Skip to main content

A Parameterization of Heterogeneous Hydrolysis of N2O5 for 3-D Atmospheric Modelling

  • Conference paper
  • First Online:
Air Pollution Modeling and its Application XXVI (ITM 2018)

Part of the book series: Springer Proceedings in Complexity ((SPCOM))

  • 827 Accesses

Abstract

During night-time, the heterogeneous hydrolysis of N2O5 on the surface of deliquescent aerosol particles represents a major source for the formation of HNO3 and leads to an important reduction of NOx in the atmosphere. In Chen et al., Atmos. Chem. Phys. 18:673–689, 2018 [5], we investigate an improved parameterization of the heterogeneous N2O5 hydrolysis. This approach is based on laboratory experiments and takes into account the temperature, relative humidity, aerosol particle composition as well as the surface area concentration. The parametrization was implemented in the online coupled model system COSMO-MUSCAT (Consortium for Small-scale Modelling and Multi-Scale Chemistry Aerosol Transport, https://cosmo-muscat.tropos.de). In Chen et al., Atmos. Chem. Phys. 18:673–689, 2018 [5], the modified model was applied for the simulation of the HOPE-Melpitz campaign (10–25 September 2013) where especially the nitrate prediction over western and central Europe was analysed. The modelled particulate nitrate concentrations were compared with filter measurements over Germany. In this first study, the particulate nitrate results are significantly improved by using the developed N2O5 parametrization, particularly if the particulate nitrate was dominated by the local chemical formation (September 12, 17–18 and 25). The aim of the current study consists in an evaluation over a longer time period for different meteorological conditions and emission situations. For this reason, we have simulated the period from March to November 2010. The results were compared with other approaches and evaluated by filter measurements. The improvement was confirmed for the results in spring and autumn, but nitrate is strongly over-predicted also for the new parametrization during the summer time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Anttila, A. Kiendler-Scharr, R. Tillmann, T.F. Mentel, On the reactive uptake of gaseous compounds by organic-coated aqueous aerosols: theoretical analysis and application to the heterogeneous hydrolysis of N2O5. J. Phys. Chem. A 110, 10435–10443 (2006)

    Article  CAS  Google Scholar 

  2. A.M. Backes, A. Aulinger, J. Bieser, V. Matthias, M. Quante, Ammonia emissions in Europe, part II: how ammonia emission abatement strategies affect secondary aerosols. Atmos. Environ. 126, 153–161 (2016)

    Article  CAS  Google Scholar 

  3. J.S. Chang, R.A. Brost, I.S.A. Isaksen, S. Madronich, P. Middleton, W.R. Stockwell, C.J. Walcek, A threedimensional Eulerian acid deposition model: physical concepts and formulation. J. Geophys. Res.-Atmos. 92, 14681–14700 (1987)

    Article  CAS  Google Scholar 

  4. W.L. Chang, S.S. Brown, J. Stutz, A.M. Middlebrook, R. Bahreini, N.L. Wagner, W.P. Dubé, I.B. Pollack, T.B. Ryerson, N. Riemer, Evaluating N2O5 heterogeneous hydrolysis parameterizations for CalNex 2010. J. Geophys. Res.-Atmos. 121, 5051–5070 (2016)

    CAS  Google Scholar 

  5. Y. Chen, R. Wolke, L. Ran, W. Birmil, G. Spindler, W. Schröder, H. Su, Y. Cheng, I. Tegen, A. Wiedensohler, A parameterization of the heterogeneous hydrolysis of N2O5 for mass-based aerosol models: improvement of particulate nitrate prediction. Atmos. Chem. Phys. 18, 673–689 (2018)

    Article  CAS  Google Scholar 

  6. M.V. Galperin, M.A. Sofiev, The long-range transport of ammonia and ammonium in the Northern Hemisphere. Atmos. Environ. 32, 373–380 (1998)

    Article  CAS  Google Scholar 

  7. D. Hinneburg, E. Renner, R. Wolke, Formation of secondary inorganic aerosols by power plant emissions exhausted through cooling towers in Saxony. Environ. Sci. Pollut. Res. 16, 25–35 (2009)

    Article  CAS  Google Scholar 

  8. M. Karl, H.P. Dorn, F. Holland, R. Koppmann, D. Poppe, L. Rupp, A. Schaub, A. Wahner, Product study of the reaction of oh radicals with isoprene in the atmosphere simulation chamber saphir. J. Atmos. Chem. 55(2), 167–187 (2006)

    Article  CAS  Google Scholar 

  9. M. Mozurkewich, The dissociation constant of ammonium nitrate and its dependence on temperature, relative humidity and particle size. Atmos. Environ. 27A, 261–270 (1993)

    Article  CAS  Google Scholar 

  10. N. Riemer, H. Vogel, B. Vogel, B. Schell, I. Ackermann, C. Kessler, H. Hass, Impact of the heterogeneous hydrolysis of N2O5 on chemistry and nitrate aerosol formation in the lower troposphere under photo smog conditions. J. Geophys. Res.-Atmos. 108 (2003)

    Google Scholar 

  11. U. Schättler, G. Doms, C. Schraff, A Description of the Nonhydrostatic Regional Cosmo-Model. Part VII: User’s Guide (Deutscher Wetterdienst, Offenbach, 2013)

    Google Scholar 

  12. B. Schell, I.J. Ackermann, H. Hass, F.S. Binkowski, A. Ebel, Modeling the formation of secondary organic aerosol within a comprehensive air quality model system. J. Geophys. Res. Atmos. 106(D22), 28275–28293 (2001)

    Article  CAS  Google Scholar 

  13. J. Sintermann, A. Neftel, C. Ammann, C. Háni, A. Hensen, B. Loubet, C.R. Flechard, Are ammonia emissions from field-applied slurry substantially over-estimated in European emission inventories? Biogeosciences 9 (2012)

    Article  CAS  Google Scholar 

  14. R. Steinbrecher, G. Smiatek, R. Koeble, G. Seufert, J. Theloke, K. Hauff, P. Ciccioli, R. Vautard, G. Curci, Intra- and inter-annual variability of VOC emissions from natural and semi-natural vegetation in Europe and neighbouring countries. Atmos. Environ. 43(7), 1380–1391 (2009)

    Article  CAS  Google Scholar 

  15. R. Stern, P. Builtjes, M. Schaap, R. Timmermans, R. Vautard, A. Hodzic, M. Memmesheimer, H. Feldmann, E. Renner, R. Wolke, A. Kerschbaumer, A model inter-comparison study focussing on episodes with elevated PM10 concentrations. Atmos. Environ. 42, 4567–4588 (2008)

    Article  CAS  Google Scholar 

  16. W.R. Stockwell, F. Kirchner, M. Kuhn, S. Seefeld, A new mechanism for regional atmospheric chemistry modeling. J. Geophys. Res. Atmos. 102(D22), 25847–25879 (1997)

    Article  CAS  Google Scholar 

  17. R. Wolke, W. Schröder, R. Schrödner, E. Renner, Influence of grid resolution and meteorological forcing on simulated european air quality: a sensitivity study with the modeling system COSMO-MUSCAT. Atmos. Environ. 53, 110–130 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the ZIH Dresden and the JSC Jülich. Furthermore, we thank the German Weather Service for good cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Wolke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wolke, R., Chen, Y., Schröder, W., Spindler, G., Wiedensohler, A. (2020). A Parameterization of Heterogeneous Hydrolysis of N2O5 for 3-D Atmospheric Modelling. In: Mensink, C., Gong, W., Hakami, A. (eds) Air Pollution Modeling and its Application XXVI. ITM 2018. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-030-22055-6_60

Download citation

Publish with us

Policies and ethics