The Role of Ablative Fractional Lasers in Wound Healing

  • Joshua S. MervisEmail author
  • Tania J. Phillips
Part of the Updates in Clinical Dermatology book series (UCD)


Chronic wounds impose a major burden on the individual and healthcare system, accounting for significant morbidity, decreased quality of life, and high costs. Despite the development of various advanced therapeutic modalities, chronic wounds remain extremely difficult to treat. Lasers, well-known for their use in a variety of dermatologic procedures, have been used more recently to treat the functional and aesthetic sequelae of burn injuries and scar-related contractures. Of particular interest to the wound healing community, ablative fractional carbon dioxide laser treatment has been found to dramatically accelerate healing in chronic post-traumatic wounds. While evidence is currently limited to a small number of patients from case reports and case series, ablative fractional lasers seem to be a potentially effective novel treatment for wounds of this etiology. Though the mechanism of action has not been well-defined, fractional lasers have been hypothesized to stimulate healing via mechanical effects, collagen remodeling, debridement, and alteration in the wound molecular profile. Further research and controlled studies looking at lasers for post-traumatic wounds, as well as other common types of chronic wounds, including venous, arterial, diabetic, and pressure ulcers, are needed.


Lasers Ablative Fractional Wounds Chronic Wound healing Alternative Ulcer Photothermolysis Carbon dioxide Erbium Scar Scarring Contracture 



Ablative fractional


Carbon dioxide


Erbium:yttrium aluminum garnet


Heat shock protein


Matrix metalloproteinase


Reflectance confocal microscopy


Transforming growth factor beta


  1. 1.
    Sen CK, Gordillo GM, Roy S, Kirsner R, Lambert L, Hunt TK, et al. Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen. 2009;17(6):763–71.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Singer AJ, Tassiopoulos A, Kirsner RS. Evaluation and Management of Lower-Extremity Ulcers. N Engl J Med. 2017;377(16):1559–67.PubMedCrossRefGoogle Scholar
  3. 3.
    Rice JB, Desai U, Cummings AK, Birnbaum HG, Skornicki M, Parsons N. Burden of venous leg ulcers in the United States. J Med Econ. 2014;17(5):347–56.PubMedCrossRefGoogle Scholar
  4. 4.
    Gorecki C, Brown JM, Nelson EA, Briggs M, Schoonhoven L, Dealey C, et al. Impact of pressure ulcers on quality of life in older patients: a systematic review. J Am Geriatr Soc. 2009;57(7):1175–83.PubMedCrossRefGoogle Scholar
  5. 5.
    Spilsbury K, Nelson A, Cullum N, Iglesias C, Nixon J, Mason S. Pressure ulcers and their treatment and effects on quality of life: hospital inpatient perspectives. J Adv Nurs. 2007;57(5):494–504.PubMedCrossRefGoogle Scholar
  6. 6.
    Hopman WM, VanDenKerkhof EG, Carley ME, Kuhnke JL, Harrison MB. Factors associated with health-related quality of life in chronic leg ulceration. Qual Life Res. 2014;23(6):1833–40.PubMedCrossRefGoogle Scholar
  7. 7.
    de Almeida SA, Salomé GM, Dutra RA, Ferreira LM. Feelings of powerlessness in individuals with either venous or diabetic foot ulcers. J Tissue Viability. 2014;23(3):109–14.PubMedCrossRefGoogle Scholar
  8. 8.
    Anderson RR. Lasers for dermatology and skin biology. J Invest Dermatol. 2013;133(E1):E21–3.PubMedCrossRefGoogle Scholar
  9. 9.
    Anderson RR, Parrish JA. Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science. 1983;220(4596):524–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Manstein D, Herron GS, Sink RK, Tanner H, Anderson RR. Fractional photothermolysis: a new concept for cutaneous remodeling using microscopic patterns of thermal injury. Lasers Surg Med. 2004;34(5):426–38.PubMedCrossRefGoogle Scholar
  11. 11.
    Cohen JL, Ross EV. Combined fractional ablative and nonablative laser resurfacing treatment: a split-face comparative study. J Drugs Dermatol. 2013;12(2):175–8.PubMedGoogle Scholar
  12. 12.
    Laubach HJ, Tannous Z, Anderson RR, Manstein D. Skin responses to fractional photothermolysis. Lasers Surg Med. 2006;38(2):142–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Hantash BM, Bedi VP, Kapadia B, Rahman Z, Jiang K, Tanner H, et al. In vivo histological evaluation of a novel ablative fractional resurfacing device. Lasers Surg Med. 2007;39(2):96–107.PubMedCrossRefGoogle Scholar
  14. 14.
    Waibel J, Beer K. Ablative fractional laser resurfacing for the treatment of a third-degree burn. J Drugs Dermatol. 2009;8(3):294–7.PubMedGoogle Scholar
  15. 15.
    Cervelli V, Gentile P, Spallone D, Nicoli F, Verardi S, Petrocelli M, et al. Ultrapulsed fractional CO2 laser for the treatment of post-traumatic and pathological scars. J Drugs Dermatol. 2010;9(11):1328–31.PubMedGoogle Scholar
  16. 16.
    Kwan JM, Wyatt M, Uebelhoer NS, Pyo J, Shumaker PR. Functional improvement after ablative fractional laser treatment of a scar contracture. PM R. 2011;3(10):986–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Shumaker PR, Kwan JM, Landers JT, Uebelhoer NS. Functional improvements in traumatic scars and scar contractures using an ablative fractional laser protocol. J Trauma Acute Care Surg. 2012;73(2 Suppl 1):S116–21.PubMedCrossRefGoogle Scholar
  18. 18.
    Krakowski AC, Goldenberg A, Eichenfield LF, Murray JP, Shumaker PR. Ablative fractional laser resurfacing helps treat restrictive pediatric scar contractures. Pediatrics. 2014;134(6):e1700–5.PubMedCrossRefGoogle Scholar
  19. 19.
    Uebelhoer NS, Ross EV, Shumaker PR. Ablative fractional resurfacing for the treatment of traumatic scars and contractures. Semin Cutan Med Surg. 2012;31(2):110–20.PubMedCrossRefGoogle Scholar
  20. 20.
    Shumaker PR, Kwan JM, Badiavas EV, Waibel J, Davis S, Uebelhoer NS. Rapid healing of scar-associated chronic wounds after ablative fractional resurfacing. Arch Dermatol. 2012;148(11):1289–93.PubMedCrossRefGoogle Scholar
  21. 21.
    Phillips TJ, Morton LM, Uebelhoer NS, Dover JS. Ablative fractional carbon dioxide laser in the treatment of chronic, posttraumatic, lower-extremity ulcers in elderly patients. JAMA Dermatol. 2015;151(8):868–71.PubMedCrossRefGoogle Scholar
  22. 22.
    Krakowski AC, Diaz L, Admani S, Uebelhoer NS, Shumaker PR. Healing of chronic wounds with adjunctive ablative fractional laser resurfacing in two pediatric patients. Lasers Surg Med. 2016;48(2):166–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Krakowski AC, Ghasri P. Case report: rapidly healing epidermolysis bullosa wound after ablative fractional resurfacing. Pediatrics. 2015;135(1):e207–10.PubMedCrossRefGoogle Scholar
  24. 24.
    Morton LM, Dover JS, Phillips TJ, Krakowski AC, Uebelhoer NS. Treatment of ulcers with ablative fractional lasers. Semin Cutan Med Surg. 2015;34(1):37–41.PubMedCrossRefGoogle Scholar
  25. 25.
    Aust MC, Fernandes D, Kolokythas P, Kaplan HM, Vogt PM. Percutaneous collagen induction therapy: an alternative treatment for scars, wrinkles, and skin laxity. Plast Reconstr Surg. 2008;121(4):1421–9.PubMedCrossRefGoogle Scholar
  26. 26.
    El-Domyati M, Abd-El-Raheem T, Medhat W, Abdel-Wahab H, Al Anwer M. Multiple fractional erbium: yttrium-aluminum-garnet laser sessions for upper facial rejuvenation: clinical and histological implications and expectations. J Cosmet Dermatol. 2014;13(1):30–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Chen G, Chen J, Zhuo S, Xiong S, Zeng H, Jiang X, et al. Nonlinear spectral imaging of human hypertrophic scar based on two-photon excited fluorescence and second-harmonic generation. Br J Dermatol. 2009;161(1):48–55.PubMedCrossRefGoogle Scholar
  28. 28.
    Makboul M, Makboul R, Abdelhafez AH, Hassan SS, Youssif SM. Evaluation of the effect of fractional CO2 laser on histopathological picture and TGF-β1 expression in hypertrophic scar. J Cosmet Dermatol. 2014;13(3):169–79.PubMedCrossRefGoogle Scholar
  29. 29.
    Ozog DM, Liu A, Chaffins ML, Ormsby AH, Fincher EF, Chipps LK, et al. Evaluation of clinical results, histological architecture, and collagen expression following treatment of mature burn scars with a fractional carbon dioxide laser. JAMA Dermatol. 2013;149(1):50–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Lebrun E, Kirsner RS. Frequent debridement for healing of chronic wounds. JAMA Dermatol. 2013;149(9):1059.PubMedCrossRefGoogle Scholar
  31. 31.
    Wolcott R. Disrupting the biofilm matrix improves wound healing outcomes. J Wound Care. 2015;24(8):366–71.PubMedCrossRefGoogle Scholar
  32. 32.
    Stojadinovic O, Brem H, Vouthounis C, Lee B, Fallon J, Stallcup M, et al. Molecular pathogenesis of chronic wounds: the role of beta-catenin and c-myc in the inhibition of epithelialization and wound healing. Am J Pathol. 2005;167(1):59–69.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Qu L, Liu A, Zhou L, He C, Grossman PH, Moy RL, et al. Clinical and molecular effects on mature burn scars after treatment with a fractional CO(2) laser. Lasers Surg Med. 2012;44(7):517–24.PubMedCrossRefGoogle Scholar
  34. 34.
    El-Domyati M, El-Ammawi TS, Medhat W, Moawad O, Mahoney MG, Uitto J. Expression of transforming growth factor-β after different non-invasive facial rejuvenation modalities. Int J Dermatol. 2015;54(4):396–404.PubMedCrossRefGoogle Scholar
  35. 35.
    Martinez-Ferrer M, Afshar-Sherif AR, Uwamariya C, de Crombrugghe B, Davidson JM, Bhowmick NA. Dermal transforming growth factor-beta responsiveness mediates wound contraction and epithelial closure. Am J Pathol. 2010;176(1):98–107.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Jiang X, Ge H, Zhou C, Chai X, Deng H. The role of transforming growth factor β1 in fractional laser resurfacing with a carbon dioxide laser. Lasers Med Sci. 2014;29(2):681–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Quan T, He T, Kang S, Voorhees JJ, Fisher GJ. Solar ultraviolet irradiation reduces collagen in photoaged human skin by blocking transforming growth factor-beta type II receptor/Smad signaling. Am J Pathol. 2004;165(3):741–51.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Xu XG, Luo YJ, Wu Y, Chen JZ, Xu TH, Gao XH, et al. Immunohistological evaluation of skin responses after treatment using a fractional ultrapulse carbon dioxide laser on back skin. Dermatol Surg. 2011;37(8):1141–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Wang ZL, Inokuchi T, Ikeda H, Baba TT, Uehara M, Kamasaki N, et al. Collagen-binding heat shock protein HSP47 expression during healing of fetal skin wounds. Int J Oral Maxillofac Surg. 2002;31(2):179–84.PubMedCrossRefGoogle Scholar
  40. 40.
    Wysocki AB, Staiano-Coico L, Grinnell F. Wound fluid from chronic leg ulcers contains elevated levels of metalloproteinases MMP-2 and MMP-9. J Invest Dermatol. 1993;101(1):64–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Reilly MJ, Cohen M, Hokugo A, Keller GS. Molecular effects of fractional carbon dioxide laser resurfacing on photodamaged human skin. Arch Facial Plast Surg. 2010;12(5):321–5.PubMedCrossRefGoogle Scholar
  42. 42.
    Prignano F, Campolmi P, Bonan P, Ricceri F, Cannarozzo G, Troiano M, et al. Fractional CO2 laser: a novel therapeutic device upon photobiomodulation of tissue remodeling and cytokine pathway of tissue repair. Dermatol Ther. 2009;22(Suppl 1):S8–15.PubMedCrossRefGoogle Scholar
  43. 43.
    Jiang X, Ge H, Zhou C, Chai X, Ren QS. The role of vascular endothelial growth factor in fractional laser resurfacing with the carbon dioxide laser. Lasers Med Sci. 2012;27(3):599–606.PubMedCrossRefGoogle Scholar
  44. 44.
    Anderson RR, Donelan MB, Hivnor C, Greeson E, Ross EV, Shumaker PR, et al. Laser treatment of traumatic scars with an emphasis on ablative fractional laser resurfacing: consensus report. JAMA Dermatol. 2014;150(2):187–93.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of DermatologyBoston University School of MedicineBostonUSA

Personalised recommendations