Skip to main content
Log in

Functional Coupling of Valvular Interstitial Cells and Collagen Via α2β1 Integrins in the Mitral Leaflet

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Once considered passive flaps, we now understand that mitral leaflets are dynamic structures with their own vasculature and innervation that actively remodel and even generate force in response to their environments. Valvular interstitial cells (VICs) are contractile and could underlie mitral leaflet force generation, but the exact mechanisms for VICs in mitral leaflet force generation are not understood. This study tested the hypothesis that actin-mediated VIC force generation coupled to collagen via α2β1 integrins is necessary for force generation in the mitral leaflet. High magnification fluorescent imaging of freshly excised porcine mitral leaflets revealed VIC cytoplasm tightly conforming to collagen fibers, with actin within VIC cytoplasmic processes appearing to attach to the collagen fibers. Functional studies of isometric force development demonstrated that while control samples developed force in response to KCl, either blocking α2β1 integrins or blocking actin polymerization via cytochalasin abolished KCl-induced force development (p < 0.001). These results strongly suggest that VIC-collagen coupling, mediated by α2β1 integrins, is necessary for KCl-induced force generation in the mitral leaflet. This functional coupling between collagen and VICs via α2β1 integrins may play a role for in vivo mitral valve function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Barczyk, M., S. Carracedo, and D. Gullberg. Integrins. Cell Tissue Res. 339:269–280, 2010.

    Article  Google Scholar 

  2. Bayne-Jones, S. The blood-vessels of the heart valves. Am. J. Anat. 21:449–463, 1917.

    Article  Google Scholar 

  3. Borin, C., D. Vanhercke, and A. Weyns. Innervation of the atrioventricular and semi-lunar heart valves: a review. Acta Cardiol. 61:463–469, 2006.

    Article  Google Scholar 

  4. Bowen, I., C. Marr, A. Chester, C. Wheeler-Jones, and J. Elliott. In vitro contraction of the equine aortic valve. J. Heart Valve Dis. 13:593–599, 2004.

    Google Scholar 

  5. Brakebusch, C., and R. Fassler. Beta 1 integrin function in vivo: adhesion, migration and more. Cancer Metastasis Rev. 24:403–411, 2005.

    Article  Google Scholar 

  6. Chaput, M., M. D. Handschumacher, F. Tournoux, L. Hua, J. L. Guerrero, G. J. Vlahakes, and R. A. Levine. Mitral leaflet adaptation to ventricular remodeling: occurrence and adequacy in patients with functional mitral regurgitation. Circulation 118:845–852, 2008.

    Article  Google Scholar 

  7. Chester, A., M. Misfeld, and M. Yacoub. Receptor-mediated contraction of aortic valve leaflets. J. Heart Valve Dis. 9:250–254, 2000.

    Google Scholar 

  8. Chester, A. H., M. Misfeld, H. H. Sievers, and M. H. Yacoub. Influence of 5-hydroxytryptamine on aortic valve competence in vitro. J. Heart Valve Dis. 10:822–825, 2001.

    Google Scholar 

  9. Cole, W. G., D. Chan, A. J. Hickey, and D. E. Wilcken. Collagen composition of normal and myxomatous human mitral heart valves. Biochem. J. 219:451–460, 1984.

    Google Scholar 

  10. Cooper, T., L. M. Napolitano, M. J. Fitzgerald, K. E. Moore, W. M. Daggett, V. L. Willman, E. H. Sonnenblick, and C. R. Hanlon. Structural basis of cardiac valvar function. Arch. Surg. 93:767–771, 1966.

    Google Scholar 

  11. Dal-Bianco, J. P., E. Aikawa, J. Bischoff, J. L. Guerrero, M. D. Handschumacher, S. Sullivan, B. Johnson, J. S. Titus, Y. Iwamoto, J. Wylie-Sears, R. A. Levine, and A. Carpentier. Active adaptation of the tethered mitral valve: insights into a compensatory mechanism for functional mitral regurgitation. Circulation 120:334–342, 2009.

    Article  Google Scholar 

  12. Dallon, J., and H. Ehrlich. A review of fibroblast-populated collagen lattices. Wound Repair Regen. 16:472–479, 2008.

    Article  Google Scholar 

  13. De Biasi, S., L. Vitellaro-Zuccarello, and I. Blum. Histochemical and ultrastructural study on the innervation of human and porcine atrio-ventricular valves. Anat. Embryol. 169:159–165, 1984.

    Article  Google Scholar 

  14. DeMali, K. A., C. A. Barlow, and K. Burridge. Recruitment of the Arp2/3 complex to vinculin: coupling membrane protrusion to matrix adhesion. J. Cell Biol. 159:881–891, 2002.

    Article  Google Scholar 

  15. DeMali, K. A., K. Wennerberg, and K. Burridge. Integrin signaling to the actin cytoskeleton. Curr. Opin. Cell Biol. 15:572–582, 2003.

    Article  Google Scholar 

  16. Filip, D., A. Radu, and M. Simionescu. Interstitial cells of the heart valve possess characteristics similar to smooth muscle cells. Circ. Res. 59:310–320, 1986.

    Google Scholar 

  17. Flanagan, M. D., and S. Lin. Cytochalasins block actin filament elongation by binding to high affinity sites associated with F-actin. J. Biol. Chem. 255:835–838, 1980.

    Google Scholar 

  18. Goddette, D. W., and C. Frieden. Actin polymerization. The mechanism of action of cytochalasin D. J. Biol. Chem. 261:15974–15980, 1986.

    Google Scholar 

  19. Grande-Allen, K. J., A. G. Borowski, R. W. Troughton, P. L. Houghtaling, N. R. Dipaola, C. S. Moravec, I. Vesely, and B. P. Griffin. Apparently normal mitral valves in patients with heart failure demonstrate biochemical and structural derangements: an extracellular matrix and echocardiographic study. J. Am. Coll. Cardiol. 45:54–61, 2005.

    Article  Google Scholar 

  20. Hinz, B., G. Celetta, J. Tomasek, G. Gabbiani, and C. Chaponnier. Alpha-smooth muscle actin expression upregulates fibroblast contractile activity. Mol. Biol. Cell. 12:2730–2741, 2001.

    Google Scholar 

  21. Huang, H., J. Liao, and M. Sacks. In situ deformation of the aortic valve interstitial cell nucleus under diastolic loading. J. Biomech. Eng. 129:880–889, 2007.

    Article  Google Scholar 

  22. Hynes, R. O. Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687, 2002.

    Article  Google Scholar 

  23. Itoh, A., G. Krishnamurthy, J. C. Swanson, D. B. Ennis, W. Bothe, E. Kuhl, M. Karlsson, L. R. Davis, D. C. Miller, and N. B. Ingels, Jr. Active stiffening of mitral valve leaflets in the beating heart. Am. J. Physiol. Heart Circ. Physiol. 296:H1766–H1773, 2009.

    Article  Google Scholar 

  24. Kershaw, J., M. Misfeld, H. Sievers, M. Yacoub, and A. Chester. Specific regional and directional contractile responses of aortic cusp tissue. J. Heart Valve Dis. 13:798–803, 2004.

    Google Scholar 

  25. Kunzelman, K. S., and R. P. Cochran. Stress/strain characteristics of porcine mitral valve tissue: parallel versus perpendicular collagen orientation. J. Card. Surg. 7:71–78, 1992.

    Article  Google Scholar 

  26. Latif, N., P. Sarathchandra, P. Taylor, J. Antoniw, and M. Yacoub. Molecules mediating cell-ECM and cell-cell communication in human heart valves. Cell Biochem. Biophys. 43:275–287, 2005.

    Article  Google Scholar 

  27. Latif, N., P. Sarathchandra, P. S. Thomas, J. Antoniw, P. Batten, A. H. Chester, P. M. Taylor, and M. H. Yacoub. Characterization of structural and signaling molecules by human valve interstitial cells and comparison to human mesenchymal stem cells. J. Heart Valve Dis. 16:56–66, 2007.

    Google Scholar 

  28. Marron, K., M. H. Yacoub, J. M. Polak, M. N. Sheppard, D. Fagan, B. F. Whitehead, M. R. de Leval, R. H. Anderson, and J. Wharton. Innervation of human atrioventricular and arterial valves. Circulation 94:368–375, 1996.

    Google Scholar 

  29. Merryman, W. D., H. Y. Huang, F. J. Schoen, and M. S. Sacks. The effects of cellular contraction on aortic valve leaflet flexural stiffness. J. Biomech. 39:88–96, 2006.

    Article  Google Scholar 

  30. Meshel, A., Q. Wei, R. Adelstein, and M. Sheetz. Basic mechanism of three-dimensional collagen fibre transport by fibroblasts. Nat. Cell Biol. 7:157–164, 2005.

    Article  Google Scholar 

  31. Montiel, M. M. Muscular apparatus of the mitral valve in man and its involvement in left-sided cardiac hypertrophy. Am. J. Cardiol. 26:341–344, 1970.

    Article  Google Scholar 

  32. Pompilio, G., G. Rossoni, A. Sala, G. L. Polvani, F. Berti, L. Dainese, M. Porqueddu, and P. Biglioli. Endothelial-dependent dynamic and antithrombotic properties of porcine aortic and pulmonary valves. Ann. Thorac. Surg. 65:986–992, 1998.

    Article  Google Scholar 

  33. Price, L. S., J. Leng, M. A. Schwartz, and G. M. Bokoch. Activation of Rac and Cdc42 by integrins mediates cell spreading. Mol. Biol. Cell. 9:1863–1871, 1998.

    Google Scholar 

  34. Rabkin, E., M. Aikawa, J. R. Stone, Y. Fukumoto, P. Libby, and F. J. Schoen. Activated interstitial myofibroblasts express catabolic enzymes and mediate matrix remodeling in myxomatous heart valves. Circulation 104:2525–2532, 2001.

    Article  Google Scholar 

  35. Ross, R. S. The extracellular connections: the role of integrins in myocardial remodeling. J. Card. Fail. 8:S326–S331, 2002.

    Article  Google Scholar 

  36. Sacks, M. S., W. David Merryman, and D. E. Schmidt. On the biomechanics of heart valve function. J. Biomech. 42:1804–1824, 2009.

    Article  Google Scholar 

  37. Schenke-Layland, K., N. Madershahian, I. Riemann, B. Starcher, K. J. Halbhuber, K. Konig, and U. A. Stock. Impact of cryopreservation on extracellular matrix structures of heart valve leaflets. Ann. Thorac. Surg. 81:918–926, 2006.

    Article  Google Scholar 

  38. Sonnenblick, E., L. Napolitano, W. Daggett, and T. Cooper. An intrinsic neuromuscular basis for mitral valve motion in the dog. Circ. Res. 21:9–15, 1967.

    Google Scholar 

  39. Stephens, E. H., T. C. Nguyen, A. Itoh, N. B. Ingels, Jr., D. C. Miller, and K. J. Grande-Allen. The effects of mitral regurgitation alone are sufficient for leaflet remodeling. Circulation 118:S243–S249, 2008.

    Article  Google Scholar 

  40. Stephens, E. H., T. A. Timek, G. T. Daughters, J. J. Kuo, A. M. Patton, L. S. Baggett, N. B. Ingels, D. C. Miller, and K. J. Grande-Allen. Significant changes in mitral valve leaflet matrix composition and turnover with tachycardia-induced cardiomyopathy. Circulation 120:S112–S119, 2009.

    Article  Google Scholar 

  41. Sturge, J., J. Hamelin, and G. E. Jones. N-WASP activation by a beta1-integrin-dependent mechanism supports PI3K-independent chemotaxis stimulated by urokinase-type plasminogen activator. J. Cell. Sci. 115:699–711, 2002.

    Google Scholar 

  42. Swanson, J. C., L. R. Davis, K. Arata, E. P. Briones, W. Bothe, A. Itoh, N. B. Ingels, and D. C. Miller. Characterization of mitral valve anterior leaflet perfusion patterns. J. Heart Valve Dis. 18:488–495, 2009.

    Google Scholar 

  43. Tang, D. D., C. E. Turner, and S. J. Gunst. Expression of non-phosphorylatable paxillin mutants in canine tracheal smooth muscle inhibits tension development. J. Physiol. 553:21–35, 2003.

    Article  Google Scholar 

  44. Tang, D. D., W. Zhang, and S. J. Gunst. The adapter protein CrkII regulates neuronal Wiskott-Aldrich syndrome protein, actin polymerization, and tension development during contractile stimulation of smooth muscle. J. Biol. Chem. 280:23380–23389, 2005.

    Article  Google Scholar 

  45. Taylor, P., S. Allen, and M. Yacoub. Phenotypic and functional characterization of interstitial cells from human heart valves, pericardium and skin. J. Heart Valve Dis. 9:150–158, 2000.

    Google Scholar 

  46. Wang, X. Q., and W. A. Frazier. The thrombospondin receptor CD47 (IAP) modulates and associates with alpha2 beta1 integrin in vascular smooth muscle cells. Mol. Biol. Cell. 9:865–874, 1998.

    Google Scholar 

  47. Wassenaar, C., W. A. Bax, R. J. van Suylen, V. D. Vuzevski, and E. Bos. Effects of cryopreservation on contractile properties of porcine isolated aortic valve leaflets and aortic wall. J. Thorac. Cardiovasc. Surg. 113:165–172, 1997.

    Article  Google Scholar 

  48. Zamir, E., and B. Geiger. Molecular complexity and dynamics of cell-matrix adhesions. J. Cell Sci. 114:3583–3590, 2001.

    Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge all the members of the Stanford Cardiovascular Surgical Physiology Research Laboratory, especially Kathy N. Vo and Paul Chang, as well as microscopy assistance from Kitty Lee, Dr. Robert Raphael, and John Wright, and machining assistance from Dwight Dear. The authors also wish to thank Dr. L. Scott Baggett for his statistical expertise. Funding for this project came in part from an AATS Summer Internship Scholarship (EHS), as well as a Hertz Foundation Graduate Fellowship (EHS), NIH Ruth-Kirschstein (F30) National Research Service Award (EHS), and a Post-Doctoral Fellowship from the Western States Affiliate of the American Heart Association (JCS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Craig Miller.

Additional information

Associate Editor Chwee Teck Lim oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stephens, E.H., Durst, C.A., Swanson, J.C. et al. Functional Coupling of Valvular Interstitial Cells and Collagen Via α2β1 Integrins in the Mitral Leaflet. Cel. Mol. Bioeng. 3, 428–437 (2010). https://doi.org/10.1007/s12195-010-0139-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-010-0139-6

Keywords

Navigation