through multiple mechanisms in macrophages. PLoS One 9(9):e107072

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou XX (2014) Genistein antagonizes inflammatory damage induced by β-amyloid peptide in microglia through TLR4 and NF-κB. Nutrition 30(1):90–95

    Article  PubMed  CAS  Google Scholar 

  • Zubair H et al (2017) Cancer chemoprevention by phytochemicals: Nature’s healing touch. Molecules 22(3):E395

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prahlad Parajuli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wright, R.E., Joshee, N., Parajuli, P. (2019). Modulation of Tumor Immunity by Medicinal Plant or Functional Food-Derived Compounds. In: Joshee, N., Dhekney, S., Parajuli, P. (eds) Medicinal Plants. Springer, Cham. https://doi.org/10.1007/978-3-030-31269-5_12

Download citation

Publish with us

Policies and ethics