Skip to main content
Log in

Formation of secondary inorganic aerosols by power plant emissions exhausted through cooling towers in Saxony

  • AREA 3 • ATMOSPHERIC CHEMISTRY AND PHYSICS • RESEARCH ARTICLE
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Background, aim, and scope

The fraction of ambient PM10 that is due to the formation of secondary inorganic particulate sulfate and nitrate from the emissions of two large, brown-coal-fired power stations in Saxony (East Germany) is examined. The power stations are equipped with natural-draft cooling towers. The flue gases are directly piped into the cooling towers, thereby receiving an additionally intensified uplift. The exhausted gas-steam mixture contains the gases CO, CO2, NO, NO2, and SO2, the directly emitted primary particles, and additionally, an excess of ‘free’ sulfate ions in water solution, which, after the desulfurization steps, remain non-neutralized by cations. The precursor gases NO2 and SO2 are capable of forming nitric and sulfuric acid by several pathways. The acids can be neutralized by ammonia and generate secondary particulate matter by heterogeneous condensation on preexisting particles.

Materials and methods

The simulations are performed by a nested and multi-scale application of the online-coupled model system LM-MUSCAT. The Local Model (LM; recently renamed as COSMO) of the German Weather Service performs the meteorological processes, while the Multi-scale Atmospheric Transport Model (MUSCAT) includes the transport, the gas phase chemistry, as well as the aerosol chemistry (thermodynamic ammonium–sulfate–nitrate–water system). The highest horizontal resolution in the inner region of Saxony is 0.7 km. One summer and one winter episode, each realizing 5 weeks of the year 2002, are simulated twice, with the cooling tower emissions switched on and off, respectively. This procedure serves to identify the direct and indirect influences of the single plumes on the formation and distribution of the secondary inorganic aerosols.

Results and conclusions

Surface traces of the individual tower plumes can be located and distinguished, especially in the well-mixed boundary layer in daytime. At night, the plumes are decoupled from the surface. In no case does the resulting contribution of the cooling tower emissions to PM10 significantly exceed 15 μgm−3 at the surface. These extreme values are obtained in narrow plumes on intensive summer conditions, whereas different situations with lower turbulence (night, winter) remain below this value. About 90% of the PM10 concentrations in the plumes are secondarily formed sulfate, mainly ammonium sulfate, and about 10% originate from the primarily emitted particles. Under the assumptions made, ammonium nitrate plays a rather marginal role.

Recommendations and perspectives

The analyzed results depend on the specific emission data of power plants with flue gas emissions piped through the cooling towers. The emitted fraction of ‘free’ sulfate ions remaining in excess after the desulfurization steps plays an important role at the formation of secondary aerosols and therefore has to be measured carefully.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ackermann I (1997) MADE: Entwicklung und Anwendung eines Aerosol-Dynamikmodells für dreidimensionale Chemie-Transport-Simulationen in der Troposphäre. Mitteilungen aus dem Institut für Geophysik und Meteorologie der Universität Köln 115:1–153

    Google Scholar 

  • Alastuey A, Querol X, Rodriguez S, Plana F, Lopez-Soler A, Ruiz C, Mantilla E (2004) Monitoring of atmospheric particulate matter around sources of secondary inorganic aerosol. Atmos Environ 38:4979–4992

    Article  CAS  Google Scholar 

  • Andreani-Aksoyoglu S, Prévôt ASH, Baltensperger U, Keller J, Dommen J (2004) Modeling of formation and distribution of secondary aerosols in the Milan area (Italy). J Geophys Res 109(D5):D05306

    Article  CAS  Google Scholar 

  • Cuvelier C, Thunis P, Vautard R, Amann M, Bessagnet B, Bedogn M, Berkowicz R, Brandt J, Brocheton F, Builtjes P, Carnevale C, Coppalle A, Denby B, Douros J, Graf A, Hellmuth O, Hodzic A, Honoré C, Jonson J, Kerschbaumer A, de Leeuw F, Minguzzi E, Moussiopoulos N, Pertot C, Peuch VH, Pirovano G, Rouil L, Sauter F, Schaap M, Stern R, Tarrason L, Vignati E, Volta M, White L, Wind P, Zuber A (2007) CityDelta: a model intercomparison study to explore the impact of emission reductions in European cities in 2010. Atmos Environ 41:189–207

    Article  CAS  Google Scholar 

  • Dockery DW, Pope CA, Xu X, Spengler JD, Ware JH, Fay ME, Ferris BG, Speizer FE (1993) An association between air pollution and mortality in six U.S. cities. New Engl J Med 329:1753–1759

    Article  CAS  Google Scholar 

  • Doms G, Schättler U (1999) The nonhydrostatic limited-area model LM (Lokal-Modell) of DWD: Part I: scientific documentation (Version LM-F90 1.35). German Weather Service, Offenbach

    Google Scholar 

  • Engelke T, Hugo A, Renner E, Schmidt F, Wolke R, Zoboki J (2007) Mixing of plumes with ambient background air: effects of particle size variations close to the source. In: Borrego C, Renner E (eds) Air pollution modeling and its application XVIII. Elsevier, Amsterdam

    Google Scholar 

  • Gillani NV, Meagher JF, Valente RJ, Imhoff RE, Tanner RL, Luria M (1998) Relative production of ozone and nitrates in urban and rural power plant plumes, 1. Composite results based on data from 10 field measurements days. J Geophys Res 103:22593–22615

    Article  CAS  Google Scholar 

  • Godowitch JM, Gilliland AB, Draxler RR, Rao ST (2008) Modeling assessment of point source NOx emission reductions on ozone air quality in the eastern United States. Atmos Environ 42:87–100

    Article  CAS  Google Scholar 

  • Göldner R, Theiss D, Renner E (2000) Dynamisiertes Emissionskataster für den Freistaat Sachsen. Z Umweltchem Ökotox 12(2):83–87

    Google Scholar 

  • Guenther AB, Zimmerman PR, Harley PC, Monson RK, Fall R (1993) Isoprene and monoterpene emission rate variability: model evaluations and sensitivity analyses. J Geophys Res 98(D7):12609–12617

    Article  Google Scholar 

  • Hewitt CN (2001) The atmospheric chemistry of sulphur and nitrogen in power station plumes. Atmos Environ 35:1155–1170

    Article  CAS  Google Scholar 

  • Hoek B, Brunekreef G, Goldbohm S, Fischer P, van den Brandt PA (2002) Association between mortality and indicators of traffic-related air pollution in the Netherlands: a cohort study. Lancet 360:1203–1209

    Article  Google Scholar 

  • Joos E, Mendonca A, Seigneur C (1987) Evaluation of a reactive plume model with power plant plume data—application to the sensitivity analysis of sulfate and nitrate formation. Atmos Env 21:1331–1343

    CAS  Google Scholar 

  • Karamchandani P, Seigneur C, Vijayaraghavan K, Wu S-Y (2002) Development and application of a state-of-the-science plume-in-grid model. J Geophys Res 107(D19):4403

    Article  Google Scholar 

  • Karamchandani P, Vijayaraghavan K, Chen S-Y, Seigneur C, Edgerton ES (2006) Plume-in-grid modeling for particulate matter. Atmos Environ 40:7280–7297

    Article  CAS  Google Scholar 

  • Knoth O, Wolke R (1998) An explicit-implicit numerical approach for atmospheric chemistry-transport modelling. Atmos Env 32:1785–1797

    Article  CAS  Google Scholar 

  • Levy JI, Spengler JD, Hlinka D, Sullivan D, Moon D (2002) Using CALPUFF to evaluate the impacts of power plant emissions in Illinois: model sensitivity and implications. Atmos Environ 36:1063–1075

    Article  CAS  Google Scholar 

  • López MT, Zuk M, Garibay V, Tzintzun G, Iniestra R, Fernández A (2005) Health impacts from power plant emissions in Mexico. Atmos Environ 39:1199–1209

    Article  CAS  Google Scholar 

  • Meij R, te Winkel B (2004) The emissions and environmental impact of PM10 and trace elements from a modern coal-fired power plant equipped with ESP and FGD. Fuel Process Technol 85:641–656

    Article  CAS  Google Scholar 

  • Mozurkewich M (1993) The dissociation constant of ammonium nitrate and its dependence on temperature, relative humidity and particle size. Atmos Environ 27A:261–270

    CAS  Google Scholar 

  • Neusüß C (2000) Größenaufgelöste Zusammensetzung atmosphärischer Aerosolpartikel: Chemische Massenbilanz und organische Säuren. Dissertation Universität Leipzig. Verlag für Wissenschaft und Forschung, Berlin

    Google Scholar 

  • Obermeier A, Seier J, John C, Berner B, Friedrich R (1996) TRACT: Erstellung einer Emissionsdatenbasis für TRACT. Institut für Energiewirtschaft und Rationelle Energieanwendung, Universität Stuttgart, Germany

    Google Scholar 

  • Pope CA, Thun MJ, Namboodiri MM, Dockery DW, Evans JS, Speizer FE, Heath CW (1995) Particulate air pollution as a predictor of mortality in a prospective study of U.S. adults. Am J Respir Crit Care Med 151:669–674

    Google Scholar 

  • Schaap M, van Loon M, ten Brink HM, Dentener FJ, Builtjes PJH (2004) Secondary inorganic aerosol simulations for Europe with special attention to nitrate. Atmos Chem Phys 4:857–874

    Article  CAS  Google Scholar 

  • Schatzmann M, Policastro AJ (1984) An advanced integral model for cooling tower plume dispersion. Atmos Env 18:663–674

    Article  Google Scholar 

  • Seigneur C (2001) Current status of air quality models for particulate matter. J Air Waste Manag Assoc 51:1508–1521

    CAS  Google Scholar 

  • Simpson D, Fagerli H, Jonson JE, Tsyro S, Wind P, Tuovinen JP (2003) Transboundary acidification, eutrophication and ground level ozone in Europe, Part I, Unified EMEP model description. EMEP Status Report 2003. Norwegian Meteorological Institute, Oslo (ISSN 0806-4520)

    Google Scholar 

  • Stern R, Builtjes P, Schaap M, Timmermans R, Vautard R, Hodzic A, Memmesheimer M, Feldmann H, Renner E, Wolke R, Kerschbaumer A (2008) A model inter-comparison study focussing on episodes with elevated PM10 concentrations. Atmos Environ 42:4567–4588

    Article  CAS  Google Scholar 

  • Stockwell WR, Kirchner F, Kuhn M, Seefeld S (1997) A new mechanism for regional atmospheric chemistry modeling. J Geophys Res 102(D22):25847–25879

    Article  CAS  Google Scholar 

  • Stohl A, Williams E, Wotawa G, Kromp-Kolb H (1996) A European inventory of soil nitric oxide emissions and the effect of these emissions on the photochemical formation of ozone. Atmos Environ 30:3741–3755

    Article  CAS  Google Scholar 

  • Tsyro S, Erdman L (2000) Parameterization of aerosol deposition processes in EMEP MSC-E and MSC-W transport models. EMEP/MSC-E & MCS-W Note 7/00. Norwegian Meteorological Institute, Oslo

    Google Scholar 

  • Vijayaraghavan K, Karamchandani P, Seigneur C (2006) Plume-in-grid modeling of summer air pollution in Central California. Atmos Environ 40:5097–5109

    Article  CAS  Google Scholar 

  • Visschedijk AJH, Denier van der Gon HAC (2005) Gridded European anthropogenic emission data for NOx, SOx, NMVOC, NH3, CO, PPM10, PPM2.5 and CH4 for the year 2000. TNO-Report B&O-A R 2005/106, TNO, Apeldoorn, The Netherlands

  • Wang Q, Han Z, Wang T, Higano Y (2007) An estimate of biogenic emissions of volatile organic compounds during summertime in China. Environ Sci Pollut Res 14:69–75

    Article  Google Scholar 

  • Williams EJ, Guenther A, Fehsenfeld FC (1992) An inventory of nitric oxide emissions from soils in the United States. J Geophys Res 97(D7):7511–7519

    CAS  Google Scholar 

  • Winiwarter W, Züger J (1996) Pannonisches Ozon Projekt, Teilbericht Emissionen. Seibersdorf Report OEFZS-A-3817. Seibersdorf, Austria

    Google Scholar 

  • Wolke R, Knoth O (2000) Implicit–explicit Runge–Kutta methods applied to atmospheric chemistry-transport modelling. Environ Model Softw 15:711–719

    Article  Google Scholar 

  • Wolke R, Hellmuth O, Knoth O, Schröder W, Heinrich B, Renner E (2004a) The chemistry-transport modeling system LM-MUSCAT: Description and CITYDELTA applications. In: Borrego C, Incecik S (eds) Air pollution modeling and its application XVI. Kluwer, London, pp 427–439

    Google Scholar 

  • Wolke R, Knoth O, Hellmuth O, Schröder W, Renner E (2004b) The parallel model system LM-MUSCAT for chemistry-transport simulations: Coupling scheme, parallelization and applications. In: Joubert GR (ed) Parallel computing: software technology, algorithms, architectures, and applications, advances in parallel computing. vol. 13. Elsevier, Amsterdam, pp 363–370

    Chapter  Google Scholar 

  • Yi H, Hao J, Duan L, Tang X, Ning P, Li X (2008) Fine particle and trace element emissions from an anthracite coal-fired power plant equipped with a bag-house in China. Fuel 87:2050–2057

    Article  CAS  Google Scholar 

  • Zhang Y, Seigneur C, Seinfeld JH, Jacobsen M, Clegg SL, Binkowski FS (2000) A comparative review of inorganic aerosol thermodynamic equilibrium modules: differences, and their likely causes. Atmos Environ 34:117–137

    Article  CAS  Google Scholar 

  • Zhou Y, Levy JI, Evans JS, Hammitt JK (2006) The influence of geographic location on population exposure to emissions from power plants throughout China. Environ Int 32:365–373

    Article  Google Scholar 

Download references

Acknowledgement

The authors appreciate the data delivery and financial support by the Saxon State Agency for Environment and Geology, Dresden, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eberhard Renner.

Additional information

Responsible editor: Karsten Baumann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hinneburg, D., Renner, E. & Wolke, R. Formation of secondary inorganic aerosols by power plant emissions exhausted through cooling towers in Saxony. Environ Sci Pollut Res 16, 25–35 (2009). https://doi.org/10.1007/s11356-008-0081-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-008-0081-5

Keywords

Navigation