Skip to main content

Creating Products and Services in Environmental Biotechnology

  • Chapter
  • First Online:
Introduction to Biotech Entrepreneurship: From Idea to Business

Abstract

In the process of solving environmental protection problems biotechnology plays an essential role in providing alternative solutions to reducing pollution. The chapter approaches as a green alternative the phytoremediation of polluted environments, complete with microbial and vermiremediation as a clean-up alternative. Special attention is given to natural plant protection products, known as “biopesticides.” Another aspect approached is the finding and development of new plants as a biomass source for energy production, which are objectives for start-ups, and have great business potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abatenh E, Gizaw B, Tsegaye Z, Wassie M (2017) The role of microorganisms in bioremediation – a review. Open J Environ Biol 2(1):038–046

    Article  Google Scholar 

  • Abdullahi MS (2015) Soil contamination, remediation and plants, Chapter 18. In: Hakeem KR, Sabir M, Öztürk M, Mermut AR (eds) Soil remediation and plants. Academic, Cambridge, MA

    Chapter  Google Scholar 

  • Adhikary SD (2013) Vermicompost, the story of organic gold: a review. Agric Sci 3(7):905–917

    Google Scholar 

  • Adriano DC, Wenzel WW, Vangronsveld J, Bolan NS (2004) Role of assisted natural remediation in environmental cleanup. Geoderma 122:121–142

    Article  CAS  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals–concepts and applications. Chemosphere 91:869–881

    Article  CAS  PubMed  Google Scholar 

  • Alkorta I, Hernandez-Allica J, Becerril JM, Amezaga I, Albizu I, Garbisu C (2004) Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead, and arsenic. Rev Environ Sci Bio-Technol 3:71–90

    Article  CAS  Google Scholar 

  • Andreazza R, Bortolon L, Pieniz S, Camargo FAO, Bortolon ESO (2013) Copper phytoextraction and phytostabilization by Brachiaria decumbens Stapf. in vineyard soils and a copper mining waste. Open J Soil Sci 3(6):273–282. https://doi.org/10.4236/ojss.2013.36032

    Article  CAS  Google Scholar 

  • AVINOR statistics, January–June 2016

    Google Scholar 

  • Ayotamuno JM, Kogbara RB, Agoro OS (2009) Biostimulation supplemented with phytoremediation in the reclamation of a petroleum contaminated soil. World J Microbiol Biotechnol 25:1567–1572. https://doi.org/10.1007/s11274-009-0045-z

    Article  CAS  Google Scholar 

  • Azubuike CC, Chikere CB, Okpokwasili GC (2016) Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol 32(11):180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Biswas B, Sarkar B, Rusmin R, Naidu R (2015) Bioremediation of PAHs and VOCs: Advances in clay mineral–microbial interaction. Environ Int 85:168–181. https://doi.org/10.1016/j.envint.2015.09.017

    Article  CAS  PubMed  Google Scholar 

  • Bolan NS, Park JH, Robinson B, Naidu R, Huh KY (2011) Phytostabilization: a green approach to contaminant containment. Adv Agron 112:145–204. https://doi.org/10.1016/B978-0-12-385538-1.00004-4

    Article  CAS  Google Scholar 

  • Boroş MN, Micle V, Flămînd L, Sur IM (2016) Phytoremediation planning in the case of former industrial sites. Studia Ubb Ambientum LXI(1–2):5–14

    Google Scholar 

  • Brosse N, Dufour A, Meng X, Sun Q, Ragauskas A (2012) Miscanthus: a fast-growing crop for biofuels and chemicals production. Biofuels Bioprod Biorefin. https://doi.org/10.1002/bbb

  • Brown LD, Ulrich AC (2014) Bioremediation of oil spills on land. In: Handbook of oil spill science and technology. Gulf, Houston, TX, pp 395–406

    Google Scholar 

  • Chattopadhyay P, Banerjee G, Mukherjee S (2017) Recent trends of modern bacterial insecticides for pest control practice in integrated crop management system. 3 Biotech 7:60. https://doi.org/10.1007/s13205-017-0717-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Conesa HM, Evangelou MWH, Robinson BH, Schulin R (2012) A critical view of current state of phytotechnologies to remediate soils: still a promising tool? Sci World J. https://doi.org/10.1100/2012/173829

    Article  CAS  Google Scholar 

  • Demirbas A, Bafail A, Ahmad W, Sheikh M (2016) Biodiesel production from non-edible plant oils. Energy Explor Exploit 34(2):290–318

    Article  CAS  Google Scholar 

  • Dobre P, Jurcoane S, Matei F, Cristea S, Farcas N, Moraru AC (2014) Camelina sativa as a double crop using the minimal tillage system. Roman Biotechnol Lett 19(2):9190–9195

    Google Scholar 

  • EC (2016). https://ec.europa.eu/clima/news/articles/news_2016100401_en

  • EFSA (European Food Safety Authority) (2017) Technical report on the outcome of the consultation with Member States and EFSA on the basic substance application for mustard seeds powder from Sinapis alba (Brassica alba), Brassica juncea and Brassica nigra for use in plant protection as fungicide. EFSA supporting publication 2017:EN-1169. 35 p. doi:https://doi.org/10.2903/sp.efsa.2017.EN-1169

  • Ekta P, Modi NR (2018) A review of phytoremediation. J Pharmacogn Phytochem 7(4):1485–1489

    Google Scholar 

  • El-Bendary MA (2006) Bacillus thuringiensis and Bacillus sphaericus biopesticides production. J Basic Microbiol 46:158–170

    Article  CAS  PubMed  Google Scholar 

  • Elekwachi CO, Andresen J, Hodgman TC (2014) Global use of bioremediation technologies for decontamination of ecosystems. J Bioremed Biodeg 5:225. https://doi.org/10.4172/2155-6199.1000225

    Article  CAS  Google Scholar 

  • EU Energy, Transport and GHG Emissions – Trends to 2050. http://ec.europa.eu/energy/observatory/trends_2030/index_en

    Google Scholar 

  • Fravel DR, Connick WJ, Lewis JA (1998) Formulation of microorganisms to control plant diseases, Chapter 5. In: Burges HD (ed) Formulation of microbial biopesticides, 1st edn. Springer Science+Business Media, Dordrecht, pp 187–202. https://doi.org/10.1007/978-94-011-4926-6

    Chapter  Google Scholar 

  • Furtado A, Lupoi JS, Hoang NV, Healey A, Singh S, Simmons BA, Henry RJ (2014) Modifying plants for biofuel and biomaterial production. Plant Biotechnol J 12:1246–1258

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Xie Y, Hashim S, Akhtar Khan A, Wang X, Xu H (2018) Application of microbial technology used in bioremediation of urban polluted river: a case study of Chengnan River, China. Water 10(5):643

    Article  CAS  Google Scholar 

  • Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of its byproducts. Appl Ecol Environ Res 3(1):1–18

    Article  Google Scholar 

  • Gillespie IM, Philp JC (2013) Bioremediation, an environmental remediation technology for the bioeconomy. Trends Biotechnol 31(6):329–332

    Article  CAS  PubMed  Google Scholar 

  • Glare TR, Jurat-Fuentes J-L, O’Callaghan M (2017) Basic and applied research: entomopathogenic bacteria, Chapter 4. In: Microbial control of insect and mite pests from theory to practice. Academic, Cambridge, MA, pp 47–67. https://doi.org/10.1016/B978-0-12-803527-6.00004-4

    Chapter  Google Scholar 

  • Grison C, Escande V, Biton J (2015) Ecocatalysis – new integrated approach to scientific ecology. ISTE Press Elsevier, London

    Chapter  Google Scholar 

  • http://ec.europa.eu/assets/sante/food/plants/pesticides/lop/index.html#inline_content

  • http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/?event=activesubstance.selection&language=EN

  • http://www.cpeo.org/techtree/ttdescript/bioven.htm

  • https://www.certiseurope.co.uk/products/insecticides/

  • https://www.epa.nsw.gov.au/~/media/EPA/Corporate%20Site/resources/clm/140323landfarmbpn.ashx

  • Huang XD, El-Alawi Y, Gurska J, Glick BR, Greenberg BM (2005) A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soils. Microchem J 81:139–147

    Article  CAS  Google Scholar 

  • Huesemann MH, Moore KO (1993) Compositional changes during landfarming of weathered Michigan crude oil-contaminated soil. J Soil Contam 2:245–246

    Article  CAS  Google Scholar 

  • Intelligent Energy Europe (2009) Energy from field energy crops – a handbook for energy producers. Jyväskylä Innovation Oy & MTT Agrifood Research Finland

    Google Scholar 

  • January MC, Cutright TJ, Van Keulen H, Wei R (2008) Hydroponic phytoremediation of Cd, Cr, Ni, As, and Fe: Can Helianthus annuus hyperaccumulate multiple heavy metals? Chemosphere 70:531–537

    Article  CAS  PubMed  Google Scholar 

  • Jovicic B (2016) Energy willow Salix viminalis – biomass where you want it. Blakan Green Energy News. 26 Apr 2016

    Google Scholar 

  • Kalogerakis N, Arff J, Banat IM, Broch OJ, Daffonchio D, Edvardsen T et al (2015) The role of environmental biotechnology in exploring, exploiting, monitoring, preserving, protecting and decontaminating the marine environment. New Biotechnol 32(1):157–167

    Article  CAS  Google Scholar 

  • Kaya HK, Klein MG, Burlando TM (2008) Impact of Bacillus popilliae, Rickettsiella popilliae and entomopathogenic nematodes on a population of the scarabaeid, Cyclocephala hirta. Biocontrol Sci Tech 3:443–453

    Article  Google Scholar 

  • Khan FA (2016) Biotechnology fundamentals, 2nd edn. CRC, Boca Raton, FL

    Google Scholar 

  • Kosakivska D, Klymchuk V, Negretzky D, Bluma D, Ustinova A (2008) Stress proteins and ultrastructural characteristics of leaf cells of plants with different types of ecological strategies. Gen Appl Plant Physiol 34(3–4):405–418

    CAS  Google Scholar 

  • Krol DJ, Jones MB, Williams M, Ni Choncubhair O, Lanigan GJ (2019) The effect of land use change from grassland to bioenergy crops Miscanthus and reed canary grass on nitrous oxide emissions. Biomass Bioenergy 120:396–403

    Article  CAS  Google Scholar 

  • Leitão A (2016) Bioeconomy: the challenge in the management of natural resources in the 21st century. Open J Soc Sci 4:26–42. https://doi.org/10.4236/jss.2016.411002

    Article  Google Scholar 

  • Majumder DR (2016) A multifaceted bioremediation of xenobiotics using fungi. In: Sangeetha J, Thangadurai D, David M, Abdullah MA (eds) Environmental biotechnology: biodegradation, bioremediation, and bioconversion of xenobiotics for sustainable development. CRC, Boca Raton, FL

    Google Scholar 

  • Matei F, Sauca F, Dobre P, Jurcoane S (2014) Breeding low temperature resistant Camelina sativa for biofuel production. New Biotechnol 31:S93

    Article  Google Scholar 

  • Meeinkuirta W, Kruatrachueb M, Pichtelc J, Phusantisampand T, Saengwilaib P (2016) Influence of organic amendments on phytostabilization of Cd-contaminated soil by Eucalyptus camaldulensis. Sci Asia 42:83–91

    Article  CAS  Google Scholar 

  • Nielsen HK (2008) Sorrel and reed canary grass in southern Norway. Asp Appl Biol Biomass Energy Crops III 90:75–79

    Google Scholar 

  • OECD (2004) Biomass and agriculture sustainability, markets and policies. doi:https://doi.org/10.1787/9789264105546-en

  • Peixoto RS, Vermelho AB, Rosado AS (2011) Petroleum-degrading enzymes: bioremediation and new prospects. Enzyme Res. doi:https://doi.org/10.4061/2011/475193

    Article  CAS  Google Scholar 

  • Perez-Vargas J, Poggi-Varaldo HM, Calva-Calva G, Rios-leal E, Rodriguez-Varquez R, Ferrera-Cerralto R, Esparza-Garcia F (2000) Nitrogen-fixing bacteria capable of utilizing kerosene hydrocarbons as a sole carbon source. Water Sci Technol 42:407–410

    Article  Google Scholar 

  • Perpiña Castillo C, Baranzelli C, Maes J, Zulian G, Lopes Barbosa A, Vandecasteele I, Mari Rivero I, Vallecillo Rodriguez S, Batista E Silva F, Jacobs C, Lavalle C (2015) An assessment of dedicated energy crops in Europe under the EU Energy Reference Scenario 2013 Application of the LUISA modelling platform – Updated Configuration 2014. EUR 27644. doi:https://doi.org/10.2788/64726

  • Piotrowski J, Denich T, Klironomos JM, Graham J, Rillig M (2004) The effects of arbuscular mycorrhizas on soil aggregation depend on the interaction between plant and fungal species. New Phytol 164:365–373. doi:https://doi.org/10.1111/j.1469-8137.2004.01181.x

    Article  Google Scholar 

  • Prasad MNV (2003) Phytoremediation of metal-polluted ecosystems: hype for commercialization. Russ J Plant Physiol 50(5):686–700

    Article  CAS  Google Scholar 

  • Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees – a review. Environ Int 29(4):529–540

    Article  CAS  PubMed  Google Scholar 

  • Qureshi N, Chawla S, Likitvivatanavong S, Lee HL, Gill SS (2014) The Cry toxin operon of Clostridium bifermentans subsp. malaysia is highly toxic to Aedes larval mosquitoes. Appl Environ Microbiol 80:5689–5697

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rahman MA, Hasegawa H (2011) Aquatic arsenic: phytoremediation using floating macrophytes. Chemosphere 83:633–646

    Article  CAS  PubMed  Google Scholar 

  • Robinson BH, Banuelos G, Conesa HM, Evangelou MWH, Schulin R (2009) The phytomanagement of trace elements in soil. Crit Rev Plant Sci 28:240–266

    Article  CAS  Google Scholar 

  • Rodriguez-Campos J, Dendooven L, Alvarez-Bernal D, Contreras-Ramos SM (2014) Potential of earthworms to accelerate removal of organic contaminants from soil: a review. Appl Soil Ecol 79:10–25

    Article  Google Scholar 

  • Rorat A, Wloka D, Grobelak A, Grosser A, Sosnecka A, Milczarek M et al (2017) Vermiremediation of polycyclic aromatic hydrocarbons and heavy metals in sewage sludge composting process. J Environ Manag 187:347–353

    Article  CAS  Google Scholar 

  • Ross R (2018) The science behind composting. https://www.livescience.com/63559-composting.html

  • Ruffner B, Péchy-Tarr M, Höfte M, Bloemberg G, Grunder J, Keel C, Maurhofer M (2015) Evolutionary patchwork of an insecticidal toxin shared between plant-associated pseudomonads and the insect pathogens Photorhabdus and Xenorhabdus. BMC Genomics 16:609

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ruiu L (2018) Microbial biopesticides in agroecosystems. Agronomy 8:235. https://doi.org/10.3390/agronomy8110235

    Article  Google Scholar 

  • Saladini F, Patrizi N, Pulselli FM, Marchettini N, Bastianoni S (2016) Guidelines for energy evaluation of first, second and third generation biofuels. Renew Sustain Energy Rev 66:221–227

    Article  Google Scholar 

  • Sampanpanish P, Pongsapich W, Khaodhiar S, Khan E (2006) Chromium removal from soil by phytoremediation with weed plant species in Thailand. Water Air Soil Pollut Focus 6:191–206. https://doi.org/10.1007/S11267-005-9006-1

    Article  CAS  Google Scholar 

  • SANCO/12173/2014–rev. 4/2015. Final review report of the Standing Committee on Plants, Animals Food and Feed at its meeting on 29 May 2015 in view of the approval of Salix spp. cortex as basic substance in accordance with Regulation (EC) No 1107/2009

    Google Scholar 

  • SANCO/12386/2013–rev. 5/2014. Final review report of the Standing Committee on the Food Chain and Animal Health at its meeting on 20 March 2014 in view of the approval of Equisetum arvense L. as basic substance in accordance with Regulation (EC) No 1107/2009

    Google Scholar 

  • SANTE/10615/2018–rev.1/2018. Final review report of the Standing Committee on Plants, Animals, Food and Feed at its meeting on 20 July 2018 in view of the approval of onion oil as basic substance in accordance with Regulation (EC) No 1107/2009

    Google Scholar 

  • SANTE/10875/2016. Final review report of the Standing Committee on Plants, Animals, Food and Feed at its meeting on 7 October 2016 in view of the approval of sunflower oil as basic substance in accordance with Regulation (EC) No 1107/2009

    Google Scholar 

  • SANTE/11309/2017–rev. 2/2017. Final review report of the Standing Committee on Plants, Animals, Food and Feed at its meeting on 6 October 2017 in view of the approval of mustard seeds powder as basic substance in accordance with Regulation (EC) No 1107/20091

    Google Scholar 

  • SANTE/11809/2016–rev. 0.1/2017. Final Review report of the Standing Committee on Plants, Animals, Food and Feed at its meeting on 24 January 2017 in view of the approval of Urtica spp. as basic substance in accordance with Regulation (EC) No 1107/2009

    Google Scholar 

  • Santra SC, Mallick A, Samal AC (2015) Biofertilizer for bioremediation. In: Pati BR, Mandal SM (eds) Recent trends in biofertilizers. I K International Publishing House Pvt. Ltd., pp 205–234

    Google Scholar 

  • Sarkar J, Kazy SK, Gupta A, Dutta A, Mohapatra B, Roy A, Sar P (2016) Biostimulation of indigenous microbial community for bioremediation of petroleum refinery sludge. Front Microbiol 7:1407

    Google Scholar 

  • Sauca F, Jurcoane S, Dobre P, Matei F, Podgoreanu E, Moraru A, Cristea S (2018) Patent ISTIS 504/2018. New variety of Camelina sativa – Mădălina

    Google Scholar 

  • Schwitzguébel JP, van der Lelie D, Baker A, Glass DJ, Vangronsveld J (2002) Phytoremediation: European and American trends successes, obstacles and needs. J Soils Sediments. https://doi.org/10.1065/jss2002.03.37

  • Shah MP (2017) Waste water pollution. J Appl Biomater Biomech 3(1):262–263

    Google Scholar 

  • Shams KM, Tichy G, Fischer A, Sager M, Peer T, Bashar A, Filip K (2009) Aspects of phytoremediation for chromium contaminated sites using common plants Urtica dioica, Brassica napus and Zea mays. Plant Soil. https://doi.org/10.1007/s11104-009-0095-x

    Article  CAS  Google Scholar 

  • Sharma B, Dangi AK, Shukla P (2018) Contemporary enzyme based technologies for bioremediation: a review. J Environ Manag 210:10–22

    Article  CAS  Google Scholar 

  • Shoji R, Yajima R, Yano Y (2008) Arsenic speciation for the phytoremediation by the Chinese brake fern, Pteris vittata. J Environ Sci 20:1463–1468

    Article  CAS  Google Scholar 

  • Sparks T, Dripps J, Watson G, Paroonagian D (2012) Resistance and cross-resistance to the spinosyns – a review and analysis. Pestic Biochem Physiol 102:1–10

    Article  CAS  Google Scholar 

  • Stephenson C, Black CR (2014) One step forward, two steps back: the evolution of phytoremediation into commercial technologies. Biosci Horiz. https://doi.org/10.1093/biohorizons/hzu009

    Article  CAS  Google Scholar 

  • Tomei J, Helliwell R (2015) Food versus fuel? Going beyond biofuels. Land Use Policy 56:320–326

    Article  Google Scholar 

  • Trapp S, Karlson U (2001) Aspects of phytoremediation of organic pollutants. J Soil Sediment I:37–43

    Article  Google Scholar 

  • Ustak S, Ustaková M (2004) Potential for agricultural biomass to produce bioenergy in the Czech Republic. In: Parris K (ed) Biomass and agriculture: sustainability, markets and policies. OECD, Paris, pp 229–239

    Google Scholar 

  • Vamerali T, Bandiera M, Mosca G (2010) Field crops for phytoremediation of metal-contaminated land. A review. Environ Chem Lett 8:1–17. https://doi.org/10.1007/s10311-009-0268-0

    Article  CAS  Google Scholar 

  • Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E, van der Lelie D, Mench M (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16:765–794. https://doi.org/10.1007/s11356-009-0213-6

    Article  CAS  Google Scholar 

  • Vasavi M, Usha R, Swamy PM (2010) Phytoremediation – an overview review. J Ind Pollut Control 26(1):83–88

    CAS  Google Scholar 

  • Wang XJ, Wang JJ, Wang JD, Zhang J, Xu MD, Xiang WS (2011a) Two new doramectin analogs from Streptomyces avermitilis NEAU1069: fermentation, isolation and structure elucidation. J Antibiot 64:591–594

    Article  CAS  PubMed  Google Scholar 

  • Wang XJ, Zhang J, Wang JD, Huang SX, Chen YH, Liu CX, Xiang WS (2011b) Four new doramectin congeners with acaricidal and insecticidal activity from Streptomyces avermitilis NEAU1069. Chem Biodivers 8:2117–2125

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Cao Q, Zhao Q, Li Y (2018) Bioindustry in China: an overview and perspective. New Biotechnol 40:46–51

    Article  CAS  PubMed  Google Scholar 

  • Wenzel WW, Lombi E, Adriano DC (2004) Biogeochemical processes in the rhizosphere: role in phytoremediation of metal-polluted soils. In: Prasad M, Hagemeyer J (eds) Heavy metal stress in plants: from biomolecules to ecosystems. Springer, Berlin, pp 273–303

    Google Scholar 

  • Westensee DK, Rumbold K, Harding KG, Sheridan CM, Van Dyk LD, Simate GS, Postma F (2018) The availability of second generation feedstocks for the treatment of acid mine drainage and to improve South Africa’s bio-based economy. Sci Total Environ 637:132–136

    Article  CAS  PubMed  Google Scholar 

  • White Jr PM, Wolf DC, Thoma GJ, Reynolds CM (2005) Phytoremediation of alkylated polycyclic aromatic hydrocarbons in a crude oil-contaminated soil. Water Air Soil Pollut 169: 207–220

    Article  CAS  Google Scholar 

  • Whiteley CG, Lee DJ (2006) Enzyme technology and biological remediation. Enzym Microb Technol 38(3–4):291–316

    Article  CAS  Google Scholar 

  • Woo SL, Ruocco M, Vinale F, Nigro M, Marra R, Lombardi N, Pascale A, Lanzuise S, Manganiello G, Lorito M (2014) Trichoderma-based products and their widespread use in agriculture. Open Mycol J 8(Suppl-1, M4):71–126

    Article  Google Scholar 

  • Yadav KK, Gupta N, Kumar A, Reece LM, Singh N, Rezania S, Khan SA (2018) Mechanistic understanding and holistic approach of phytoremediation: a review on application and future prospects. Ecol Eng 120:274–298

    Google Scholar 

  • Yateem A (2014) Bioremediation strategies for the clean-up of oil contamination in an arid environment: an insight on the Kuwaiti experience. In: Velazquez-Fernandez JB, Muniz-Hernandez S (eds) Bioremediation: processes, challenges and future prospects. Nova, Hauppauge, NY, pp 269–284

    Google Scholar 

  • Yavari S, Malakahmad A, Sapari NB (2015) A review on phytoremediation of crude oil spills. Water Air Soil Pollut 226(8):226–279

    Article  CAS  Google Scholar 

  • Ying OY (2002) Phytoremediation: modeling plant uptake and contaminant transport in the soil-plant-atmosphere continuum. J Hydrol 266(1–2):66–82

    Google Scholar 

  • Zhu X, Venosa AD, Suidan MT (2004) Literature review on the use of commercial bioremediation agents for cleanup of oil-contaminated estuarine environments EPA/600/R-04/075

    Google Scholar 

  • Zhuang P, Ye ZH, Lan CY, Xie ZW, Shu WS (2005) Chemically assisted phytoextraction of heavy metal contaminated soils using three plant species. Plant Soil 276:153–162

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cornea, C.P., Voaides, C., Boiu Sicuia, O.A., Matei, F., Babeanu, N. (2019). Creating Products and Services in Environmental Biotechnology. In: Matei, F., Zirra, D. (eds) Introduction to Biotech Entrepreneurship: From Idea to Business. Springer, Cham. https://doi.org/10.1007/978-3-030-22141-6_4

Download citation

Publish with us

Policies and ethics