Skip to main content

Payload Capabilities and Operational Limits of Eversion Robots

  • Conference paper
  • First Online:
Towards Autonomous Robotic Systems (TAROS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11650))

Included in the following conference series:

Abstract

Recent progress in soft robotics has seen new types of actuation mechanisms based on apical extension which allows robots to grow to unprecedented lengths. Eversion robots are a type of robots based on the principle of apical extension offering excellent maneuverability and ease of control allowing users to conduct tasks from a distance. Mechanical modelling of these robotic structures is very important for understanding their operational capabilities. In this paper, we model the eversion robot as a thin-walled cylindrical beam inflated with air pressure, using Timoshenko beam theory considering rotational and shear effects. We examine the various failure modes of the eversion robots such as yielding, buckling instability and lateral collapse, and study the payloads and operational limits of these robots in axial and lateral loading conditions. Surface maps showing the operational boundaries for different combinations of the geometrical parameters are presented. This work provides insights into the design of eversion robots and can pave the way towards eversion robots with high payload capabilities that can act from long distances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shintake, J., Rosset, S., Schubert, B., Floreano, D., Shea, H.: Versatile soft grippers with intrinsic electroadhesion based on multifunctional polymer actuators. Adv. Mater. 28, 231–238 (2015)

    Article  Google Scholar 

  2. Godaba, H., Li, J., Wang, Y., Zhu, J.: A soft jellyfish robot driven by a dielectric elastomer actuator. IEEE Robot. Autom. Lett. 1, 624–631 (2016)

    Article  Google Scholar 

  3. Behl, M., Kratz, K., Noechel, U., Sauter, T., Lendlein, A.: Temperature-memory polymer actuators. Proc. Natl. Acad. Sci. 110, 12555–12559 (2013)

    Article  Google Scholar 

  4. Liu, Z., Calvert, P.: Multilayer hydrogels as muscle-like actuators. Adv. Mater. 12, 288–291 (2000)

    Article  Google Scholar 

  5. Althoefer, K.: Antagonistic actuation and stiffness control in soft inflatable robots. Nat. Rev. Mater. 3, 76 (2018)

    Article  Google Scholar 

  6. Shepherd, R.F., et al.: Multigait soft robot. Proc. Natl. Acad. Sci. 108, 20400–20403 (2011)

    Article  Google Scholar 

  7. Marchese, A.D., Katzschmann, R.K., Rus, D.: A recipe for soft fluidic elastomer robots. Soft Robot. 2, 7–25 (2015)

    Article  Google Scholar 

  8. Niiyama, R., Rus, D., Kim, S.: Pouch motors: printable/inflatable soft actuators for robotics. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 6332–6337. IEEE (2014)

    Google Scholar 

  9. Liang, X., Cheong, H., Sun, Y., Guo, J., Chui, C.K., Yeow, C.-H.: Design, characterization, and implementation of a two-DOF fabric-based soft robotic arm. IEEE Robot. Autom. Lett. 3, 2702–2709 (2018)

    Article  Google Scholar 

  10. Li, J., Godaba, H., Zhang, Z.Q., Foo, C.C., Zhu, J.: A soft active origami robot. Extrem. Mech. Lett. 24, 30–37 (2018)

    Article  Google Scholar 

  11. Abrar, T., Putzu, F., Althoefer, K.: Soft wearable glove for tele-rehabilitation therapy of clenched hand/fingers patients. In: Workshop on Computer/Robot Assisted Surgery, London (2018)

    Google Scholar 

  12. Hawkes, E.W., Blumenschein, L.H., Greer, J.D., Okamura, A.M.: A soft robot that navigates its environment through growth. Sci. Robot. 2, eaan3028 (2017)

    Article  Google Scholar 

  13. Blumenschein, L.H., Gan, L.T., Fan, J.A., Okamura, A.M., Hawkes, E.W.: A tip-extending soft robot enables reconfigurable and deployable antennas. IEEE Robot. Autom. Lett. 3, 949–956 (2018)

    Article  Google Scholar 

  14. Naclerio, N.D., Hubicki, C.M., Aydin, Y.O., Goldman, D.I., Hawkes, E.W.: Soft robotic burrowing device with tip-extension and granular fluidization. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5918–5923. IEEE (2018)

    Google Scholar 

  15. Putzu, F., Abrar, T., Althoefer, K.: Plant-inspired soft pneumatic eversion robot. In: 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob), pp. 1327–1332. IEEE (2018)

    Google Scholar 

  16. Althoefer, K.A.: Neuro-fuzzy motion planning for robotic manipulators (1997)

    Google Scholar 

  17. Lockhart, J.A.: An analysis of irreversible plant cell elongation. J. Theor. Biol. 8, 264–275 (1965)

    Article  Google Scholar 

  18. Blumenschein, L.H., Okamura, A.M., Hawkes, E.W.: Modeling of bioinspired apical extension in a soft robot. In: Mangan, M., Cutkosky, M., Mura, A., Verschure, P.F.M.J., Prescott, T., Lepora, N. (eds.) Living Machines 2017. LNCS (LNAI), vol. 10384, pp. 522–531. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63537-8_45

    Chapter  Google Scholar 

  19. Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability (1961)

    Google Scholar 

  20. Jordan, J.L., Casem, D.T., Bradley, J.M., Dwivedi, A.K., Brown, E.N., Jordan, C.W.: Mechanical properties of low density polyethylene. J. Dyn. Behav. Mater. 2, 411–420 (2016)

    Article  Google Scholar 

  21. Timoshenko, S.: Strength of Materials Part 1. D. Van Nostrand Co., Inc. (1940)

    Google Scholar 

  22. Le Van, A., Wielgosz, C.: Bending and buckling of inflatable beams: some new theoretical results. Thin-walled Struct. 43, 1166–1187 (2005)

    Article  Google Scholar 

  23. Cowper, G.R.: The shear coefficient in Timoshenko’s beam theory. J. Appl. Mech. 33, 335–340 (1966)

    Article  Google Scholar 

  24. Comer, R.L., Levy, S.: Deflections of an inflated circular-cylindrical cantilever beam. AIAA J. 1, 1652–1655 (1963)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the EPSRC National Centre for Nuclear Robotics project (EP/R02572X/1), and the Innovate UK project WormBot (104059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hareesh Godaba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Godaba, H., Putzu, F., Abrar, T., Konstantinova, J., Althoefer, K. (2019). Payload Capabilities and Operational Limits of Eversion Robots. In: Althoefer, K., Konstantinova, J., Zhang, K. (eds) Towards Autonomous Robotic Systems. TAROS 2019. Lecture Notes in Computer Science(), vol 11650. Springer, Cham. https://doi.org/10.1007/978-3-030-25332-5_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25332-5_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25331-8

  • Online ISBN: 978-3-030-25332-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics