Skip to main content

Noninvasive Brain Stimulation to Reduce Falls in Older Adults

  • Chapter
  • First Online:
Falls and Cognition in Older Persons
  • 1634 Accesses

Abstract

Numerous interrelated factors on the causal pathway to falls in older adults—from gait and balance decline to cognitive dysfunction, depression, and chronic pain—arise at least in part from ineffective and/or inappropriate activation of brain networks. Transcranial electrical stimulation (tES) and transcranial magnetic stimulation (TMS) are two forms of noninvasive brain stimulation capable of selectively modulating the excitability of brain regions of interest and their connected neural networks. While no studies to date have directly examined the effects of tES or TMS interventions on falls in older adults, mounting evidence suggests that each technology holds promise to enhance gait and balance, improve certain aspects of cognitive function, and combat symptoms associated with depression and chronic pain in both aging and disease. This chapter will thus introduce tES and TMS technologies and their application to clinical research in aging, review available literature with potential relevance to falls prevention, and highlight important areas of future research needed to maximize the potential of noninvasive brain stimulation to alleviate the burden of cognitive–motor decline and falls in older adults.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fukuyama H, Ouchi Y, Matsuzaki S, et al. Brain functional activity during gait in normal subjects: a SPECT study. Neurosci Lett. 1997;228(3):183–6.

    Article  CAS  PubMed  Google Scholar 

  2. Miyai I, Tanabe HC, Sase I, et al. Cortical mapping of gait in humans: a near-infrared spectroscopic topography study. NeuroImage. 2001;14(5):1186–92.

    Article  CAS  PubMed  Google Scholar 

  3. Liu J, Hao Y, Du M, et al. Quantitative cerebral blood flow mapping and functional connectivity of postherpetic neuralgia pain: a perfusion fMRI study. Pain. 2013;154(1):110–8.

    Article  PubMed  Google Scholar 

  4. Jahn K, Deutschlander A, Stephan T, et al. Imaging human supraspinal locomotor centers in brainstem and cerebellum. NeuroImage. 2008;39(2):786–92.

    Article  PubMed  Google Scholar 

  5. Takakusaki K. Neurophysiology of gait: from the spinal cord to the frontal lobe. Mov Disord. 2013;28(11):1483–91.

    Article  PubMed  Google Scholar 

  6. Holtzer R, Mahoney JR, Izzetoglu M, Izzetoglu K, Onaral B, Verghese J. fNIRS study of walking and walking while talking in young and old individuals. J Gerontol A Biol Sci Med Sci. 2011;66(8):879–87.

    Article  PubMed  Google Scholar 

  7. Doi T, Makizako H, Shimada H, et al. Brain activation during dual-task walking and executive function among older adults with mild cognitive impairment: a fNIRS study. Aging Clin Exp Res. 2013;25(5):539–44.

    Article  PubMed  Google Scholar 

  8. Malcolm BR, Foxe JJ, Butler JS, De Sanctis P. The aging brain shows less flexible reallocation of cognitive resources during dual-task walking: a mobile brain/body imaging (MoBI) study. NeuroImage. 2015;117:230–42.

    Article  PubMed  Google Scholar 

  9. Bikson M, Grossman P, Thomas C, et al. Safety of transcranial direct current stimulation: evidence based update 2016. Brain Stimul. 2016;9(5):641–61.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ruffini G, Wendling F, Merlet I, et al. Transcranial current brain stimulation (tCS): models and technologies. IEEE Trans Neural Syst Rehabil Eng. 2013;21(3):333–45.

    Article  PubMed  Google Scholar 

  11. Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(Pt 3):633–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fregni F, Pascual-Leone A. Technology insight: noninvasive brain stimulation in neurology-perspectives on the therapeutic potential of rTMS and tDCS. Nat Clin Pract Neurol. 2007;3(7):383–93.

    Article  PubMed  Google Scholar 

  13. Horvath JC, Carter O, Forte JD. Transcranial direct current stimulation: five important issues we aren't discussing (but probably should be). Front Syst Neurosci. 2014;8:2.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ambrus GG, Al-Moyed H, Chaieb L, Sarp L, Antal A, Paulus W. The fade-in--short stimulation--fade out approach to sham tDCS--reliable at 1 mA for naive and experienced subjects, but not investigators. Brain Stimul. 2012;5(4):499–504.

    Article  PubMed  Google Scholar 

  15. Nitsche MA, Cohen LG, Wassermann EM, et al. Transcranial direct current stimulation: state of the art 2008. Brain Stimul. 2008;1(3):206–23.

    Article  PubMed  Google Scholar 

  16. Davis NJ, Gold E, Pascual-Leone A, Bracewell RM. Challenges of proper placebo control for non-invasive brain stimulation in clinical and experimental applications. Eur J Neurosci. 2013;38(7):2973–7.

    PubMed  Google Scholar 

  17. Gandiga PC, Hummel FC, Cohen LG. Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol. 2006;117(4):845–50.

    Article  PubMed  Google Scholar 

  18. Antal A, Alekseichuk I, Bikson M, et al. Low intensity transcranial electric stimulation: safety, ethical, legal regulatory and application guidelines. Clin Neurophysiol. 2017;128(9):1774–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nitsche MA, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology. 2001;57(10):1899–901.

    Article  CAS  PubMed  Google Scholar 

  20. Kuo HI, Bikson M, Datta A, et al. Comparing cortical plasticity induced by conventional and high-definition 4 x 1 ring tDCS: a neurophysiological study. Brain Stimul. 2013;6(4):644–8.

    Article  PubMed  Google Scholar 

  21. Reis J, Schambra HM, Cohen LG, et al. Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc Natl Acad Sci U S A. 2009;106(5):1590–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ruffini G, Fox MD, Ripolles O, Miranda PC, Pascual-Leone A. Optimization of multifocal transcranial current stimulation for weighted cortical pattern targeting from realistic modeling of electric fields. NeuroImage. 2014;89:216–25.

    Article  PubMed  Google Scholar 

  23. Fischer DB, Fried PJ, Ruffini G, et al. Multifocal tDCS targeting the resting state motor network increases cortical excitability beyond traditional tDCS targeting unilateral motor cortex. NeuroImage. 2017:157–34.

    Google Scholar 

  24. Kim JH, Kim DW, Chang WH, Kim YH, Kim K, Im CH. Inconsistent outcomes of transcranial direct current stimulation may originate from anatomical differences among individuals: electric field simulation using individual MRI data. Neurosci Lett. 2014;564:6–10.

    Article  CAS  PubMed  Google Scholar 

  25. Datta A, Baker JM, Bikson M, Fridriksson J. Individualized model predicts brain current flow during transcranial direct-current stimulation treatment in responsive stroke patient. Brain Stimul. 2011;4(3):169–74.

    Article  PubMed  Google Scholar 

  26. Woods AJ, Antal A, Bikson M, et al. A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin Neurophysiol. 2016;127(2):1031–48.

    Article  CAS  PubMed  Google Scholar 

  27. Tatti E, Rossi S, Innocenti I, Rossi A, Santarnecchi E. Non-invasive brain stimulation of the aging brain: state of the art and future perspectives. Ageing Res Rev. 2016;29:66–89.

    Article  PubMed  Google Scholar 

  28. Ali MM, Sellers KK, Frohlich F. Transcranial alternating current stimulation modulates large-scale cortical network activity by network resonance. J Neurosci. 2013;33(27):11262–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vossen A, Gross J, Thut G. Alpha power increase after transcranial alternating current stimulation at alpha frequency (alpha-tACS) reflects plastic changes rather than entrainment. Brain Stimul. 2015;8(3):499–508.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Santarnecchi E, Polizzotto NR, Godone M, et al. Frequency-dependent enhancement of fluid intelligence induced by transcranial oscillatory potentials. Curr Biol. 2013;23(15):1449–53.

    Article  CAS  PubMed  Google Scholar 

  31. Santarnecchi E, Muller T, Rossi S, et al. Individual differences and specificity of prefrontal gamma frequency-tACS on fluid intelligence capabilities. Cortex. 2016;75:33–43.

    Article  CAS  PubMed  Google Scholar 

  32. Inukai Y, Saito K, Sasaki R, et al. Comparison of three non-invasive transcranial electrical stimulation methods for increasing cortical excitability. Front Hum Neurosci. 2016;10:668.

    PubMed  PubMed Central  Google Scholar 

  33. Stacey WC, Durand DM. Stochastic resonance improves signal detection in hippocampal CA1 neurons. J Neurophysiol. 2000;83(3):1394–402.

    Article  CAS  PubMed  Google Scholar 

  34. Zhou J, Hao Y, Wang Y, et al. Transcranial direct current stimulation reduces the cost of performing a cognitive task on gait and postural control. Eur J Neurosci. 2014;39(8):1343–8.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Manor B, Zhou J, Jor'dan A, Zhang J, Fang J, Pascual-Leone A. Reduction of dual-task costs by noninvasive modulation of prefrontal activity in healthy elders. J Cogn Neurosci. 2016;28(2):275–81.

    Article  PubMed  Google Scholar 

  36. Manor B, Zhou J, Harrison R, et al. tDCS may improve cognitive-motor function in functionally-limited older adults. Neurorehabil Neural Repair. 2018;. In press

    Google Scholar 

  37. Mirelman A, Herman T, Brozgol M, et al. Executive function and falls in older adults: new findings from a five-year prospective study link fall risk to cognition. PLoS One. 2012;7(6):e40297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Montero-Odasso M, Verghese J, Beauchet O, Hausdorff JM. Gait and cognition: a complementary approach to understanding brain function and the risk of falling. J Am Geriatr Soc. 2012;60(11):2127–36.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yamada M, Aoyama T, Arai H, et al. Dual-task walk is a reliable predictor of falls in robust elderly adults. J Am Geriatr Soc. 2011;59(1):163–4.

    Article  PubMed  Google Scholar 

  40. Kaminski E, Hoff M, Rjosk V, et al. Anodal transcranial direct current stimulation does not facilitate dynamic balance task learning in healthy old adults. Front Hum Neurosci. 2017;11:16.

    PubMed  PubMed Central  Google Scholar 

  41. Xu Y, Hou QH, Russell SD, et al. Neuroplasticity in post-stroke gait recovery and noninvasive brain stimulation. Neural Regen Res. 2015;10(12):2072–80.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chieffo R, Comi G, Leocani L. Noninvasive neuromodulation in poststroke gait disorders: rationale, feasibility, and state of the art. Neurorehabil Neural Repair. 2016;30(1):71–82.

    Article  PubMed  Google Scholar 

  43. Fleming MK, Pavlou M, Newham DJ, Sztriha L, Teo JT. Non-invasive brain stimulation for the lower limb after stroke: what do we know so far and what should we be doing next? Disabil Rehabil. 2017;39(7):714–20.

    Article  PubMed  Google Scholar 

  44. Brittain JS, Cagnan H. Recent trends in the use of electrical neuromodulation in Parkinson's disease. Curr Behav Neurosci Rep. 2018;5(2):170–8.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Rektorova I, Anderkova L. Noninvasive brain stimulation and implications for nonmotor symptoms in Parkinson's disease. Int Rev Neurobiol. 2017;134:1091–110.

    Article  PubMed  Google Scholar 

  46. Andrade SM, Ferreira JJA, Rufino TS, et al. Effects of different montages of transcranial direct current stimulation on the risk of falls and lower limb function after stroke. Neurol Res. 2017;39(12):1037–43.

    Article  PubMed  Google Scholar 

  47. Lefaucheur JP, Antal A, Ayache SS, et al. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin Neurophysiol. 2017;128(1):56–92.

    Article  PubMed  Google Scholar 

  48. Lattari E, Costa SS, Campos C, de Oliveira AJ, Machado S, Maranhao Neto GA. Can transcranial direct current stimulation on the dorsolateral prefrontal cortex improves balance and functional mobility in Parkinson's disease? Neurosci Lett. 2017;636:165–9.

    Article  CAS  PubMed  Google Scholar 

  49. Hadoush H, Al-Jarrah M, Khalil H, Al-Sharman A, Al-Ghazawi S. Bilateral anodal transcranial direct current stimulation effect on balance and fearing of fall in patient with Parkinson's disease. NeuroRehabilitation. 2018;42(1):63–8.

    Article  PubMed  Google Scholar 

  50. Dagan M, Herman T, Harrison R, et al. Multitarget transcranial direct current stimulation for freezing of gait in Parkinson's disease. Mov Disord. 2018;33:642.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Stephens JA, Berryhill ME. Older adults improve on everyday tasks after working memory training and neurostimulation. Brain Stimul. 2016;9(4):553–9.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Arciniega H, Gozenman F, Jones KT, Stephens JA, Berryhill ME. Frontoparietal tDCS benefits visual working memory in older adults with low working memory capacity. Front Aging Neurosci. 2018;10:57.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Andre S, Heinrich S, Kayser F, et al. At-home tDCS of the left dorsolateral prefrontal cortex improves visual short-term memory in mild vascular dementia. J Neurol Sci. 2016;369:185–90.

    Article  PubMed  Google Scholar 

  54. Stubbs B, Stubbs J, Gnanaraj SD, Soundy A. Falls in older adults with major depressive disorder (MDD): a systematic review and exploratory meta-analysis of prospective studies. Int Psychogeriatr. 2016;28(1):23–9.

    Article  PubMed  Google Scholar 

  55. Leveille SG, Jones RN, Kiely DK, et al. Chronic musculoskeletal pain and the occurrence of falls in an older population. JAMA. 2009;302(20):2214–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shiozawa P, Fregni F, Bensenor IM, et al. Transcranial direct current stimulation for major depression: an updated systematic review and meta-analysis. Int J Neuropsychopharmacol. 2014;17(9):1443–52.

    Article  PubMed  Google Scholar 

  57. Martin DM, Moffa A, Nikolin S, et al. Cognitive effects of transcranial direct current stimulation treatment in patients with major depressive disorder: an individual patient data meta-analysis of randomised, sham-controlled trials. Neurosci Biobehav Rev. 2018;90:137–45.

    Article  PubMed  Google Scholar 

  58. Zhou J, Lo OY, Lipsitz LA, Zhang J, Fang J, Manor B. Transcranial direct current stimulation enhances foot sole somatosensation when standing in older adults. Exp Brain Res. 2018;236(3):795–802.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Pinto CB, Teixeira Costa B, Duarte D, Fregni F. Transcranial direct current stimulation as a therapeutic tool for chronic pain. J ECT. 2018;34:e36.

    PubMed  PubMed Central  Google Scholar 

  60. Rossini PM, Burke D, Chen R, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol. 2015;126(6):1071–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Farzan F. Single-pulse transcranial magnetic stimulation (TMS) protocols and outcome measures. In: Rotenberg A, Horvath JC, Pascual-Leone A, editors. Transcranial magnetic stimulation. New York: Springer; 2014. p. 69–115.

    Chapter  Google Scholar 

  62. Inghilleri M, Berardelli A, Cruccu G, Manfredi M. Silent period evoked by transcranial stimulation of the human cortex and cervicomedullary junction. J Physiol. 1993;466:521–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Farzan F, Vernet M, Shafi MM, Rotenberg A, Daskalakis ZJ, Pascual-Leone A. Characterizing and modulating brain circuitry through transcranial magnetic stimulation combined with electroencephalography. Front Neural Circuits. 2016;10:73.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Valls-Sole J, Pascual-Leone A, Wassermann EM, Hallett M. Human motor evoked responses to paired transcranial magnetic stimuli. Electroencephalogr Clin Neurophysiol. 1992;85(6):355–64.

    Article  CAS  PubMed  Google Scholar 

  65. Kujirai T, Caramia MD, Rothwell JC, et al. Corticocortical inhibition in human motor cortex. J Physiol. 1993;471:501–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ziemann U. TMS and drugs. Clin Neurophysiol. 2004;115(8):1717–29.

    Article  CAS  PubMed  Google Scholar 

  67. Todd G, Kimber TE, Ridding MC, Semmler JG. Reduced motor cortex plasticity following inhibitory rTMS in older adults. Clin Neurophysiol. 2010;121(3):441–7.

    Article  PubMed  Google Scholar 

  68. Oliviero A, Profice P, Tonali PA, et al. Effects of aging on motor cortex excitability. Neurosci Res. 2006;55(1):74–7.

    Article  CAS  PubMed  Google Scholar 

  69. McGinley M, Hoffman RL, Russ DW, Thomas JS, Clark BC. Older adults exhibit more intracortical inhibition and less intracortical facilitation than young adults. Exp Gerontol. 2010;45(9):671–8.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Bhandari A, Radhu N, Farzan F, et al. A meta-analysis of the effects of aging on motor cortex neurophysiology assessed by transcranial magnetic stimulation. Clin Neurophysiol. 2016;127(8):2834–45.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Opie GM, Vosnakis E, Ridding MC, Ziemann U, Semmler JG. Priming theta burst stimulation enhances motor cortex plasticity in young but not old adults. Brain Stimul. 2017;10(2):298–304.

    Article  PubMed  Google Scholar 

  72. Dickins DS, Sale MV, Kamke MR. Plasticity induced by intermittent theta burst stimulation in bilateral motor cortices is not altered in older adults. Neural Plast. 2015;2015:323409.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of human motor cortex. Lancet. 1985;1(8437):1106–7.

    Article  CAS  PubMed  Google Scholar 

  74. Schubert M, Curt A, Jensen L, Dietz V. Corticospinal input in human gait: modulation of magnetically evoked motor responses. Exp Brain Res. 1997;115(2):234–46.

    Article  CAS  PubMed  Google Scholar 

  75. Ung RV, Imbeault MA, Ethier C, Brizzi L, Capaday C. On the potential role of the corticospinal tract in the control and progressive adaptation of the soleus h-reflex during backward walking. J Neurophysiol. 2005;94(2):1133–42.

    Article  PubMed  Google Scholar 

  76. Petersen TH, Willerslev-Olsen M, Conway BA, Nielsen JB. The motor cortex drives the muscles during walking in human subjects. J Physiol. 2012;590(10):2443–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Richard A, Van Hamme A, Drevelle X, Golmard JL, Meunier S, Welter ML. Contribution of the supplementary motor area and the cerebellum to the anticipatory postural adjustments and execution phases of human gait initiation. Neuroscience. 2017;358:181–9.

    Article  CAS  PubMed  Google Scholar 

  78. Petersen N, Christensen LO, Nielsen J. The effect of transcranial magnetic stimulation on the soleus H reflex during human walking. J Physiol. 1998;513(Pt 2):599–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Petersen NT, Butler JE, Marchand-Pauvert V, et al. Suppression of EMG activity by transcranial magnetic stimulation in human subjects during walking. J Physiol. 2001;537(Pt 2):651–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Petersen NT, Pyndt HS, Nielsen JB. Investigating human motor control by transcranial magnetic stimulation. Exp Brain Res. 2003;152(1):1–16.

    Article  PubMed  Google Scholar 

  81. Tokuno CD, Taube W, Cresswell AG. An enhanced level of motor cortical excitability during the control of human standing. Acta Physiol (Oxf). 2009;195(3):385–95.

    Article  CAS  PubMed  Google Scholar 

  82. Taube W, Schubert M, Gruber M, Beck S, Faist M, Gollhofer A. Direct corticospinal pathways contribute to neuromuscular control of perturbed stance. J Appl Physiol (1985). 2006;101(2):420–9.

    Article  Google Scholar 

  83. Johannsen L, Hirschauer F, Stadler W, Hermsdorfer J. Disruption of contralateral inferior parietal cortex by 1 Hz repetitive TMS modulates body sway following unpredictable removal of sway-related fingertip feedback. Neurosci Lett. 2015;586:13–8.

    Article  CAS  PubMed  Google Scholar 

  84. Papegaaij S, Taube W, Hogenhout M, Baudry S, Hortobagyi T. Age-related decrease in motor cortical inhibition during standing under different sensory conditions. Front Aging Neurosci. 2014;6:126.

    PubMed  PubMed Central  Google Scholar 

  85. Papegaaij S, Taube W, van Keeken HG, Otten E, Baudry S, Hortobagyi T. Postural challenge affects motor cortical activity in young and old adults. Exp Gerontol. 2016;73:78–85.

    Article  PubMed  Google Scholar 

  86. Khedr EM, Farweez HM, Islam H. Therapeutic effect of repetitive transcranial magnetic stimulation on motor function in Parkinson's disease patients. Eur J Neurol. 2003;10(5):567–72.

    Article  CAS  PubMed  Google Scholar 

  87. Dagan M, Herman T, Mirelman A, Giladi N, Hausdorff JM. The role of the prefrontal cortex in freezing of gait in Parkinson's disease: insights from a deep repetitive transcranial magnetic stimulation exploratory study. Exp Brain Res. 2017;235(8):2463–72.

    Article  PubMed  Google Scholar 

  88. Kim MS, Chang WH, Cho JW, et al. Efficacy of cumulative high-frequency rTMS on freezing of gait in Parkinson's disease. Restor Neurol Neurosci. 2015;33(4):521–30.

    PubMed  PubMed Central  Google Scholar 

  89. Lomarev MP, Kanchana S, Bara-Jimenez W, Iyer M, Wassermann EM, Hallett M. Placebo-controlled study of rTMS for the treatment of Parkinson's disease. Mov Disord. 2006;21(3):325–31.

    Article  PubMed  Google Scholar 

  90. Dionisio A, Duarte IC, Patricio M, Castelo-Branco M. The use of repetitive transcranial magnetic stimulation for stroke rehabilitation: a systematic review. J Stroke Cerebrovasc Dis. 2018;27(1):1–31.

    Article  PubMed  Google Scholar 

  91. Hoyer EH, Celnik PA. Understanding and enhancing motor recovery after stroke using transcranial magnetic stimulation. Restor Neurol Neurosci. 2011;29(6):395–409.

    PubMed  PubMed Central  Google Scholar 

  92. Dhaliwal SK, Meek BP, Modirrousta MM. Non-invasive brain stimulation for the treatment of symptoms following traumatic brain injury. Front Psych. 2015;6:119.

    Google Scholar 

  93. Castel-Lacanal E, Tarri M, Loubinoux I, et al. Transcranial magnetic stimulation in brain injury. Ann Fr Anesth Reanim. 2014;33(2):83–7.

    Article  CAS  PubMed  Google Scholar 

  94. Burhan AM, Subramanian P, Pallaveshi L, Barnes B, Montero-Odasso M. Modulation of the left prefrontal cortex with high frequency repetitive transcranial magnetic stimulation facilitates gait in multiple sclerosis. Case Rep Neurol Med. 2015;2015:251829.

    PubMed  PubMed Central  Google Scholar 

  95. Iodice R, Manganelli F, Dubbioso R. The therapeutic use of non-invasive brain stimulation in multiple sclerosis—a review. Restor Neurol Neurosci. 2017;35(5):497–509.

    PubMed  Google Scholar 

  96. Gibbons C, Pagnini F, Friede T, Young CA. Treatment of fatigue in amyotrophic lateral sclerosis/motor neuron disease. Cochrane Database Syst Rev. 2018;1:Cd011005.

    PubMed  Google Scholar 

  97. Fang J, Zhou M, Yang M, Zhu C, He L. Repetitive transcranial magnetic stimulation for the treatment of amyotrophic lateral sclerosis or motor neuron disease. Cochrane Database Syst Rev. 2013;(5):Cd008554.

    Google Scholar 

  98. Farzan F, Wu Y, Manor B, et al. Cerebellar TMS in treatment of a patient with cerebellar ataxia: evidence from clinical, biomechanics and neurophysiological assessments. Cerebellum. 2013;12(5):707–12.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Kim WS, Jung SH, Oh MK, Min YS, Lim JY, Paik NJ. Effect of repetitive transcranial magnetic stimulation over the cerebellum on patients with ataxia after posterior circulation stroke: a pilot study. J Rehabil Med. 2014;46(5):418–23.

    Article  PubMed  Google Scholar 

  100. Lozeron P, Poujois A, Richard A, et al. Contribution of TMS and rTMS in the understanding of the pathophysiology and in the treatment of dystonia. Front Neural Circuits. 2016;10:90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Quartarone A, Rizzo V, Terranova C, et al. Therapeutic use of non-invasive brain stimulation in dystonia. Front Neurosci. 2017;11:423.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Kane MJ, Engle RW. The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: an individual-differences perspective. Psychon Bull Rev. 2002;9(4):637–71.

    Article  PubMed  Google Scholar 

  103. Alvarez JA, Emory E. Executive function and the frontal lobes: a meta-analytic review. Neuropsychol Rev. 2006;16(1):17–42.

    Article  PubMed  Google Scholar 

  104. Pascual-Leone A, Hallett M. Induction of errors in a delayed response task by repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex. Neuroreport. 1994;5(18):2517–20.

    Article  CAS  PubMed  Google Scholar 

  105. Mull BR, Seyal M. Transcranial magnetic stimulation of left prefrontal cortex impairs working memory. Clin Neurophysiol. 2001;112(9):1672–5.

    Article  CAS  PubMed  Google Scholar 

  106. Osaka N, Otsuka Y, Hirose N, et al. Transcranial magnetic stimulation (TMS) applied to left dorsolateral prefrontal cortex disrupts verbal working memory performance in humans. Neurosci Lett. 2007;418(3):232–5.

    Article  CAS  PubMed  Google Scholar 

  107. Lorenc ES, Lee TG, Chen AJ, D'Esposito M. The effect of disruption of prefrontal cortical function with transcranial magnetic stimulation on visual working memory. Front Syst Neurosci. 2015;9:169.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Rossi S, Miniussi C, Pasqualetti P, Babiloni C, Rossini PM, Cappa SF. Age-related functional changes of prefrontal cortex in long-term memory: a repetitive transcranial magnetic stimulation study. J Neurosci. 2004;24(36):7939–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Pascual-Leone A, Grafman J, Hallett M. Modulation of cortical motor output maps during development of implicit and explicit knowledge. Science. 1994;263(5151):1287–9.

    Article  CAS  PubMed  Google Scholar 

  110. Pascual-Leone A, Wassermann EM, Grafman J, Hallett M. The role of the dorsolateral prefrontal cortex in implicit procedural learning. Exp Brain Res. 1996;107(3):479–85.

    Article  CAS  PubMed  Google Scholar 

  111. Jahanshahi M, Dirnberger G. The left dorsolateral prefrontal cortex and random generation of responses: studies with transcranial magnetic stimulation. Neuropsychologia. 1999;37(2):181–90.

    Article  CAS  PubMed  Google Scholar 

  112. Jahanshahi M, Profice P, Brown RG, Ridding MC, Dirnberger G, Rothwell JC. The effects of transcranial magnetic stimulation over the dorsolateral prefrontal cortex on suppression of habitual counting during random number generation. Brain. 1998;121(Pt 8):1533–44.

    Article  PubMed  Google Scholar 

  113. Ammon K, Gandevia SC. Transcranial magnetic stimulation can influence the selection of motor programmes. J Neurol Neurosurg Psychiatry. 1990;53(8):705–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Brunoni AR, Vanderhasselt MA. Working memory improvement with non-invasive brain stimulation of the dorsolateral prefrontal cortex: a systematic review and meta-analysis. Brain Cogn. 2014;86:1–9.

    Article  PubMed  Google Scholar 

  115. Noda Y, Zomorrodi R, Cash RF, et al. Characterization of the influence of age on GABAA and glutamatergic mediated functions in the dorsolateral prefrontal cortex using paired-pulse TMS-EEG. Aging. 2017;9(2):556–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Bridges NR, McKinley RA, Boeke D, et al. Single session low frequency left dorsolateral prefrontal transcranial magnetic stimulation changes neurometabolite relationships in healthy humans. Front Hum Neurosci. 2018;12:77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Davis SW, Luber B, Murphy DLK, Lisanby SH, Cabeza R. Frequency-specific neuromodulation of local and distant connectivity in aging and episodic memory function. Hum Brain Mapp. 2017;38(12):5987–6004.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Schluter RS, Jansen JM, van Holst RJ, van den Brink W, Goudriaan AE. Differential effects of left and right prefrontal high-frequency repetitive transcranial magnetic stimulation on resting-state functional magnetic resonance imaging in healthy individuals. Brain Connect. 2018;8(2):60–7.

    Article  PubMed  Google Scholar 

  119. Debarnot U, Crepon B, Orriols E, et al. Intermittent theta burst stimulation over left BA10 enhances virtual reality-based prospective memory in healthy aged subjects. Neurobiol Aging. 2015;36(8):2360–9.

    Article  PubMed  Google Scholar 

  120. Sole-Padulles C, Bartres-Faz D, Junque C, et al. Repetitive transcranial magnetic stimulation effects on brain function and cognition among elders with memory dysfunction. A randomized sham-controlled study. Cereb Cortex. 2006;16(10):1487–93.

    Article  PubMed  Google Scholar 

  121. Kim SH, Han HJ, Ahn HM, Kim SA, Kim SE. Effects of five daily high-frequency rTMS on Stroop task performance in aging individuals. Neurosci Res. 2012;74(3–4):256–60.

    Article  PubMed  Google Scholar 

  122. Vidal-Pineiro D, Martin-Trias P, Arenaza-Urquijo EM, et al. Task-dependent activity and connectivity predict episodic memory network-based responses to brain stimulation in healthy aging. Brain Stimul. 2014;7(2):287–96.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Koch G, Bonni S, Pellicciari MC, et al. Transcranial magnetic stimulation of the precuneus enhances memory and neural activity in prodromal Alzheimer's disease. NeuroImage. 2018;169:302–11.

    Article  PubMed  Google Scholar 

  124. Padala PR, Padala KP, Lensing SY, et al. Repetitive transcranial magnetic stimulation for apathy in mild cognitive impairment: a double-blind, randomized, sham-controlled, cross-over pilot study. Psychiatry Res. 2018;261:312–8.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Ahmed MA, Darwish ES, Khedr EM, El Serogy YM, Ali AM. Effects of low versus high frequencies of repetitive transcranial magnetic stimulation on cognitive function and cortical excitability in Alzheimer's dementia. J Neurol. 2012;259(1):83–92.

    Article  PubMed  Google Scholar 

  126. Antczak J, Kowalska K, Klimkowicz-Mrowiec A, et al. Repetitive transcranial magnetic stimulation for the treatment of cognitive impairment in frontotemporal dementia: an open-label pilot study. Neuropsychiatr Dis Treat. 2018;14:749–55.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Bentwich J, Dobronevsky E, Aichenbaum S, et al. Beneficial effect of repetitive transcranial magnetic stimulation combined with cognitive training for the treatment of Alzheimer's disease: a proof of concept study. J Neural Transm (Vienna). 2011;118(3):463–71.

    Article  CAS  Google Scholar 

  128. Rabey JM, Dobronevsky E, Aichenbaum S, Gonen O, Marton RG, Khaigrekht M. Repetitive transcranial magnetic stimulation combined with cognitive training is a safe and effective modality for the treatment of Alzheimer's disease: a randomized, double-blind study. J Neural Transm (Vienna). 2013;120(5):813–9.

    Article  Google Scholar 

  129. Cotelli M, Manenti R, Cappa SF, et al. Effect of transcranial magnetic stimulation on action naming in patients with Alzheimer disease. Arch Neurol. 2006;63(11):1602–4.

    Article  PubMed  Google Scholar 

  130. Cotelli M, Manenti R, Cappa SF, Zanetti O, Miniussi C. Transcranial magnetic stimulation improves naming in Alzheimer disease patients at different stages of cognitive decline. Eur J Neurol. 2008;15(12):1286–92.

    Article  CAS  PubMed  Google Scholar 

  131. Cotelli M, Calabria M, Manenti R, et al. Improved language performance in Alzheimer disease following brain stimulation. J Neurol Neurosurg Psychiatry. 2011;82(7):794–7.

    Article  PubMed  Google Scholar 

  132. Rektorova I, Sedlackova S, Telecka S, Hlubocky A, Rektor I. Dorsolateral prefrontal cortex: a possible target for modulating dyskinesias in Parkinson's disease by repetitive transcranial magnetic stimulation. Int J Biomed Imaging. 2008;2008:372125.

    Article  CAS  PubMed  Google Scholar 

  133. Ren CL, Zhang GF, Xia N, et al. Effect of low-frequency rTMS on aphasia in stroke patients: a meta-analysis of randomized controlled trials. PLoS One. 2014;9(7):e102557.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Lefaucheur JP, Andre-Obadia N, Antal A, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin Neurophysiol. 2014;125(11):2150–206.

    Article  PubMed  Google Scholar 

  135. Blumberger DM, Hsu JH, Daskalakis ZJ. A review of brain stimulation treatments for late-life depression. Curr Treat Options Psychiatry. 2015;2(4):413–21.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Manes F, Jorge R, Morcuende M, Yamada T, Paradiso S, Robinson RG. A controlled study of repetitive transcranial magnetic stimulation as a treatment of depression in the elderly. Int Psychogeriatr. 2001;13(2):225–31.

    Article  CAS  PubMed  Google Scholar 

  137. Mosimann UP, Schmitt W, Greenberg BD, et al. Repetitive transcranial magnetic stimulation: a putative add-on treatment for major depression in elderly patients. Psychiatry Res. 2004;126(2):123–33.

    Article  PubMed  Google Scholar 

  138. Lefaucheur JP, Antal A, Ahdab R, et al. The use of repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) to relieve pain. Brain Stimul. 2008;1(4):337–44.

    Article  PubMed  Google Scholar 

  139. Bikson M, Rahman A, Datta A, Fregni F, Merabet L. High-resolution modeling assisted design of customized and individualized transcranial direct current stimulation protocols. Neuromodulation. 2012;15(4):306–15.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Seidler RD, Bernard JA, Burutolu TB, et al. Motor control and aging: links to age-related brain structural, functional, and biochemical effects. Neurosci Biobehav Rev. 2010;34(5):721–33.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brad Manor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manor, B., Lo, OY., Zhou, J., Dhami, P., Farzan, F. (2020). Noninvasive Brain Stimulation to Reduce Falls in Older Adults. In: Montero-Odasso, M., Camicioli, R. (eds) Falls and Cognition in Older Persons. Springer, Cham. https://doi.org/10.1007/978-3-030-24233-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24233-6_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24232-9

  • Online ISBN: 978-3-030-24233-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics