Skip to main content

Multi-scale Modeling of the Heart Valve Interstitial Cell

  • Chapter
  • First Online:
Multi-scale Extracellular Matrix Mechanics and Mechanobiology

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 23))

Abstract

Heart valve interstitial cells (VIC)  are fibroblast–like cells that reside within the interstitium of heart valve leaflets.  The biosynthetic activity of VICs is highly dependent upon the the mechanical demands of the extracellular environment.  Thus, regular deformation of the leaflets throughout the cardiac cycle provides the mechanical stimulation that is necessary for VICs to maintain homeostasis of the valve and manage normal turnover of extracellular matrix constituents.  When the deformation pattern of the VICs is altered during periods of growth or disease, VICs can undergo cellular activation and remodel the ECM of the valve to re-establish homeostasis. In order to better engineer treatments for heart valve diseases, it is of great importance to delineate the underlying mechanisms governing this crucial remodeling process. In this chapter, we present current experimental and computational modeling approaches used to study the complex multi-scale mechanical relationship between the valve leaflets and the underlying VICs. In addition, we discuss future directions toward modeling VIC signaling pathways and developing improved 3D multi-scale models of VICs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acker, M.A., Parides, M.K., Perrault, L.P., Moskowitz, A.J., Gelijns, A.C., Voisine, P., Smith, P.K., Hung, J.W., Blackstone, E.H., Puskas, J.D.: Mitral-valve repair versus replacement for severe ischemic mitral regurgitation. N. Engl. J. Med. 370(1), 23–32 (2014)

    Article  Google Scholar 

  2. Buchanan, R.M.: A An integrated computational-experimental approach for the in situ estimation of valve interstitial cell biomechanical state. Doctoral Thesis. The University of Texas at Austin (2016). https://repositories.lib.utexas.edu/handle/2152/39463

  3. Buchanan, R.M., Sacks, M.S.: Interlayer micromechanics of the aortic heart valve leaflet. Biomech Model Mechanobiol (2013). https://doi.org/10.1007/s10237-013-0536-6. http://www.ncbi.nlm.nih.gov/pubmed/24292631

    Article  Google Scholar 

  4. Butcher, J.T., Simmons, C.A., Warnock, J.N.: Mechanobiology of the aortic heart valve. J. Heart Valve. Dis. 17(1), 62–73 (2008). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18365571

  5. Carruthers, C.A., Alfieri, C.M., Joyce, E.M., Watkins, S.C., Yutzey, K.E., Sacks, M.S.: Gene Expression and Collagen Fiber Micromechanical Interactions of the Semilunar Heart Valve Interstitial Cell. Cell. Mol. Bioeng. 5(3), 254–265 (2012). https://doi.org/10.1007/s12195-012-0230-2

    Article  Google Scholar 

  6. Chan, C.E., Odde, D.J.: Traction dynamics of filopodia on compliant substrates. Science 322(5908), 1687–1691 (2008). https://doi.org/10.1126/science.1163595

    Article  Google Scholar 

  7. Chaput, M., Handschumacher, M.D., Guerrero, J.L., Holmvang, G., Dal-Bianco, J.P., Sullivan, S., Vlahakes, G.J., Hung, J., Levine, R.A.: Mitral leaflet adaptation to ventricular remodeling: prospective changes in a model of ischemic mitral regurgitation. Circulation 120(11 Suppl), S99–103 (2009). https://doi.org/10.1161/CIRCULATIONAHA.109.844019. http://www.ncbi.nlm.nih.gov/pubmed/19752393

    Article  Google Scholar 

  8. Chaput, M., Handschumacher, M.D., Tournoux, F., Hua, L., Guerrero, J.L., Vlahakes, G.J., Levine, R.A.: Mitral leaflet adaptation to ventricular remodeling: occurrence and adequacy in patients with functional mitral regurgitation. Circulation 118(8), 845–52 (2008). https://doi.org/10.1161/circulationaha.107.749440. http://circ.ahajournals.org/content/118/8/845.full.pdf

    Article  Google Scholar 

  9. Chen, H.C., Appeddu, P.A., Isoda, H., Guan, J.L.: Phosphorylation of tyrosine 397 in focal adhesion kinase is required for binding phosphatidylinositol 3-kinase. J. Biol. Chem. 271(42), 26329–26334 (1996). https://doi.org/10.1074/jbc.271.42.26329

    Article  Google Scholar 

  10. Chen, J., Li, H., SundarRaj, N., Wang, J.H.: Alpha-smooth muscle actin expression enhances cell traction force. Cell Motil Cytoskelet. 64(4), 248–57 (2007). https://doi.org/10.1002/cm.20178. http://www.ncbi.nlm.nih.gov/pubmed/17183543

    Article  Google Scholar 

  11. Cheng, B., Lin, M., Li, Y., Huang, G., Yang, H., Genin, G.M., Deshpande, V.S., Lu, T.J., Xu, F.: An integrated stochastic model of matrix-stiffness-dependent filopodial dynamics. Biophys. J. 111(9), 2051–2061 (2016). https://doi.org/10.1016/j.bpj.2016.09.026

    Article  Google Scholar 

  12. Clark-Greuel, J.N., Connolly, J.M., Sorichillo, E., Narula, N.R., Rapoport, H.S., Mohler 3rd, E.R., Gorman 3rd, J.H., Gorman, R.C., Levy, R.J.: Transforming growth factor-beta1 mechanisms in aortic valve calcification: increased alkaline phosphatase and related events. Ann. Thorac. Surg. 83(3), 946–53 (2007). https://doi.org/10.1016/j.athoracsur.2006.10.026. http://www.ncbi.nlm.nih.gov/pubmed/17307438

    Article  Google Scholar 

  13. Cushing, M.C., Liao, J.T., Anseth, K.S.: Activation of valvular interstitial cells is mediated by transforming growth factor-beta1 interactions with matrix molecules. Matrix Biol. 24(6), 428–37 (2005). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16055320

  14. Deshpande, V.S., Mrksich, M., McMeeking, R.M., Evans, A.G.: A bio-mechanical model for coupling cell contractility with focal adhesion formation. J. Mech. Phys. Solids 56(4), 1484–1510 (2008)

    Article  Google Scholar 

  15. Edman, K.A.: The relation between sarcomere length and active tension in isolated semitendinosus fibres of the frog. J. Physiol. 183(2), 407–17 (1966). http://www.ncbi.nlm.nih.gov/pubmed/5942818

    Article  Google Scholar 

  16. Elosegui-Artola, A., Oria, R., Chen, Y., Kosmalska, A., Pérez-González, C., Castro, N., Zhu, C., Trepat, X., Roca-Cusachs, P.: Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity. Nat. Cell Biol. 18(5), 540–548 (2016). https://doi.org/10.1038/ncb3336

    Article  Google Scholar 

  17. Gouget, C.L., Girard, M.J., Ethier, C.R.: A constrained von Mises distribution to describe fiber organization in thin soft tissues. Biomech Model Mechanobiol 11(3–4), 475–82 (2012). https://doi.org/10.1007/s10237-011-0326-y. http://www.ncbi.nlm.nih.gov/pubmed/21739088

    Article  Google Scholar 

  18. Hart, J., Alexanderian, A., Gremaud, P.: Efficient computation of sobol’ indices for stochastic models. SIAM J. Sci. Comput. 39(4), 1514–1539 (2017)

    Article  MathSciNet  Google Scholar 

  19. Hinz, B., Phan, S.H., Thannickal, V.J., Prunotto, M., Desmouliere, A., Varga, J., De Wever, O., Mareel, M., Gabbiani, G.: Recent developments in myofibroblast biology: paradigms for connective tissue remodeling. Am J Pathol 180(4), 1340–55 (2012). https://doi.org/10.1016/j.ajpath.2012.02.004. http://www.ncbi.nlm.nih.gov/pubmed/22387320

    Article  Google Scholar 

  20. Huang, H.Y., Liao, J., Sacks, M.S.: In-situ deformation of the aortic valve interstitial cell nucleus under diastolic loading. J Biomech Eng 129(6), 880–89 (2007). https://doi.org/10.1115/1.2801670. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18067392

    Article  Google Scholar 

  21. Khalighi, A.H., Drach, A., Bloodworth, C.H., Pierce, E.L., Yoganathan, A.P., Gorman, R.C., Gorman, J.H., Sacks, M.S.: Mitral valve chordae tendineae: Topological and geometrical characterization. Ann. Biomed. Eng. 45, 378–393 (2017). https://doi.org/10.1007/s10439-016-1775-3

    Article  Google Scholar 

  22. Khang, A., Gonzalex, A.G., Schroeder, M.E., Sansom, J., Anseth, K.S., Sacks, M.S.: An approach to quantify valve interstitial cell biophysical state using highly tunable poly(ethylene) glycol hydrogels. Manuscript in preparation (2018)

    Google Scholar 

  23. Latif, N., Sarathchandra, P., Taylor, P., Antoniw, J., Yacoub, M.: Molecules mediating cell-ECM and cell-cell communication in human heart valves. Cell Biochemistry and Biophysics 43(2), 275–287 (2005). https://doi.org/10.1385/CBB:43:2:275

    Article  Google Scholar 

  24. Lawson, C.D., Burridge, K.: The on-off relationship of Rho and Rac during integrin-mediated adhesion and cell migration. Small GTPases 5(1), e27958 (2014). https://doi.org/10.4161/sgtp.27958

    Article  Google Scholar 

  25. Lejeune, E., Linder, C.: Quantifying the relationship between cell division angle and morphogenesis through computational modeling. J. Theor. Biol. 418, 1–7 (2017)

    Article  MathSciNet  Google Scholar 

  26. Lejeune, E., Linder, C.: Understanding the relationship between cell death and tissue shrinkage via a stochastic agent-based model. J. Biomech. 73, 9–17 (2018)

    Article  Google Scholar 

  27. Logg, A., Mardal, K.A., Wells, G.: Automated Solution of Differential Equations by the Finite Element Method the FEniCS Book, 2012. edn. Lecture Notes in Computational Science and Engineering,. Springer Berlin Heidelberg, Berlin, Heidelberg (2012). http://UTXA.eblib.com/patron/FullRecord.aspx?p=885214

    Chapter  Google Scholar 

  28. Logg, A., Wells, G.N.: DOLFIN: Automated Finite Element Computing. Acm Transactions on Mathematical Software 37(2) (2010). https://doi.org/10.1145/1731022.1731030. http://WOS:000277057400008

    Article  MathSciNet  Google Scholar 

  29. Maas, S., Rawlins, D., Weiss, J., Weiss, J.: FEBio User’s Manual Version 2.4 (2015). http://febio.org/download/febio-2-4-users-manual/

  30. Maas, S.A., Ellis, B.J., Ateshian, G.A., Weiss, J.A.: FEBio: finite elements for biomechanics. J Biomech Eng 134(1), 011005 (2012). https://doi.org/10.1115/1.4005694. http://www.ncbi.nlm.nih.gov/pubmed/22482660

    Article  Google Scholar 

  31. Merryman, W.D.: Mechanobiology of the aortic valve interstitial cell. Doctoral Dissertation, University of Pittsburgh, Doctoral Dissertation (2007)

    Google Scholar 

  32. Merryman, W.D., Huang, H.Y.S., Schoen, F.J., Sacks, M.S.: The effects of cellular contraction on aortic valve leaflet flexural stiffness. J Biomech 39(1), 88–96 (2006). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16271591

  33. Merryman, W.D., Liao, J., Parekh, A., Candiello, J.E., Lin, H., Sacks, M.S.: Differences in tissue-remodeling potential of aortic and pulmonary heart valve interstitial cells. Tissue Eng. 13(9), 2281–9 (2007). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17596117

  34. Merryman, W.D., Youn, I., Lukoff, H.D., Krueger, P.M., Guilak, F., Hopkins, R.A., Sacks, M.S.: Correlation between heart valve interstitial cell stiffness and transvalvular pressure: implications for collagen biosynthesis. Am. J. Physiol. Heart Circ. Physiol. 290(1), H224–31 (2006). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16126816

  35. Morin, C., Avril, S., Hellmich, C.: Non-affine fiber kinematics in arterial mechanics: a continuummicromechanical investigation. J. Appl. Math. Mech. (2018)

    Google Scholar 

  36. Osman, L., Yacoub, M.H., Latif, N., Amrani, M., Chester, A.H.: Role of human valve interstitial cells in valve calcification and their response to atorvastatin. Circulation 114(1 Suppl), 1547–1552 (2006). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16820635

  37. Rego, B.V., Sacks, M.S.: A functionally graded material model for the transmural stress distribution of the aortic valve leaflet. J. Biomech. 54, 88–95 (2017). https://doi.org/10.1016/j.jbiomech.2017.01.039

    Article  Google Scholar 

  38. Rego, B.V., Wells, S.M., Lee, C.H., Sacks, M.S.: Mitral valve leaflet remodelling during pregnancy: insights into cell-mediated recovery of tissue homeostasis. J. R. Soc., Interface 13(125) (2016). https://doi.org/10.1098/rsif.2016.0709. http://rsif.royalsocietypublishing.org/content/13/125/20160709

    Article  Google Scholar 

  39. Sakamoto, Y., Buchanan, R.M., Sacks, M.S.: On intrinsic stress fiber contractile forces in semilunar heart valve interstitial cells using a continuum mixture model. J Mech Behav Biomed Mater 54, 244–58 (2016). https://doi.org/10.1016/j.jmbbm.2015.09.027. http://www.ncbi.nlm.nih.gov/pubmed/26476967

    Article  Google Scholar 

  40. Sakamoto, Y., Buchanan, R.M., Sanchez-Adams, J., Guilak, F., Sacks, M.S.: On the functional role of valve interstitial cell stress fibers: a continuum modeling approach. J. Biomech. Eng. 139, (2017). https://doi.org/10.1115/1.4035557

    Article  Google Scholar 

  41. Schlaepfer, D.D., Hanks, S.K., Hunter, T., van der Geer, P.: Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature 372, 786–791 (1994). https://doi.org/10.1038/372786a0

    Article  Google Scholar 

  42. Sobol, I.: Global sensitivity indices for nonlinear mathematical models and their monte carlo estimates. Math. Comput. Simul. 55(1), 271–280 (2001)

    Article  MathSciNet  Google Scholar 

  43. Stephens, E., Durst, C., Swanson, J., Grande-Allen, K., Ingels, N., Miller, D.: Functional Coupling of Valvular Interstitial Cells and Collagen Via a2b1 Integrins in the Mitral Leaflet. Cell Mol. Bioeng. pp. 1–10 (2010). https://doi.org/10.1007/s12195-010-0139-6

    Article  Google Scholar 

  44. Vernerey, F.J., Farsad, M.: A constrained mixture approach to mechano-sensing and force generation in contractile cells. J. Mech. Behav. Biomed. Mater. 4(8), 1683–1699 (2011). https://doi.org/10.1016/j.jmbbm.2011.05.022. http://WOS:000298764700012

    Article  Google Scholar 

  45. Wang, H., Tibbitt, M.W., Langer, S.J., Leinwand, L.A., Anseth, K.S.: Hydrogels preserve native phenotypes of valvular fibroblasts through an elasticity-regulated PI3K/AKT pathway. Proc. Natl. Acad. Sci. 110(48), 19336–19341 (2013). https://doi.org/10.1073/pnas.1306369110

    Article  Google Scholar 

  46. Wang, J., Zohar, R., McCulloch, C.A.: Multiple roles of alpha-smooth muscle actin in mechanotransduction. Exp. Cell Res. 312(3), 205–14 (2006). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16325810

  47. Welf, E.S., Johnson, H.E., Haugh, J.M.: Bidirectional coupling between integrin-mediated signaling and actomyosin mechanics explains matrix-dependent intermittency of leading-edge motility. Mol. Biol. Cell 24(24), 3945–3955 (2013). https://doi.org/10.1091/mbc.e13-06-0311

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Sacks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khang, A., Howsmon, D.P., Lejeune, E., Sacks, M.S. (2020). Multi-scale Modeling of the Heart Valve Interstitial Cell. In: Zhang, Y. (eds) Multi-scale Extracellular Matrix Mechanics and Mechanobiology. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-20182-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20182-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20181-4

  • Online ISBN: 978-3-030-20182-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics