Advertisement

Red Dwarfs pp 219-253 | Cite as

The Origin and Early Evolution of Life

  • David S. Stevenson
Chapter

Abstract

Terrestrial life emerged in a murky and violent period of history that has left little trace of its existence. Astrobiologists have been left to infer its likely origins from what meager and indirect evidence nature has left for us to decipher. We know, for example, that one of the building blocks of cells—a group of chemicals called amino acids—are found in the nebulae from which planets condense. Amino acids are also ubiquitous in a class of meteorites called carbonaceous chondrites. These observations imply that they could have been delivered to Earth very early in its history, but it does not say that they were.

References

  1. Ackerman, S. H., & Tzagoloff, A. (2005). Function, structure, and biogenesis of mitochondrial ATP synthase. Progress in Nucleic Acid Research and Molecular Biology, 80, 95–133.CrossRefGoogle Scholar
  2. Allen, J. F. & Vermaas, W. F. J. (2010). Evolution of photosynthesis. In Encyclopedia of life sciences (ELS). Chichester: John Wiley & Sons, Ltd.  https://doi.org/10.1002/9780470015902.a0002034.pub2
  3. Attwater, J., Wochner, A., & Holliger, P. (2013). In-ice evolution of RNA polymerase ribozyme activity. Nature Chemistry, 5, 1011–1018.ADSCrossRefGoogle Scholar
  4. Beagle, S. D., & Lockless, S. W. (2015). Electrical signalling goes bacterial. Nature, 527, 44–45.  https://doi.org/10.1038/nature15641.ADSCrossRefGoogle Scholar
  5. Bell, E. A., Boehnke, P., Harrison, T. M., & Mao, W. L. (2015). Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon. PNAS, 112(47), 14,518–14,521.CrossRefGoogle Scholar
  6. Bird, J. G., Zhang, Y., Tian, Y., Panova, N., Barvík, I., Greene, L., Liu, M., Buckley, B., Krásný, L., Lee, J. K., Kaplan, C. D., Ebright, R. H., & Nickels, B. E. (2016). The mechanism of RNA 5′ capping with NAD+, NADH and desphospho-CoA. Nature, 535, 444–447.  https://doi.org/10.1038/nature18622.ADSCrossRefGoogle Scholar
  7. Blount, Z. D., Borland, C. Z., & Lenski, R. E. (2008). Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli. PNAS, 105(23), 7899–7906.ADSCrossRefGoogle Scholar
  8. Brewin, N. (1972). Catalytic role for RNA in DNA replication. Nature: New Biology, 236, 101–101.CrossRefGoogle Scholar
  9. Cech, T. R. (2000). The ribosome is a ribozyme. Science, 289(5481), 878–885. http://web.biosci.utexas.edu/psaxena/BIO226R/articles/ribosome.pdf.CrossRefGoogle Scholar
  10. Cernak, P., & Sen, D. (2013). A thiamin-utilizing ribozyme decarboxylates a pyruvate-like substrate. Nature Chemistry, 5, 971–977.ADSCrossRefGoogle Scholar
  11. DasSarma, S., & Schwieterman, E. W. (2018). Early evolution of purple retinal pigments on Earth and implications for exoplanet biosignatures. International Journal of Astrobiology, 1–10.  https://doi.org/10.1017/S1473550418000423.
  12. Dismukes, G. C., Klimov, V. V., Baranov, S. V., Kozlov, Y. N., Das Gupta, J., & Tyryshkin, A. (2001). The origin of atmospheric oxygen on Earth: the innovation of oxygenic photosynthesis. PNAS, 98(5), 2170–2175.ADSCrossRefGoogle Scholar
  13. Forterre, P. (2011). A new fusion hypothesis for the origin of Eukarya: better than previous ones, but probably also wrong. Research in Microbiology, 162, 77–91.  https://doi.org/10.1016/j.resmic.2010.10.005.CrossRefGoogle Scholar
  14. Forterre, P. (2013). The Common Ancestor of Archaea and Eukarya Was Not an Archaeon. Archaea, 2013, 372396.  https://doi.org/10.1155/2013/372396. https://www.hindawi.com/journals/archaea/2013/372396/.CrossRefGoogle Scholar
  15. Fox, D. (2016). What sparked the Cambrian Explosion? Nature, 530, 268–270.ADSCrossRefGoogle Scholar
  16. Fox, S., & Strasdeit, H. (2013). Abiotic synthesis of porphyrins and other oligopyrroles on the early Earth and Earth-like planets. EPSC Abstracts, 8, EPSC2013-104.Google Scholar
  17. Gounaris, Y., Litinas, C., Evgenidou, E., & Petrotos, C. (2015). A hypothesis on the possible contribution of free hypoxanthine and adenine bases in prebiotic amino acid synthesis. Hypothesis, 13(1), 1–8.CrossRefGoogle Scholar
  18. Grosberg, R. K., & Strathmann, R. R. (2007). The evolution of multicellularity: A minor major transition? Annual Review of Ecology, Evolution, and Systematics, 38, 621–654.  https://doi.org/10.1146/annurev.ecolsys.36.102403.114735.CrossRefGoogle Scholar
  19. Hedges, S. B., Blair, J. E., Venturi, M. L., & Shoe, J. L. (2004). A molecular timescale of eukaryote evolution and the rise of complex multicellular life. BMC Evolutionary Biology, 4, 1–9. http://www.biomedcentral.com/1471-2148/4/2.CrossRefGoogle Scholar
  20. Hill, H. G. M., & Nuth, J. A. (2003). The catalytic potential of cosmic dust: Implications for prebiotic chemistry in the solar nebula and other protoplanetary systems. Astrobiology, 3(2). http://www.uni-leipzig.de/~biophy09/Biophysik-Vorlesung_2009-2010_DATA/QUELLEN/LIT/A/B/3/Hill_Nuth_2003_catalytic_potential_cosmic_dust_prebiotic_chemsitry_protoplanetary_systems_astrobiology.pdf.
  21. Huber, C., & Wächtershäuser, G. (2006). α-Hydroxy and α-amino acids under possible hadean, volcanic origin-of-life conditions. Science, 314, 630–632.ADSCrossRefGoogle Scholar
  22. Jarosewich, E. (1971). Chemical analysis of the murchison meteorite. Meteoritics, 6(1), 49.ADSCrossRefGoogle Scholar
  23. Kaiser, R. I., Maity, S., & Jones, B. M. (2015). Synthesis of prebiotic glycerol in interstellar ices. Angewandte Chemie (International Ed. in English), 54(1), 195–200.  https://doi.org/10.1002/anie.201408729.CrossRefGoogle Scholar
  24. Knoll, A. H. (2011). The multiple origins of complex multicellularity. Annual Review of Earth and Planetary Sciences, 39, 217–239. Downloaded from www.annualreviews.org by Harvard University on 04/28/11. For personal use only.ADSCrossRefGoogle Scholar
  25. Koonin, E. V. (2010). The origin and early evolution of eukaryotes in the light of phylogenomics. Genome Biology, 11, 209–220. http://genomebiology.com/2010/11/5/209.CrossRefGoogle Scholar
  26. Kuan, Y.-J., Charnley, S. B., Huang, H.-C., Tseng, W.-L., & Kisiel, Z. (2003). Interstellar glycine. The Astrophysical Journal, 593, 848–867.ADSCrossRefGoogle Scholar
  27. Kuhn, H. (1972). Self-organization of molecular systems and evolution of the genetic apparatus. Angewandte Chemie (International Ed. in English), 11, 798–820.CrossRefGoogle Scholar
  28. Lathe, R. (2005). Tidal chain reaction and the origin of replicating biopolymers. International Journal of Astrobiology, 4(1), 19–31.  https://doi.org/10.1017/S1473550405002314. Seminar available at: http://star-www.st-and.ac.uk/~kdh1/abs/lathe_r.talk.pdf.ADSCrossRefGoogle Scholar
  29. Lenton, T. M., Boyle, R. A., Poulton, S. W., Shields-Zhou, G. A., & Butterfield, N. J. (2014). Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era. Nature Geoscience, 7(4), 257–265. ISSN: 1752-0894.ADSCrossRefGoogle Scholar
  30. Liu, Y., Wang, Z., Liu, J., Levar, C., Edwards, M. J., Babauta, J. T., Kennedy, D. W., Shi, Z., Beyenal, H., Bond, D. R., Clarke, T. A., Butt, J. N., Richardson, D. J., Rosso, K. M., Zachara, J. M., Fredrickson, J. K., & Shi, L. (2014). A trans-outer membrane porin-cytochrome protein complex for extracellular electron transfer by Geobacter sulfurreducens PCA. Environmental Microbiology Reports, 6(6), 776–785.CrossRefGoogle Scholar
  31. Logue, J. S., & Morrison, D. K. (2012). Complexity in the signaling network: insights from the use of targeted inhibitors in cancer therapy. Genes & Development, 26, 641–650.  https://doi.org/10.1101/gad.186965.112.CrossRefGoogle Scholar
  32. Lundin, D., Berggren, G., Logan, D. T., & Sjöberg, B. M. (2015). The origin and evolution of ribonucleotide reduction. Life (Basel)., 5(1), 604–636.  https://doi.org/10.3390/life5010604.CrossRefGoogle Scholar
  33. Martin, L. L., Unrau, P. J., & Müller, U. F. (2015). RNA synthesis by in vitro selected ribozymes for recreating an RNA world. Lifestyles, 5, 247–268.Google Scholar
  34. Meinert, C., Myrgorodska, I., de Marcellus, P., Buhse, T., Nahon, L., Hoffmann, S. V., d’Hendecourt, L. L. S., & Meierhenrich, U. J. (2016). Ribose and related sugars from ultraviolet irradiation of interstellar ice analogs. Science, 352(6282), 208–212.  https://doi.org/10.1126/science.aad8137.ADSCrossRefGoogle Scholar
  35. Ménez, B., Pisapia, C., Andreani, M., Jamme, F., Vanbellingen, Q. P., Brunelle, A., Richard, L., Dumas, P., & Réfrégiers, M. (2018). Abiotic synthesis of amino acids in the recesses of the oceanic lithosphere. Nature, 564, 59–63.  https://doi.org/10.1038/s41586-018-0684-z.ADSCrossRefGoogle Scholar
  36. Menneken, M., Nemchin, A. A., Geisler, T., Pidgeon, R. T., & Wilde, S. A. (2007). Hadean diamonds in zircon from Jack Hills, Western Australia. Nature, 448, 917–920.  https://doi.org/10.1038/nature06083.ADSCrossRefGoogle Scholar
  37. Paul, N., & Joyce, G. F. (2002). A self-replicating ligase ribozyme. PNAS, 99(20), 12,733–12,740.CrossRefGoogle Scholar
  38. Perez-Bercoff, R. (Ed.). (2013). Protein biosynthesis in eukaryotes (Volume 41 of NATO Science Series A). Boston, MA: Springer Science & Business Media.Google Scholar
  39. Schirrmeistera, B. E., de Vosb, J. M., Antonellic, A., & Bagheria, H. C. (2013). Evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event. PNAS, 110(5), 1791–1796.ADSCrossRefGoogle Scholar
  40. Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(4), 623–666.  https://doi.org/10.1002/j.1538-7305.1948.tb00917.x.MathSciNetCrossRefzbMATHGoogle Scholar
  41. Spang, A., Saw, J. H., Jørgensen, S. L., Zaremba-Niedzwiedzka, K., Martijn, J., Lind, A. E., van Eijk, R., Schleper, C., Guy, L., & Ettema, T. J. G. (2015). Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature, 521(7551), 173–179.  https://doi.org/10.1038/nature14447.ADSCrossRefGoogle Scholar
  42. Spiegel, D. S., & Edwin, L. T. (2011). Life might be rare despite its early emergence on Earth: a Bayesian analysis of the probability of abiogenesis. PNAS, 109, 395–400. https://arxiv.org/pdf/1107.3835v1.pdf.ADSCrossRefGoogle Scholar
  43. Stevenson, D. S. (2002). Co-evolution of the genetic code and ribozyme replication. Journal of Theoretical Biology, 217, 235–253.  https://doi.org/10.1006/yjtbi.3013.MathSciNetCrossRefGoogle Scholar
  44. Szathmáry, E., & Smith, J. M. (1994). The major evolutionary transitions. Nature, 374, 227–232.  https://doi.org/10.1038/374227a0.ADSCrossRefGoogle Scholar
  45. Szilárd, L. (1929). On the decrease in entropy in a thermodynamic system by the intervention of intelligent beings. http://www.sns.ias.edu/~tlusty/courses/InfoInBio/Papers/Szilard1929.pdf.
  46. Szathmáry, E., & Smith, J. M. (1995). The major transitions in evolution. Oxford: Oxford University Press. New edition in 1998. ISBN-13: 978-0198502944.Google Scholar
  47. Turka, R. M., Chumachenkob, N. V., & Yarus, M. (2010). Multiple translational products from a five-nucleotide ribozyme. PNAS, 107(10), 4585–4589. http://www.pnas.org/content/107/10/4585.full.pdf.ADSCrossRefGoogle Scholar
  48. Watson, R. A., & Szathmáry, E. (2016). How can evolution learn? Trends in Genetics, 31(2), 147–157.  https://doi.org/10.1016/j.tree.2015.11.009. Available through Researchgate.CrossRefGoogle Scholar
  49. Weiner, A. M., & Maizels, N. (1987). tRNA-like structures tag the 3′ ends of genomic RNA molecules for replication: Implications for the origin of protein synthesis. PNAS, 84, 7383–7387. http://www.pnas.org/content/84/21/7383.full.pdf.ADSCrossRefGoogle Scholar
  50. West, J., Bianconi, G., Severini, S., & Teschendorff, A. E. (2012). On dynamical network entropy in cancer. Scientific Reports, 2, 802. http://arxiv.org/pdf/1202.3015v1.pdf.ADSCrossRefGoogle Scholar
  51. White, H. B., III. (1976). Coenzymes as fossils of an earlier metabolic state. Journal of Molecular Evolution, 7, 101–104.ADSCrossRefGoogle Scholar
  52. Yamagata, Y. (1999). Prebiotic formation of ADP and ATP from AMP, calcium phosphates and cyanate in aqueous solution. Origins of Life and Evolution of the Biosphere, 29, 511.  https://doi.org/10.1023/A:1006672232730.ADSCrossRefGoogle Scholar
  53. Zaremba-Niedzwiedzka, K., Caceres, E. F., Saw, J. H., Bäckström, D., Juzokaite, L., Vancaester, E., Seitz, K. W., Anantharaman, K., Starnawski, P., Kjeldsen, K. U., Stott, M. B., Nunoura, T., Banfield, J. F., Schramm, A., Baker, B. J., Spang, A., & Ettema, T. J. G. (2017). Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature, 541, 353–358.  https://doi.org/10.1038/nature21031.ADSCrossRefGoogle Scholar
  54. Zuo, Y., Xing, D., Regan, J. M., & Logan, B. E. (2008). Isolation of the exoelectrogenic bacterium Ochrobactrum anthropi YZ-1 by using a U-tube microbial fuel cell. Applied and Environmental Microbiology, 74(10), 3130–3137.  https://doi.org/10.1128/AEM.02732-07.CrossRefGoogle Scholar
  55. Zuo, Z., Peng, D., Yin, X., Zhou, X., Cheng, H., & Zhou, R. (2013). Genome-wide analysis reveals origin of transfer RNA genes from tRNA halves. Molecular Biology and Evolution, 30(9), 2087–2098.  https://doi.org/10.1093/molbev/mst107. http://mbe.oxfordjournals.org/content/30/9/2087.full. Wuhan University.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • David S. Stevenson
    • 1
  1. 1.SherwoodUK

Personalised recommendations