Skip to main content

Gully Erosion Susceptibility Assessment Through the SVM Machine Learning Algorithm (SVM-MLA)

  • Chapter
  • First Online:
Gully Erosion Studies from India and Surrounding Regions

Abstract

Gully erosion susceptibility mapping (GESM) is a valuable tool for sustainable land use management and reducing soil erosion. Gully erosion and its formation are a natural process; it greatly threatens agriculture, environment, ecosystem disruption, and natural resources. The objective of this present study is to develop a GESM by implementation of well acceptable SVM learning algorithm in Golestan Province, Kalaleh Township, Iran. Primarily, gully sites were obtained by comprehensive field observations. After that, 12 gully erosion predisposing factors were selected to assess the gully erosion susceptibility map. The 12 conditioning factors were aspect, altitude, drainage density, lithology, slope angle, slope length, distance from river, profile curvature, drainage density, TWI, distance from road, and plan curvature. Finally, gully erosion susceptibility map was prepared using the SVM model in “R” environment. In the final stage, assessment of the prediction accuracy of the susceptibility model with the help of training (70%) and validation datasets (30%) of gully location was done. The predicted susceptibility map was validated with the help of receiver operating characteristic (ROC) curve, true skill statistics (TSS), and deviance value. The results indicated that the areas under the curve (AUC) were calculated as 94.3% and 97.0% based on validation and training dataset, respectively. Furthermore, the TSS, deviance, and correlation values were 0.84, 0.50, and 0.85, respectively. So, the results of other indices including, sensitivity, specificity, and Cohen’s Kappa (CK) showed that SVM model has reasonable prediction accuracy for the cases of gully erosion susceptibility assessment. As regards the SVM model, a total area of 11.66% was identified as the hazard prone area of the mentioned Town ship. So, it is concluded that the gully erosion map serves as an important tool for protective action and watershed management, specifically at the initiation of the gully to protect the development of land degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Accadia, C., Mariani, S., Casaioli, M., Lavaqnini, A., Speranza, A., 2005. Verification of precipitation forecasts from two limited-area models over Italy and comparison with ECMWF forecasts using a resampling technique. Weather and Forecasting, 20, 276-300.

    Article  Google Scholar 

  • Agnesi, V., Angileri, S., Cappadonia, C., Conoscenti, C., Rotigliano, E., 2011. Multi-parametric GIS analysis to assess gully erosion susceptibility: a test in southern Sicily, Italy. Landf Anal. 7, 15-20.

    Google Scholar 

  • Allouche, O., Tsoar, A., Kadmon, R., 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232.

    Article  Google Scholar 

  • Amiri M, Pourghasemi HR, Ghanbarian GA, Afzali SF (2019) Assessment of the importance of gully erosion effective factors using Boruta algorithm and its spatial modelling and mapping using three machine learning algorithms. Geoderma 340:55-69.

    Article  Google Scholar 

  • Amor, D., and Pfaff, A., 2008. Early history of the impact of road investments on deforestation in the Mayan forest. In Working paper, Nicholas School of the Environment and Sanford School of Public Policy, Duke University, Durham, NC, USA.

    Google Scholar 

  • Bernatek-Jakiel, A., Jakiel, M., Krzemień, K., 2017. Piping dynamics in mid-altitude mountains under a temperate climate: Bieszczady Mts., Eastern Carpathians. Earth Surf. Process. Landf. 42, 1419–1433.

    Article  Google Scholar 

  • Carey, B., Gray, J., Seagrave, C., 2001. Gully Erosion. Department of Natural Resources and Mines, The State of Queensland. http://www.gcenvironment.org.au/pdf/LM81w.pdf.

  • Cevik, E., Topal, T., 2003. GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey). Environ. Geol. 44, 949–962.

    Article  Google Scholar 

  • Chen, W., Chai, H., Zhao, Z., Wang, Q., Hong, H., 2016. Landslide susceptibility mapping based on GIS and support vector machine models for the Qianyang County, China. Environ Earth Sci 75(6), 1–13.

    Google Scholar 

  • Conoscenti, C., Angileri, S., Cappadonia, C., Rotigliano, E., Agnesi, V., Ma¨rker, M., 2014. Gully erosion susceptibility assessment by means of GIS-based logistic regression: a case of Sicily (Italy). Geomorphology 204 (1), 399–411.

    Article  Google Scholar 

  • Conoscenti, C., Maggio, C.D., Rotigliano, E., 2008. Soil erosion susceptibility assessment and validation using a geostatistical multivariate approach: a test in Southern Sicily. Natural Hazards 46 (3), 287-305.

    Article  Google Scholar 

  • Cortes, C., Vapnik, V., 1995. Support vector networks. Mach. Learn. 20 (3), 273-297.

    Google Scholar 

  • Engler, R., A. Guisan, Rechsteiner, L., 2004. An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. Journal of Applied Ecology 41,263–274.

    Article  Google Scholar 

  • Gayen, A., Pourghasemi, H.R., 2019. Spatial Modeling of Gully Erosion: A New Ensemble of CART and GLM Data-Mining Algorithms. Spatial Modeling in GIS and R for Earth and Environmental Science, pp 653-669.

    Google Scholar 

  • Gayen, A., Saha, S., 2017. Application of weights-of-evidence (WoE) and evidential belief function (EBF) models for the delineation of soil erosion vulnerable zones: a study on Pathro river basin, Jharkhand, India. Modeling Earth Systems and Environment 3, 1123-1139.

    Article  Google Scholar 

  • Gayen, A., Saha, S., 2018. Deforestation probable area predicted by logistic regression in Pathro river basin: a tributary of Ajay River. Spatial Information Research 26 (1), 1-9.

    Article  Google Scholar 

  • Gayen, A., Saha, S., Pourghasemi, H.R., 2019a. Soil erosion Assessment using RUSLE model and its Validation by FR probability model. Geocarto International. DOI: https://doi.org/10.1080/10106049.2019.1581272

  • Gayen, A., Pourghasemi, H.R., Saha, S., Keesstra, S.D., Bai, S., 2019b. Gully erosion susceptibility assessment and management of hazard-prone areas in India using different machine learning algorithms. Science of the Total Environment, DOI: https://doi.org/10.1016/j.scitotenv.2019.02.436.

    Article  Google Scholar 

  • Guerra, C.A., Maes, J., Geijzendorffer, I., Metzger, M.J., 2016. An assessment of soil erosion

    Google Scholar 

  • Guisan, A., and Zimmermann, N.E., 2000. Predictive habitat distribution models in ecology. Ecological Modelling 135, 147-186.

    Article  Google Scholar 

  • Haque, M., Ghosh, S., 2018. Microstructural Evidence of Palaeo-Coastal Landform from Westernmost Fringe of Lower Ganga-Brahmaputra Delth. Quaternary Geomorphology in India, pp. 61-78.

    Google Scholar 

  • Hong, H., Pradhan, B., Bui, D.T., Xu, C., Youssef, A.M., Chen, W., 2016. Comparison of four kernel functions used in support vector machines for landslide susceptibility mapping: a case study at Suichuan area (China). Geomatics Natural Hazards and Risk 8 (2), 544-569.

    Article  Google Scholar 

  • Hong, H., Pradhan, B., Xu, C., Tien Bui, D., 2015. Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines. Catena 133, 266–281.

    Article  Google Scholar 

  • Jebur, M.N., Pradhan, B., Shafapour Tehrany, M., 2014. Optimization of landslide conditioning factors using very high-resolution airborne laser scanning (LiDAR) data at catchment scale. Remote Sens Environ 152, 150–165.

    Article  Google Scholar 

  • Kalantar, B., Pradhan, B., Naghibi, S.A., Motevalli, A., Mansor, S., 2017. Assessment of the effects of training data selection on the landslide susceptibility mapping: a comparison between support vector machine (SVM), logistic regression (LR) and artificial neural networks (ANN). Geomatics, Natural hazards and Risk 9 (1), 49-69.

    Article  Google Scholar 

  • Liu, C., White, M., Newell, G., 2009. Measuring the accuracy of species distribution models: a review. In: Andersen, R.S., Braddock, R.D., Newham, L.T.H. (Eds.), Proceedings 18th World IMACs/MODSIM Congress. Cairns, Australia, pp. 4241–4247.

    Google Scholar 

  • Metternicht, G., Gonzalez, S., 2013. FUERO: Foundations of a fuzzy exploratory model for soil erosion hazard prediction. Environmental Modelling and Software 20(6), 715-728.

    Article  Google Scholar 

  • Mittlböck, M., and Schemper, M., 1996. Explained variation for logistic regression. Statistics in Medicine, 15, 1987-1997.

    Article  Google Scholar 

  • Mohsen Hosseinalizadeh, M., Kariminejad, N., Rahmati, O., Keesstra, S., Alinejad, M., Behbahani, A.M., 2019. How can statistical and artificial intelligence approaches predict piping erosion susceptibility? Science of the Total Environment 646, 1554–1566.

    Article  Google Scholar 

  • Moore, I. D., Wilson, J. P., 1991. Length-slope factors for the revised universal soil loss equation: simplified method of estimation. Journal of Soil and Water Conservation 47(5), 423–428.

    Google Scholar 

  • Moore, I.D., Burch, G.J., 1986. Physical basis of the length-slope factor in the Universal Soil

    Google Scholar 

  • Morgan, R.P., 2009. Soil Erosion and Conservation. John Wiley & Sons.

    Google Scholar 

  • Naghibi, S.A., Pourghasemi, H.R., Dixon, B., 2015. GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environmental Monitoring and Assessment 188 (1).

    Google Scholar 

  • Pearson, K., 1897. Mathematical contributions to the theory of evolution. On a form of spurious correlation which may arise when indices are used in the measurement of organs. Proceeding of the royal society of London 60, 489-498.

    Article  Google Scholar 

  • Poesen, J., 1993. Gully typology and gully control measures in the European loess belt. In: prevention by vegetation in Mediterranean Europe: current trends of ecosystem service provision. Ecol. Indic. 60, 213–222.

    Google Scholar 

  • Pourghasemi, H. R, Pradhan, B., Gokceoglu, C., Moezzi, K.D., 2013b. A comparative assessment of prediction capabilities of Dempster–Shafer and Weights-of-evidence models in landslide susceptibility mapping using GIS. Geomatics Natural Hazards and Risk 4 (2), 93-118.

    Article  Google Scholar 

  • Pourghasemi, H.R., Jirandeh, A.G., Pradhan, B., Xu, C., Gokceoglu, C., 2013a. Landslide susceptibility mapping using support vector machine and GIS at the Golestan Province, Iran. Journal of Earth System Science 122 (2), 349-369.

    Article  Google Scholar 

  • Pourghasemi, H.R., Mohammady, M., Pradhan, B., 2012. Landslide susceptibility mapping using index of entropy and conditional probability models in GIS: Safarood Basin, Iran. Catena 97, 71-84.

    Article  Google Scholar 

  • Pourghasemi, H.R., Yousefi, S., Kornejady, A., Cerdà, A., 2017. Performance assessment of individual and ensemble data-mining techniques for gully erosion modeling. Science of The Total Environment 609, 764-775.

    Article  Google Scholar 

  • Rahmati, O., Haghizadeh, A., Pourghasemi, H.R., Noormohamadi, F., 2016. Gully erosion susceptibility mapping: the role of GIS-based bivariate statistical models and their comparison. Nat. Hazards 82 (2), 1231–1258.

    Article  Google Scholar 

  • Rahmati, O., Tahmasebipour, N., Haghizadeh, A., Pourghasemi, H.R., Feizizadeh, B., 2017. Evaluating the influence of geo-environmental factors on gully erosion in a semi-arid region of Iran: an integrated framework. Science of The Total Environment 579, 913-927.

    Article  Google Scholar 

  • Rossi, M., Guzzetti, F., Reichenbach, P., Cesare Mondini, A., Peruccacci, S., 2010. Optimal landslide susceptibility zonation based on multiple forecasts. Geomorphology 114, 129–142.

    Article  Google Scholar 

  • Rossi, M., Reichenbach, P., 2016. LAND-SE: a software for statistically based landslide susceptibility zonation, version 1.0. Geosci. Model Dev. 9, 3533–3543.

    Article  Google Scholar 

  • Shit, P.K., Nandi, A.S., Bhunia, G.S., 2015. Soil erosion risk mapping using RUSLE model on jhargram sub-division at West Bengal in India. Model. Earth Syst. Environ. 1: 28. https://doi.org/10.1007/s40808-015-0032-3

    Article  Google Scholar 

  • Svoray, T., Michailov, E., Cohen, A., Rokah, L., Sturm, A., 2012. Predicting gully initiation: comparing data mining techniques, analytical hierarchy processes and the topographic threshold. Earth Surf. Process. Landforms 37, 607-619.

    Article  Google Scholar 

  • Tehrany, M.S., Pradhan, B., Mansor, S., Ahmad, N., 2015. Flood susceptibility assessment using GIS-based support vector machine model with different kernel types. Catena 125, 91-101.

    Article  Google Scholar 

  • Tien Bui, D., Tuan, T.A., Klempe, H., Pradhan, B., Revhaug, I., 2016. Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides 13, 361–378.

    Article  Google Scholar 

  • Valentin, C., Poesen, J., Li, Y., 2005. Gully erosion: Impacts, factors and control. Catena 63 (2-3), 132-153.

    Article  Google Scholar 

  • Verachtert, E., Devoldere, S., Van Den Eeckhaut, M., Poesen, J., Deckers, J., 2011. Impact of land use and soil properties on piping in Belgium. Landform Analysis. 17, pp. 215–218.

    Google Scholar 

  • Verachtert, E., Van Den Eeckhaut, M., Martínez-Murillo, J.F., Nadal-Romero, E., Poesen, J., Devoldere, S., Wijnants, N., Deckers, J., 2013. Impact of soil characteristics and land use on pipe erosion in a temperate humid climate: field studies in Belgium. Geomorphology 192, 1–14.

    Article  Google Scholar 

  • Wang, L., Wei, S., Horton, R., Shao, M., 2011. Effects of vegetation and slope aspect on water budget in the hill and gully region of the Loess Plateau of China, Catena 87 (1), 90-100.

    Article  Google Scholar 

  • Wilson, G.V., Rigby, J.R., Dabney, S.M., 2015. Soil pipe collapses in a loess pasture of Goodwin Creek watershed, Mississippi: role of soil properties and past land use. Earth Surf. Process. Landf. 40 (11), 1448–1463.

    Article  Google Scholar 

  • Yesilnacar E, Topal T. 2005. Landslide susceptibility mapping: a comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Eng. Geol. 79: 251–266.

    Article  Google Scholar 

  • Zabihi, M., Mirchooli, F., Motevalli, A., Darvishan, A.K., Pourghasemi, H.R., Zakeri, M.A., Sadighi, F., 2018a. Spatial modelling of gully erosion in Mazandaran Province, northern Iran. Catena 161, 1-13.

    Article  Google Scholar 

  • Zabihi, Z., Pourghasemi, H.R., Motevalli, A., Zakeri, M.A., 2018b. Gully erosion modeling using GIS-based data mining techniques in northern Iran: a comparison between boosted regression tree and multivariate adaptive regression spline. Natural Hazards GIS-Based Spatial Modeling Using Data Mining Techniques, 1-26.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Pourghasemi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pourghasemi, H.R., Gayen, A., Haque, S.M., Bai, S. (2020). Gully Erosion Susceptibility Assessment Through the SVM Machine Learning Algorithm (SVM-MLA). In: Shit, P., Pourghasemi, H., Bhunia, G. (eds) Gully Erosion Studies from India and Surrounding Regions. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-23243-6_28

Download citation

Publish with us

Policies and ethics