Advertisement

Payload Capabilities and Operational Limits of Eversion Robots

  • Hareesh GodabaEmail author
  • Fabrizio Putzu
  • Taqi Abrar
  • Jelizaveta Konstantinova
  • Kaspar Althoefer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11650)

Abstract

Recent progress in soft robotics has seen new types of actuation mechanisms based on apical extension which allows robots to grow to unprecedented lengths. Eversion robots are a type of robots based on the principle of apical extension offering excellent maneuverability and ease of control allowing users to conduct tasks from a distance. Mechanical modelling of these robotic structures is very important for understanding their operational capabilities. In this paper, we model the eversion robot as a thin-walled cylindrical beam inflated with air pressure, using Timoshenko beam theory considering rotational and shear effects. We examine the various failure modes of the eversion robots such as yielding, buckling instability and lateral collapse, and study the payloads and operational limits of these robots in axial and lateral loading conditions. Surface maps showing the operational boundaries for different combinations of the geometrical parameters are presented. This work provides insights into the design of eversion robots and can pave the way towards eversion robots with high payload capabilities that can act from long distances.

Keywords

Eversion robots Soft robots Inflated beams Timoshenko beam theory Failure modes Operational limits Design parameters 

Notes

Acknowledgements

This work was supported in part by the EPSRC National Centre for Nuclear Robotics project (EP/R02572X/1), and the Innovate UK project WormBot (104059).

References

  1. 1.
    Shintake, J., Rosset, S., Schubert, B., Floreano, D., Shea, H.: Versatile soft grippers with intrinsic electroadhesion based on multifunctional polymer actuators. Adv. Mater. 28, 231–238 (2015)CrossRefGoogle Scholar
  2. 2.
    Godaba, H., Li, J., Wang, Y., Zhu, J.: A soft jellyfish robot driven by a dielectric elastomer actuator. IEEE Robot. Autom. Lett. 1, 624–631 (2016)CrossRefGoogle Scholar
  3. 3.
    Behl, M., Kratz, K., Noechel, U., Sauter, T., Lendlein, A.: Temperature-memory polymer actuators. Proc. Natl. Acad. Sci. 110, 12555–12559 (2013)CrossRefGoogle Scholar
  4. 4.
    Liu, Z., Calvert, P.: Multilayer hydrogels as muscle-like actuators. Adv. Mater. 12, 288–291 (2000)CrossRefGoogle Scholar
  5. 5.
    Althoefer, K.: Antagonistic actuation and stiffness control in soft inflatable robots. Nat. Rev. Mater. 3, 76 (2018)CrossRefGoogle Scholar
  6. 6.
    Shepherd, R.F., et al.: Multigait soft robot. Proc. Natl. Acad. Sci. 108, 20400–20403 (2011)CrossRefGoogle Scholar
  7. 7.
    Marchese, A.D., Katzschmann, R.K., Rus, D.: A recipe for soft fluidic elastomer robots. Soft Robot. 2, 7–25 (2015)CrossRefGoogle Scholar
  8. 8.
    Niiyama, R., Rus, D., Kim, S.: Pouch motors: printable/inflatable soft actuators for robotics. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 6332–6337. IEEE (2014)Google Scholar
  9. 9.
    Liang, X., Cheong, H., Sun, Y., Guo, J., Chui, C.K., Yeow, C.-H.: Design, characterization, and implementation of a two-DOF fabric-based soft robotic arm. IEEE Robot. Autom. Lett. 3, 2702–2709 (2018)CrossRefGoogle Scholar
  10. 10.
    Li, J., Godaba, H., Zhang, Z.Q., Foo, C.C., Zhu, J.: A soft active origami robot. Extrem. Mech. Lett. 24, 30–37 (2018)CrossRefGoogle Scholar
  11. 11.
    Abrar, T., Putzu, F., Althoefer, K.: Soft wearable glove for tele-rehabilitation therapy of clenched hand/fingers patients. In: Workshop on Computer/Robot Assisted Surgery, London (2018)Google Scholar
  12. 12.
    Hawkes, E.W., Blumenschein, L.H., Greer, J.D., Okamura, A.M.: A soft robot that navigates its environment through growth. Sci. Robot. 2, eaan3028 (2017)CrossRefGoogle Scholar
  13. 13.
    Blumenschein, L.H., Gan, L.T., Fan, J.A., Okamura, A.M., Hawkes, E.W.: A tip-extending soft robot enables reconfigurable and deployable antennas. IEEE Robot. Autom. Lett. 3, 949–956 (2018)CrossRefGoogle Scholar
  14. 14.
    Naclerio, N.D., Hubicki, C.M., Aydin, Y.O., Goldman, D.I., Hawkes, E.W.: Soft robotic burrowing device with tip-extension and granular fluidization. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5918–5923. IEEE (2018)Google Scholar
  15. 15.
    Putzu, F., Abrar, T., Althoefer, K.: Plant-inspired soft pneumatic eversion robot. In: 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob), pp. 1327–1332. IEEE (2018)Google Scholar
  16. 16.
    Althoefer, K.A.: Neuro-fuzzy motion planning for robotic manipulators (1997)Google Scholar
  17. 17.
    Lockhart, J.A.: An analysis of irreversible plant cell elongation. J. Theor. Biol. 8, 264–275 (1965)CrossRefGoogle Scholar
  18. 18.
    Blumenschein, L.H., Okamura, A.M., Hawkes, E.W.: Modeling of bioinspired apical extension in a soft robot. In: Mangan, M., Cutkosky, M., Mura, A., Verschure, P.F.M.J., Prescott, T., Lepora, N. (eds.) Living Machines 2017. LNCS (LNAI), vol. 10384, pp. 522–531. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63537-8_45CrossRefGoogle Scholar
  19. 19.
    Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability (1961)Google Scholar
  20. 20.
    Jordan, J.L., Casem, D.T., Bradley, J.M., Dwivedi, A.K., Brown, E.N., Jordan, C.W.: Mechanical properties of low density polyethylene. J. Dyn. Behav. Mater. 2, 411–420 (2016)CrossRefGoogle Scholar
  21. 21.
    Timoshenko, S.: Strength of Materials Part 1. D. Van Nostrand Co., Inc. (1940)Google Scholar
  22. 22.
    Le Van, A., Wielgosz, C.: Bending and buckling of inflatable beams: some new theoretical results. Thin-walled Struct. 43, 1166–1187 (2005)CrossRefGoogle Scholar
  23. 23.
    Cowper, G.R.: The shear coefficient in Timoshenko’s beam theory. J. Appl. Mech. 33, 335–340 (1966)CrossRefGoogle Scholar
  24. 24.
    Comer, R.L., Levy, S.: Deflections of an inflated circular-cylindrical cantilever beam. AIAA J. 1, 1652–1655 (1963)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Hareesh Godaba
    • 1
    • 3
    Email author
  • Fabrizio Putzu
    • 2
    • 3
  • Taqi Abrar
    • 1
    • 3
  • Jelizaveta Konstantinova
    • 1
    • 3
  • Kaspar Althoefer
    • 1
    • 2
    • 3
  1. 1.School of Electronic Engineering and Computer ScienceQueen Mary University of LondonLondonUK
  2. 2.School of Engineering and Materials ScienceQueen Mary University of LondonLondonUK
  3. 3.Centre for Advanced Robotics @ Queen MaryQueen Mary University of LondonLondonUK

Personalised recommendations