Skip to main content

PET Biomarkers for Tau Pathology

  • Chapter
  • First Online:
Radiopharmaceuticals

Abstract

The aggregation and accumulation of pathologic forms of the microtubule-associated tau protein into fibrils, eventually forming characteristic tangle pathology, hallmarks the majority of all dementia disorders which constitute the most prevalent family of neurodegenerative disorders. These so-called tauopathies are difficult to identify and diagnose, especially at early disease stages. The relatively recent development of positron emission tomography tracers to visualize, map, and quantify tau pathology in the living brain has already provided substantial information about the temporal and spatial characteristics of tau accumulation during disease development, holding promise to serve as a highly valuable diagnostic tool in research and clinical settings. This chapter describes the current state of research employing tau biomarkers derived from neuroimaging with PET as well as recent technical developments in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weingarten MD, Lockwood AH, Hwo SY. A protein factor essential for microtubule assembly. Proc Natl Acad Sci U S A. 1975;72(5):1858–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sotiropoulos I, Galas MC, Silva JM, et al. Atypical, non-standard functions of the microtubule associated tau protein. Acta Neuropathol Commun. 2017;5(1):91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Kopke E, Tung YC, Shaikh S, et al. Microtubule-associated protein tau. Abnormal phosphorylation of a non-paired helical filament pool in Alzheimer disease. J Biol Chem. 1993;268(32):24374–84.

    CAS  PubMed  Google Scholar 

  4. Lindwall G, Cole RD. Phosphorylation affects the ability of tau protein to promote microtubule assembly. J Biol Chem. 1984;259(8):5301–5.

    CAS  PubMed  Google Scholar 

  5. Maas T, Eidenmuller J, Brandt R. Interaction of tau with the neural membrane cortex is regulated by phosphorylation at sites that are modified in paired helical filaments. J Biol Chem. 2000;275(21):15733–40.

    Article  CAS  PubMed  Google Scholar 

  6. Hernandez F, Avila J. Tauopathies. Cell Mol Life Sci. 2007;64(17):2219–33.

    Article  CAS  PubMed  Google Scholar 

  7. Schöll M, Maass A, Mattsson N, et al. Biomarkers for tau pathology. Mol Cell Neurosci. 2019;97:18–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Shoghi-Jadid K, Small G, Agdeppa E, et al. Localization of neurofibrillary tangles and betaamyloid plaques in the brains of living patients with Alzheimer disease. Am J Geriatr Psychiatry. 2002;10:24–35.

    Article  PubMed  Google Scholar 

  9. Shoup TM, Yokell DL, Rice PA, et al. A concise radiosynthesis of the tau radiopharmaceutical, [(18) F]T807. J Labelled Comp Radiopharm. 2013;56(14):736–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xia CF, Arteaga J, Chen G, et al. [(18)F]T807, a novel tau positron emission tomography imaging agent for Alzheimer’s disease. Alzheimers Dement. 2013;9(6):666–76.

    Article  PubMed  Google Scholar 

  11. Holt DP, Ravert HT, Dannals RF. Synthesis and quality control of [(18) F]T807 for tau PET imaging. J Labelled Comp Radiopharm. 2016;59(10):411–5.

    Article  CAS  PubMed  Google Scholar 

  12. Mossine AV, Brooks AF, Henderson BD. An updated radiosynthesis of [(18)F]AV1451 for tau PET imaging. EJNMMI Radiopharm Chem. 2017;2(1):7.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Collier TL, Yokell DL, Livni E, et al. cGMP production of the radiopharmaceutical [(18) F]MK-6240 for PET imaging of human neurofibrillary tangles. J Labelled Comp Radiopharm. 2017;60(5):263–9.

    Article  CAS  PubMed  Google Scholar 

  14. Saint-Aubert L, Lemoine L, Chiotis K, et al. Tau PET imaging: present and future directions. Mol Neurodegener. 2017;12(1):19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Ono M, Sahara N, Kumata K, Ji B, Ni R, Koga S, et al. Distinct binding of PET ligands PBB3 and AV-1451 to tau fibril strains in neurodegenerative tauopathies. Brain. 2017;140:764–80.

    PubMed  PubMed Central  Google Scholar 

  16. Marquie M, Normandin MD, Meltzer AC, Siao Tick Chong M, Andrea NV, Anton-Fernandez A, et al. Pathological correlations of [F-18]-AV-1451 imaging in non-Alzheimer tauopathies. Ann Neurol. 2017;81:117–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lemoine L, Leuzy A, Chiotis K, et al. Tau positron emission tomography imaging in tauopathies: the added hurdle of off-target binding. Alzheimers Dement (Amst). 2018;10:232–6.

    Google Scholar 

  18. Choi JY, Cho H, Ahn SJ, et al. Off-Target (18)F-AV-1451 binding in the basal ganglia correlates with age-related iron accumulation. J Nucl Med. 2018;59:117–20.

    Article  CAS  PubMed  Google Scholar 

  19. Marquie M, Normandin MD, Vanderburg CR, et al. Validating novel tau positron emission tomography tracer [F-18]-AV-1451 (T807) on postmortem brain tissue. Ann Neurol. 2015;78:787–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vermeiren C, Motte P, Viot D, et al. The tau positron-emission tomography tracer AV-1451 binds with similar affinities to tau fibrils and monoamine oxidases. Mov Disord. 2018;33(2):273–81.

    Article  CAS  PubMed  Google Scholar 

  21. Lemoine L, Gillberg PG, Svedberg M, et al. Comparative binding properties of the tau PET tracers THK5117, THK5351, PBB3, and T807 in postmortem Alzheimer brains. Alzheimers Res Ther. 2017;9(1):96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Betthauser TJ, Cody KA, Zammit MD, et al. In vivo characterization and quantification of neurofibrillary tau PET radioligand (18)F-MK-6240 in humans from Alzheimer disease dementia to young controls. J Nucl Med. 2019;60(1):93–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wong DF, Comley RA, Kuwabara H, et al. Characterization of 3 novel tau radiopharmaceuticals, (11)C-RO-963, (11)C-RO-643, and (18)F-RO-948, in healthy controls and in Alzheimer subjects. J Nucl Med. 2018;59(12):1869–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hahn A, Schain M, Erlandsson M, et al. Modeling strategies for quantification of in vivo (18)F-AV-1451 binding in patients with tau pathology. J Nucl Med. 2017;58(4):623–31.

    Article  CAS  PubMed  Google Scholar 

  25. Jonasson M, Wall A, Chiotis K, et al. Tracer kinetic analysis of (S)-(1)(8)F-THK5117 as a PET tracer for assessing tau pathology. J Nucl Med. 2016;57(4):574–81.

    Article  CAS  PubMed  Google Scholar 

  26. Kuwabara H, Comley RA, Borroni E, Honer M, Kitmiller K, Roberts J, et al. Evaluation of (18)F-RO-948 PET for quantitative assessment of tau accumulation in the human brain. J Nucl Med. 2018;59(12):1877–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kimura Y, Ichise M, Ito H, et al. PET quantification of tau pathology in human brain with 11C-PBB3. J Nucl Med. 2015;56(9):1359–65.

    Article  CAS  PubMed  Google Scholar 

  28. Barret O, Alagille D, Sanabria S, et al. Kinetic modeling of the tau PET tracer (18)F-AV-1451 in human healthy volunteers and Alzheimer disease subjects. J Nucl Med. 2017;58(7):1124–31.

    Article  CAS  PubMed  Google Scholar 

  29. Baker SL, Lockhart SN, Price JC, et al. Reference tissue-based kinetic evaluation of 18F-AV-1451 for tau imaging. J Nucl Med. 2017;58(2):332–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Heurling K, Smith R, Strandberg OT, et al. Regional times to equilibria and their impact on semi-quantification of [(18)F]AV-1451 uptake. J Cereb Blood Flow Metab. 2018:271678X18791430.

    Google Scholar 

  31. Schöll M, Lockhart SN, Schonhaut DR, et al. PET imaging of tau deposition in the aging human brain. Neuron. 2016;89(5):971–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Cho H, Choi JY, Hwang MS, et al. In vivo cortical spreading pattern of tau and amyloid in the Alzheimer disease spectrum. Ann Neurol. 2016;80(2):247–58.

    Article  CAS  PubMed  Google Scholar 

  33. Jack CR Jr, Wiste HJ, Schwarz CG, et al. Longitudinal tau PET in ageing and Alzheimer’s disease. Brain. 2018;141(5):1517–28.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jones DT, Graff-Radford J, Lowe VJ, et al. Tau, amyloid, and cascading network failure across the Alzheimer’s disease spectrum. Cortex. 2017;97:143–59.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cho H, Choi JY, Lee HS, et al. Progressive tau accumulation in Alzheimer’s disease: two-year follow-up study. J Nucl Med. 2019. pii: jnumed.118.221697

    Google Scholar 

  36. Brier MR, Gordon B, Friedrichsen K, et al. Tau and Abeta imaging, CSF measures, and cognition in Alzheimer’s disease. Sci Transl Med. 2016;8(338):338ra66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Lowe VJ, Wiste HJ, Senjem ML, et al. Widespread brain tau and its association with ageing, Braak stage and Alzheimer’s dementia. Brain. 2018;141(1):271–87.

    Article  PubMed  Google Scholar 

  38. Sepulcre J, Sabuncu MR, Li Q, et al. Tau and amyloid beta proteins distinctively associate to functional network changes in the aging brain. Alzheimers Dement. 2017;13(11):1261–9.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Mishra S, Gordon BA, Su Y, et al. AV-1451 PET imaging of tau pathology in preclinical Alzheimer disease: defining a summary measure. Neuroimage. 2017;161:171–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Whitwell JL, Graff-Radford J, Tosakulwong N, et al. [(18) F]AV-1451 clustering of entorhinal and cortical uptake in Alzheimer’s disease. Ann Neurol. 2018a;83(2):248–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jack CR Jr. PART and SNAP. Acta Neuropathol. 2014;128(6):773–6.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Schöll M, Ossenkoppele R, Strandberg O, et al. Distinct 18F-AV-1451 tau PET retention patterns in early- and late-onset Alzheimer’s disease. Brain. 2017;140(9):2286–94.

    Article  PubMed  Google Scholar 

  43. Chiotis K, Saint-Aubert L, Savitcheva I, et al. Imaging in-vivo tau pathology in Alzheimer’s disease with THK5317 PET in a multimodal paradigm. Eur J Nucl Med Mol Imaging. 2016;43(9):1686–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Leuzy A, Chiotis K, Lemoine L, et al. Tau PET imaging in neurodegenerative tauopathies-still a challenge. Mol Psychiatry. 2019;

    Google Scholar 

  45. Smith R, Schöll M, Honer M, et al. Tau neuropathology correlates with FDG-PET, but not AV-1451-PET, in progressive supranuclear palsy. Acta Neuropathol. 2017a;133(1):149–51.

    Article  PubMed  Google Scholar 

  46. Smith R, Schöll M, Widner H, et al. In vivo retention of (18)F-AV-1451 in corticobasal syndrome. Neurology. 2017b;89(8):845–53.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Rafii MS, Lukic AS, Andrews RD, et al. PET imaging of tau pathology and relationship to amyloid, longitudinal MRI, and cognitive change in down syndrome: results from the down syndrome biomarker initiative (DSBI). J Alzheimers Dis. 2017;60(2):439–50.

    Article  CAS  PubMed  Google Scholar 

  48. Smith R, Schöll M, Londos E, et al. (18)F-AV-1451 in Parkinson’s disease with and without dementia and in dementia with Lewy bodies. Sci Rep. 2018;8(1):4717.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Ossenkoppele R, Rabinovici GD, Smith R, et al. Discriminative accuracy of [18F]flortaucipir positron emission tomography for Alzheimer disease vs other neurodegenerative disorders. JAMA. 2018;320(11):1151–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ossenkoppele R, Schonhaut DR, Baker SL, et al. Tau, amyloid, and hypometabolism in a patient with posterior cortical atrophy. Ann Neurol. 2015;77(2):338–42.

    Article  CAS  PubMed  Google Scholar 

  51. Whitwell JL, Graff-Radford J, Tosakulwong N, et al. Imaging correlations of tau, amyloid, metabolism, and atrophy in typical and atypical Alzheimer’s disease. Alzheimers Dement. 2018b;14(8):1005–14.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Chiotis K, Saint-Aubert L, Rodriguez-Vieitez E, et al. Longitudinal changes of tau PET imaging in relation to hypometabolism in prodromal and Alzheimer’s disease dementia. Mol Psychiatry. 2018;23(7):1666–73.

    Article  CAS  PubMed  Google Scholar 

  53. Bejanin A, Schonhaut DR, La Joie R, et al. Tau pathology and neurodegeneration contribute to cognitive impairment in Alzheimer’s disease. Brain. 2017;140(12):3286–300.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Jacobs HIL, Hedden T, Schultz AP, et al. Structural tract alterations predict downstream tau accumulation in amyloid-positive older individuals. Nat Neurosci. 2018;21(3):424–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mattsson N, Schöll M, Strandberg O, et al. (18)F-AV-1451 and CSF T-tau and P-tau as biomarkers in Alzheimer’s disease. EMBO Mol Med. 2017;9(9):1212–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mattsson N, Smith R, Strandberg O, et al. Comparing (18)F-AV-1451 with CSF t-tau and p-tau for diagnosis of Alzheimer disease. Neurology. 2018;90(5):e388–e95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Villemagne VL, Fodero-Tavoletti MT, Masters CL. Tau imaging: early progress and future directions. Lancet Neurol. 2015;14(1):114–24.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Schöll .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leuzy, A., Heurling, K., Schöll, M. (2020). PET Biomarkers for Tau Pathology. In: Calabria, F., Schillaci, O. (eds) Radiopharmaceuticals. Springer, Cham. https://doi.org/10.1007/978-3-030-27779-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27779-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27778-9

  • Online ISBN: 978-3-030-27779-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics