Skip to main content

The Potential of Gold and Silver Antimicrobials: Nanotherapeutic Approach and Applications

  • Chapter
  • First Online:
Nanotheranostics
  • 521 Accesses

Abstract

Nanoparticles are promising antimicrobial agents for use and its potential as therapy for skin and soft tissue microbial infection has been investigated. Metallic ion and metal nanoparticles demonstrated efficacy against microbial pathogen, causing cutaneous and life-threatening systemic infections. Among various nanoparticles, silver and gold nanoparticles have been focused in this chapter. In recent researches, dual mechanisms of gold and silver nanoparticles were determined against pathogenic microorganisms. They are similar to cell death, but in a different pathway, including potent antimicrobial activity. The obvious difference is the presence or absence of reactive oxygen species level. Silver nanoparticles change cell death process depending on reactive oxygen species concentration, but gold nanoparticles do not change or influence. Due to nontoxicity to human and their antimicrobial effects, nanoparticles have been applied to diverse fields and possess clinical utility as a novel wound healing and antimicrobial agent for microbial infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akbar M, Essa MM, Daradkeh G, Abdelmegeed MA, Choi Y, Mahmood L, Song BJ. Mitochondrial dysfunction and cell death in neurodegenerative diseases through nitroxidative stress. Brain Res. 2016;1637:34–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albanese A, Tang PS, Chan WC. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng. 2012;14:1–16.

    Article  CAS  PubMed  Google Scholar 

  • Alkilany AM, Lohse SE, Murphy CJ. The gold standard: gold nanoparticle libraries to understand the nano–bio interface. Acc Chem Res. 2012;46(3):650–61.

    Article  PubMed  CAS  Google Scholar 

  • Allaker R. The use of nanoparticles to control oral biofilm formation. J Dent Res. 2010;89(11):1175–86.

    Article  CAS  PubMed  Google Scholar 

  • Allocati N, Masulli M, Di Ilio C, De Laurenzi V. Die for the community: an overview of programmed cell death in bacteria. Cell Death Dis. 2015;6:e1609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez-Peral FJ, Zaragoza O, Pedreno Y, Argüelles J-C. Protective role of trehalose during severe oxidative stress caused by hydrogen peroxide and the adaptive oxidative stress response in Candida albicans. Microbiology. 2002;148(8):2599–606.

    Article  CAS  PubMed  Google Scholar 

  • Amro NA, Kotra LP, Wadu-Mesthrige K, Bulychev A, Mobashery S, Liu G-y. High-resolution atomic force microscopy studies of the Escherichia coli outer membrane: structural basis for permeability. Langmuir. 2000;16(6):2789–96.

    Article  CAS  Google Scholar 

  • Barbu EM, Shirazi F, McGrath DM, Albert N, Sidman RL, Pasqualini R, Arap W, Kontoyiannis DP. An antimicrobial peptidomimetic induces Mucorales cell death through mitochondria-mediated apoptosis. PLoS One. 2013;8(10):e76981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benyagoub M, Willemot C, Belanger RR. Influence of a subinhibitory dose of antifungal fatty acids from Sporothrix flocculosa on cellular lipid composition in fungi. Lipids. 1996;31(10):1077–82.

    Article  CAS  PubMed  Google Scholar 

  • Bermúdez JM, Cid AG, Romero AI, Villegas M, Villegas NA, Palma SD. New trends in the antimicrobial agents delivery using nanoparticles. In: Antimicrobial nanoarchitectonics. Amsterdam: Elsevier; 2017. p. 1–28.

    Google Scholar 

  • Beyth N, Houri-Haddad Y, Domb A, Khan W, Hazan R. Alternative antimicrobial approach: nano-antimicrobial materials. Evid Based Complement Alternat Med. 2015;2015:246012.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bolintineanu D, Hazrati E, Davis HT, Lehrer RI, Kaznessis YN. Antimicrobial mechanism of pore-forming protegrin peptides: 100 pores to kill E. coli. Peptides. 2010;31(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  • Brown SD, Nativo P, Smith J-A, Stirling D, Edwards PR, Venugopal B, Flint DJ, Plumb JA, Graham D, Wheate NJ. Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J Am Chem Soc. 2010;132(13):4678–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruni GN, Weekley RA, Dodd BJT, Kralj JM. Voltage-gated calcium flux mediates Escherichia coli mechanosensation. Proc Natl Acad Sci U S A. 2017;114(35):9445–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carmona-Gutierrez D, Eisenberg T, Buttner S, Meisinger C, Kroemer G, Madeo F. Apoptosis in yeast: triggers, pathways, subroutines. Cell Death Differ. 2010;17(5):763–73.

    Article  CAS  PubMed  Google Scholar 

  • Carraro M, Bernardi P. Calcium and reactive oxygen species in regulation of the mitochondrial permeability transition and of programmed cell death in yeast. Cell Calcium. 2016;60(2):102–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cushnie TP, Cushnie B, Lamb AJ. Alkaloids: an overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int J Antimicrob Agents. 2014;44(5):377–86.

    Article  CAS  PubMed  Google Scholar 

  • Debnath M, Prasad GB, Bisen PS. Molecular diagnostics: promises and possibilities. New York: Springer Science & Business Media; 2010.

    Book  Google Scholar 

  • DeLouise LA. Applications of nanotechnology in dermatology. J Invest Dermatol. 2012;132(3 Pt 2):964–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Lisa F, Menabo R, Canton M, Barile M, Bernardi P. Opening of the mitochondrial permeability transition pore causes depletion of mitochondrial and cytosolic NAD+ and is a causative event in the death of myocytes in postischemic reperfusion of the heart. J Biol Chem. 2001;276(4):2571–5.

    Article  PubMed  Google Scholar 

  • Durán N, Durán M, de Jesus MB, Seabra AB, Fávaro WJ, Nakazato G. Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomedicine. 2016;12(3):789–99.

    Article  PubMed  CAS  Google Scholar 

  • Dwyer DJ, Camacho DM, Kohanski MA, Callura JM, Collins JJ. Antibiotic-induced bacterial cell death exhibits physiological and biochemical hallmarks of apoptosis. Mol Cell. 2012;46(5):561–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Englander L, Friedman A. Nitric oxide nanoparticle technology: a novel antimicrobial agent in the context of current treatment of skin and soft tissue infection. J Clin Aesthet Dermatol. 2010;3(6):45–50.

    PubMed  PubMed Central  Google Scholar 

  • Espinosa-Diez C, Miguel V, Mennerich D, Kietzmann T, Sánchez-Pérez P, Cadenas S, Lamas S. Antioxidant responses and cellular adjustments to oxidative stress. Redox Biol. 2015;6:183–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Espitia PJP, Soares N d FF, dos Reis Coimbra JS, de Andrade NJ, Cruz RS, Medeiros EAA. Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol. 2012;5(5):1447–64.

    Article  CAS  Google Scholar 

  • Garg AK, Kim J-K, Owens TG, Ranwala AP, Do Choi Y, Kochian LV, Wu RJ. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci. 2002;99(25):15898–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gelperina S, Kisich K, Iseman MD, Heifets L. The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am J Respir Crit Care Med. 2005;172(12):1487–90.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gottlieb E, Armour S, Harris M, Thompson C. Mitochondrial membrane potential regulates matrix configuration and cytochrome c release during apoptosis. Cell Death Differ. 2003;10(6):709.

    Article  CAS  PubMed  Google Scholar 

  • Hajnóczky G, Csordás G, Das S, Garcia-Perez C, Saotome M, Roy SS, Yi M. Mitochondrial calcium signalling and cell death: approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium. 2006;40(5):553–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hajnoczky G, Csordas G, Das S, Garcia-Perez C, Saotome M, Sinha Roy S, Yi M. Mitochondrial calcium signalling and cell death: approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium. 2006;40(5–6):553–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haruna S, Kuroi R, Kajiwara K, Hashimoto R, Matsugo S, Tokumaru S, Kojo S. Induction of apoptosis in HL-60 cells by photochemically generated hydroxyl radicals. Bioorg Med Chem Lett. 2002;12(4):675–6.

    Article  CAS  PubMed  Google Scholar 

  • Henry CM, Hollville E, Martin SJ. Measuring apoptosis by microscopy and flow cytometry. Methods. 2013;61(2):90–7.

    Article  CAS  PubMed  Google Scholar 

  • Holt KB, Bard AJ. Interaction of silver (I) ions with the respiratory chain of Escherichia coli: an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+. Biochemistry. 2005;44(39):13214–23.

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Jain PK, El-Sayed IH, El-Sayed MA. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci. 2008;23(3):217.

    Article  PubMed  Google Scholar 

  • Huh AJ, Kwon YJ. “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release. 2011;156(2):128–45.

    Article  CAS  PubMed  Google Scholar 

  • Huttemann M, Pecina P, Rainbolt M, Sanderson TH, Kagan VE, Samavati L, Doan JW, Lee I. The multiple functions of cytochrome c and their regulation in life and death decisions of the mammalian cell: from respiration to apoptosis. Mitochondrion. 2011;11(3):369–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hwang IS, Lee J, Hwang JH, Kim KJ, Lee DG. Silver nanoparticles induce apoptotic cell death in Candida albicans through the increase of hydroxyl radicals. FEBS J. 2012;279(7):1327–38.

    Article  CAS  PubMed  Google Scholar 

  • Ikoba U, Peng H, Li H, Miller C, Yu C, Wang Q. Nanocarriers in therapy of infectious and inflammatory diseases. Nanoscale. 2015;7(10):4291–305.

    Article  CAS  PubMed  Google Scholar 

  • Ip M, Lui SL, Poon VK, Lung I, Burd A. Antimicrobial activities of silver dressings: an in vitro comparison. J Med Microbiol. 2006;55(Pt 1):59–63.

    Article  CAS  PubMed  Google Scholar 

  • Karlsson HL, Cronholm P, Gustafsson J, Moller L. Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol. 2008;21(9):1726–32.

    Article  CAS  PubMed  Google Scholar 

  • Kim K-J, Sung WS, Moon S-K, Choi J-S, Kim JG, Lee DG. Antifungal effect of silver nanoparticles on dermatophytes. J Microbiol Biotechnol. 2008;18(8):1482–4.

    CAS  PubMed  Google Scholar 

  • Ko CH, Shen S-C, Hsu C-S, Chen Y-C. Mitochondrial-dependent, reactive oxygen species-independent apoptosis by myricetin: roles of protein kinase C, cytochrome c, and caspase cascade. Biochem Pharmacol. 2005;69(6):913–27.

    Article  CAS  PubMed  Google Scholar 

  • Koksharova OA. Bacteria and phenoptosis. Biochemistry (Mosc). 2013;78(9):963–70.

    Article  CAS  Google Scholar 

  • Kujath P, Kujath C. Complicated skin, skin structure and soft tissue infections - are we threatened by multi-resistant pathogens? Eur J Med Res. 2010;15(12):544–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kulshreshtha NM, Jadhav I, Dixit M, Sinha N, Shrivastava D, Bisen PS. Nanostructures as antimicrobial therapeutics. In: Antimicrobial nanoarchitectonics. Amsterdam: Elsevier; 2017. p. 29–59.

    Chapter  Google Scholar 

  • Lagadic-Gossmann D, Huc L, Lecureur V. Alterations of intracellular pH homeostasis in apoptosis: origins and roles. Cell Death Differ. 2004;11(9):953.

    Article  CAS  PubMed  Google Scholar 

  • Leaper DJ. Silver dressings: their role in wound management. Int Wound J. 2006;3(4):282–94.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lecoeur H, Prevost MC, Gougeon ML. Oncosis is associated with exposure of phosphatidylserine residues on the outside layer of the plasma membrane: a reconsideration of the specificity of the annexin V/propidium iodide assay. Cytometry. 2001;44(1):65–72.

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Lee DG. Gold nanoparticles induce a reactive oxygen species-independent apoptotic pathway in Escherichia coli. Colloids Surf B: Biointerfaces. 2018;167:1–7.

    Article  PubMed  CAS  Google Scholar 

  • Lee W, Kim KJ, Lee DG. A novel mechanism for the antibacterial effect of silver nanoparticles on Escherichia coli. Biometals. 2014;27(6):1191–201.

    Article  CAS  PubMed  Google Scholar 

  • Lemire JA, Harrison JJ, Turner RJ. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol. 2013;11(6):371–84.

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJ. Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res. 2008;42(18):4591–602.

    Article  CAS  PubMed  Google Scholar 

  • Li W-R, Xie X-B, Shi Q-S, Zeng H-Y, You-Sheng O-Y, Chen Y-B. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol. 2010;85(4):1115–22.

    Article  CAS  PubMed  Google Scholar 

  • Li ZY, Yang Y, Ming M, Liu B. Mitochondrial ROS generation for regulation of autophagic pathways in cancer. Biochem Biophys Res Commun. 2011;414(1):5–8.

    Article  CAS  PubMed  Google Scholar 

  • Mann CL, Cidlowski JA. Glucocorticoids regulate plasma membrane potential during rat thymocyte apoptosis in vivo and in vitro. Endocrinology. 2001;142(1):421–9.

    Article  CAS  PubMed  Google Scholar 

  • Maul RW, Sutton MD. Roles of the Escherichia coli RecA protein and the global SOS response in effecting DNA polymerase selection in vivo. J Bacteriol. 2005;187(22):7607–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F. ROS signaling: the new wave? Trends Plant Sci. 2011;16(6):300–9.

    Article  CAS  PubMed  Google Scholar 

  • Mohanraj V, Chen Y. Nanoparticles-a review. Trop J Pharm Res. 2006;5(1):561–73.

    Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16(10):2346.

    Article  CAS  PubMed  Google Scholar 

  • Mühling M, Bradford A, Readman JW, Somerfield PJ, Handy RD. An investigation into the effects of silver nanoparticles on antibiotic resistance of naturally occurring bacteria in an estuarine sediment. Mar Environ Res. 2009;68(5):278–83.

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee A, Sikdar S, Bishayee K, Boujedaini N, Khuda-Bukhsh AR. Flavonol isolated from ethanolic leaf extract of Thuja occidentalis arrests the cell cycle at G2-M and induces ROS-independent apoptosis in A549 cells, targeting nuclear DNA. Cell Prolif. 2014a;47(1):56–71.

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee S, Chowdhury D, Kotcherlakota R, Patra S. Potential theranostics application of bio-synthesized silver nanoparticles (4-in-1 system). Theranostics. 2014b;4(3):316.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagamalleswari E, Rao S, Vasu K, Nagaraja V. Restriction endonuclease triggered bacterial apoptosis as a mechanism for long time survival. Nucleic Acids Res. 2017;45(14):8423–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negut I, Grumezescu V, Grumezescu AM. Treatment strategies for infected wounds. Molecules. 2018;23(9):2392.

    Article  PubMed Central  CAS  Google Scholar 

  • Niskanen J, Shan J, Tenhu H, Jiang H, Kauppinen E, Barranco V, Picó F, Yliniemi K, Kontturi K. Synthesis of copolymer-stabilized silver nanoparticles for coating materials. Colloid Polym Sci. 2010;288(5):543–53.

    Article  CAS  Google Scholar 

  • Nordberg J, Arner ES. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med. 2001;31(11):1287–312.

    Article  CAS  PubMed  Google Scholar 

  • Nugent SM, Mothersill CE, Seymour C, McClean B, Lyng FM, Murphy JE. Increased mitochondrial mass in cells with functionally compromised mitochondria after exposure to both direct gamma radiation and bystander factors. Radiat Res. 2007;168(1):134–42.

    Article  CAS  PubMed  Google Scholar 

  • Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113(7):823–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev. 2003;55(3):329–47.

    Article  CAS  PubMed  Google Scholar 

  • Pereira C, Camougrand N, Manon S, Sousa MJ, Côrte-Real M. ADP/ATP carrier is required for mitochondrial outer membrane permeabilization and cytochrome c release in yeast apoptosis. Mol Microbiol. 2007;66(3):571–82.

    Article  CAS  PubMed  Google Scholar 

  • Portet T, Camps i Febrer F, Escoffre JM, Favard C, Rols MP, Dean DS. Visualization of membrane loss during the shrinkage of giant vesicles under electropulsation. Biophys J. 2009;96(10):4109–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rai M, Ingle A, Pandit R, Paralikar P, Gupta I, Anasane N, Dolenc-Voljč M. Nanotechnology for the treatment of fungal infections on human skin. In: The microbiology of skin, soft tissue, bone and joint infections. Amsterdam: Elsevier; 2017a. p. 169–84.

    Chapter  Google Scholar 

  • Rai M, Zacchino S, Derita M. Nano-Ag particles and pathogenic microorganisms: antimicrobial mechanism and its application. In: Essential oils and nanotechnology for treatment of microbial diseases. Boca Raton: CRC Press; 2017b. p. 187–200.

    Chapter  Google Scholar 

  • Rajchakit U, Sarojini V. Recent developments in antimicrobial-peptide-conjugated gold nanoparticles. Bioconjug Chem. 2017;28(11):2673–86.

    Article  CAS  PubMed  Google Scholar 

  • Rizzuto R, De Stefani D, Raffaello A, Mammucari C. Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol. 2012;13(9):566–78.

    Article  CAS  PubMed  Google Scholar 

  • Rollet-Labelle E, Grange M-J, Elbim C, Marquetty C, Gougerot-Pocidalo M-A, Pasquier C. Hydroxyl radical as a potential intracellular mediator of polymorphonuclear neutrophil apoptosis. Free Radic Biol Med. 1998;24(4):563–72.

    Article  CAS  PubMed  Google Scholar 

  • Roos WP, Kaina B. DNA damage-induced cell death by apoptosis. Trends Mol Med. 2006;12(9):440–50.

    Article  CAS  PubMed  Google Scholar 

  • Sahu N, Soni D, Chandrashekhar B, Sarangi BK, Satpute D, Pandey RA. Synthesis and characterization of silver nanoparticles using Cynodon dactylon leaves and assessment of their antibacterial activity. Bioprocess Biosyst Eng. 2013;36(7):999–1004.

    Article  CAS  PubMed  Google Scholar 

  • Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol. 2014;24(10):R453–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA, Syed AF. Metal-based nanoparticles and their toxicity assessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010;2(5):544–68.

    Article  CAS  PubMed  Google Scholar 

  • Seong M, Lee DG. Reactive oxygen species-independent apoptotic pathway by gold nanoparticles in Candida albicans. Microbiol Res. 2018;207:33–40.

    Article  CAS  PubMed  Google Scholar 

  • Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology. 2007;18(22):225103.

    Article  CAS  Google Scholar 

  • Simon HU, Haj-Yehia A, Levi-Schaffer F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis. 2000;5(5):415–8.

    Article  CAS  PubMed  Google Scholar 

  • Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci. 2004;275(1):177–82.

    Article  CAS  PubMed  Google Scholar 

  • Wadskog I, Maldener C, Proksch A, Madeo F, Adler L. Yeast lacking the SRO7/SOP1-encoded tumor suppressor homologue show increased susceptibility to apoptosis-like cell death on exposure to NaCl stress. Mol Biol Cell. 2004;15(3):1436–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wani IA, Ahmad T. Size and shape dependant antifungal activity of gold nanoparticles: a case study of Candida. Colloids Surf B: Biointerfaces. 2013;101:162–70.

    Article  CAS  PubMed  Google Scholar 

  • Xia XR, Monteiro-Riviere NA, Riviere JE. Intrinsic biological property of colloidal fullerene nanoparticles (nC60): lack of lethality after high dose exposure to human epidermal and bacterial cells. Toxicol Lett. 2010;197(2):128–34.

    Article  CAS  PubMed  Google Scholar 

  • Yoon MJ, Kim EH, Kwon TK, Park SA, Choi KS. Simultaneous mitochondrial Ca2+ overload and proteasomal inhibition are responsible for the induction of paraptosis in malignant breast cancer cells. Cancer Lett. 2012;324(2):197–209.

    Article  CAS  PubMed  Google Scholar 

  • Yu SP. Regulation and critical role of potassium homeostasis in apoptosis. Prog Neurobiol. 2003;70(4):363–86.

    Article  CAS  PubMed  Google Scholar 

  • Yun DG, Lee DG. Antibacterial activity of curcumin via apoptosis-like response in Escherichia coli. Appl Microbiol Biotechnol. 2016;100(12):5505–14.

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Pornpattananangkul D, Hu C-M, Huang C-M. Development of nanoparticles for antimicrobial drug delivery. Curr Med Chem. 2010;17(6):585–94.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Chan HF, Leong KW. Advanced materials and processing for drug delivery: the past and the future. Adv Drug Deliv Rev. 2013;65(1):104–20.

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Kong Y, Kundu S, Cirillo JD, Liang H. Antibacterial activities of gold and silver nanoparticles against Escherichia coli and bacillus Calmette-Guerin. J Nanobiotechnol. 2012;10:19.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Gun Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, H., Lee, D.G. (2019). The Potential of Gold and Silver Antimicrobials: Nanotherapeutic Approach and Applications. In: Rai, M., Jamil, B. (eds) Nanotheranostics. Springer, Cham. https://doi.org/10.1007/978-3-030-29768-8_8

Download citation

Publish with us

Policies and ethics