Skip to main content

Abstract

Although at first the extremophile organisms were only considered as scientific curiosities, their potential in the field of biotechnology is nowadays one of the main reasons for research studies. Acidophilic extremophiles have made it possible to carry out numerous advances in different fields within biotechnology and acidic extreme habitats are large sources of biodiversity and new adaptation mechanisms. In these habitats, evolution works with a special intensity. These environments are extreme, greatly selective, and confined habitats, which constitute a favorable environment for the creation of a unique type of biodiversity and specific adaptation mechanisms in which fungi play an important but poorly understood role. This chapter will review the general trends concerning the diversity and ecophysiology of extremophilic fungi, paying a special attention to acidophilic ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilera A, Manrubia SC, Gómez F, Rodriguez N, Amils R (2006) Eukaryotic community distribution and their relationship to water physicochemical parameters in an extreme acidic environment, Río Tinto (SW, Spain). Appl Environ Microbiol 72:5325–5330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aguilera A, Zettler E, Gomez F, Amaral-Zettler L, Rodrıguez N, Amilsa R (2007a) Distribution and seasonal variability in the benthic eukaryotic community of Río Tinto (SW, Spain), an acidic, high metal extreme environment. Syst Appl Microbiol 30:531–546

    Article  CAS  PubMed  Google Scholar 

  • Aguilera A, Souza-Egipsy V, Gomez F, Amils R (2007b) Development and structure of eukaryotic biofilms in an extreme acidic environment, Río Tinto (SW, Spain). Microb Ecol 53:294–305

    Article  PubMed  Google Scholar 

  • Aguilera A, Souza-Egipsy V, San Martín-Úriz P, Amils R (2008) Extracellular matrix assembly in extreme acidic eukaryotic biofilms and their possible implications in heavy metal adsorption. Aquat Toxicol 88:257–266

    Article  CAS  PubMed  Google Scholar 

  • Aguilera A, Souza-Egipsy V, González-Toril E, Rendueles O, Amils R (2010) Eukaryotic microbial diversity of phototrophic microbial mats in two icelandic geothermal hot Springs. Int Microbiol 13:29–40

    Google Scholar 

  • Amaral-Zettler L, Gomez F, Zettler E, Keenan B, Amils R, Sogin M (2002) Eukaryotic diversity in Spain’s river of fire. Nature 417:137

    Article  CAS  PubMed  Google Scholar 

  • Antranikian G, Suleiman M, Schäfers C, Adams MW, Bartolucci S (2017) Diversity of bacteria and archaea from two shallow marine hydrothermal vents from Vulcano Island. Extremophiles 21:733–742

    Article  PubMed  Google Scholar 

  • Armstrong GM (1921) Studies in the physiology of the fungi-sulfur nutrition, the use of thiosulphate as influenced by hydrogen ion concentration. Ann Missouri Bot Garden 8:237–248

    Article  CAS  Google Scholar 

  • Auld R, Mykytczuk N, Leduc L, Merritt T (2016) Seasonal variation in an acid mine drainage microbial community. Can J Microbiol 63:137–152

    Article  PubMed  CAS  Google Scholar 

  • Baker BJ, Lutz MA, Dawson SC, Bond PL, Banfield JF (2004) Metabolically active eukaryotic communities in extremely acidic mine drainage. Appl Environ Microbiol 70:6264–6271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker BJ, Tyson GW, Goosherst L, Banfield JF (2009) Insights into the diversity of eukaryotes in acid mine drainage biofilm communities. Appl Environ Microbiol 75:2192–2199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker-Austin C, Dopson M (2007) Life in acid: pH homeostasis in acidophiles. Trends Microbiol 15:165–171

    Article  CAS  PubMed  Google Scholar 

  • Bakermans C, Skidmore ML, Douglas S, McKay CP (2014) Molecular characterization of bacteria from permafrost of the Taylor Valley, Antarctica. FEMS Microbiol Ecol 89:331–346

    Article  CAS  PubMed  Google Scholar 

  • Bowman N, Patel P, Sanchez S, Xu W, Alsaffar A, Tiquia-Arashiro SM (2018) Lead-resistant bacteria from Saint Clair River sediments and Pb removal in aqueous solutions. Appl Microbiol Biotechnol 102:2391–2398

    Article  CAS  PubMed  Google Scholar 

  • Brake SS, Hasiotis ST (2010) Eukaryote-dominated biofilms and their significance in acidic environments. Geomicrobiol J 27:534–558

    Article  Google Scholar 

  • Brock T (1978) Thermophilic microorganisms and life at high temperatures. Springer-Verlag, New York, NY, p 432

    Book  Google Scholar 

  • Brown MT, Hall IR (1990) Metal tolerance in fungi. In: Shaw J (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Boca Raton, FL, pp 95–104

    Google Scholar 

  • Butinar L, Sonjak S, Zalar P, Plemenitas A, Cimerman NG (2005) Melanized halophilic fungi are eukaryotic members of microbial communities in hypersaline waters of solar salterns. Bot Mar 48:73–79

    Article  Google Scholar 

  • Caron DA, Countway PD, Brown MV (2004) The growing contributions of molecular biology and immunology to protistan ecology: molecular signatures as ecological tools. J Eukaryot Microbiol 51:38–48

    Article  CAS  PubMed  Google Scholar 

  • Casamayor EO, Massana R, Benlloch S, Ovreas L, Díez B, Goddard VJ, Gasol JM, Joint I, Rodríguez F, Pedrós-Alió C (2002) Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environ Microbiol 4:338–348

    Article  PubMed  Google Scholar 

  • Chin JP, Megaw J, Magill CL, Nowotarski K, Williams JP, Bhaganna P (2010) Solutes determine the temperature windows for microbial survival and growth. Proc Natl Acad Sci U S A 107:7835–7840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooke WB (1976) Fungi in and near streams carrying acid mine-drainage. Ohio J Sci 76:231–240

    Google Scholar 

  • Corsaro D, Walochnik J, Venditti D, Steinmann J, Müller KD, Michel R (2014) Microsporidia-like parasites of amoebae belong to the early fungal lineage Rozellomycota. Parasitol Res 113:1909–1918

    Article  PubMed  Google Scholar 

  • Das BK, Roy A, Koschorreck M, Mandal SM, Wendt-Potthoff K, Bhattacharya J (2009) Occurrence and role of algae and fungi in acid mine drainage environment with special reference to metals and sulfate Immobilization. Water Res 43:883–894

    Article  CAS  PubMed  Google Scholar 

  • De Hoog GS, Zalar P, Urzı C, de Leo F, Yurlova NA, Sterflinger K (1999) Relationships of dothideaceous black yeasts and meristematic fungi based on 5.8S and ITS2 rDNA sequence comparison. Stud Mycol 43:31–37

    Google Scholar 

  • De Hoog GS, Göttlich E, Platas G, Genilloud O, Leotta G, van Brummelen J (2005) Evolution, taxonomy and ecology of the genus Thelebolus in Antarctica. Stud Mycol 51:33–76

    Google Scholar 

  • De Lima Alves F, Stevenson A, Baxter E, Gillion JL, Hejazi F, Hayes S (2015) Concomitant osmotic and chaotropicity-induced stresses in Aspergillus wentii: compatible solutes determine the biotic window. Curr Genet 61:457–477

    Article  PubMed  CAS  Google Scholar 

  • De Maayer P, Anderson D, Cary C, Cowan DA (2014) Some like it cold: understanding the survival strategies of psychrophiles. EMBO Rep 15:508–517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duran C, Marín I, Amils R (1999a) Specific metal sequestering acidophilic fungi. Process Metallurgy 9:521–530

    Article  Google Scholar 

  • Duran C, Marín I, Amils R (1999b) Specific metal sequestering acidophilic fungi. In: Amils R, Ballester A (eds) Biohydrometallurgy and the environment toward the mining of the 21st century, vol B. Elsevier, Amsterdam, pp 521–530

    Google Scholar 

  • Gad GM, Griffiths AJ (1978) Microorganisms and heavy metal toxicity. Microb Ecol 4:303–317

    Article  Google Scholar 

  • Gadanho M, Sampaio JP (2006) Microeukaryotic diversity in the extreme environments of the Iberian Pyrite Belt: a comparison between universal and fungi-specific primer sets, temperature gradient gel electrophoresis and cloning. FEMS Microbiol Ecol 57:139–148

    Article  CAS  PubMed  Google Scholar 

  • Gadanho M, Sampaio JP (2009) Cryptococcus ibericus sp. nov., Cryptococcus aciditolerans sp. nov. and Cryptococcus metallitolerans sp. nov., a new ecoclade of anamorphic basidiomycetous yeast species from an extreme environment associated with acid rock drainage in Sao Domingos pyrite mine, Portugal. Int J Syst Evol Microbiol 59:2375–2379

    Article  CAS  PubMed  Google Scholar 

  • Gadanho M, Libkind D, Sampaio JP (2006) Yeast diversity in the extreme acidic environments of the Iberian Pyrite Belt. Microb Ecol 2:552–563

    Article  Google Scholar 

  • Gadd GM (1993) Interactions of fungi with toxic metals. New Phytol 124:25–60

    Article  CAS  Google Scholar 

  • Gadd GM (2008) Bacterial and fungal geomicrobiology: a problem with communities? Geobiology 6:278–284

    Article  CAS  PubMed  Google Scholar 

  • González-Toril E, Llobet-Brossa E, Casamayor EO, Amann R, Amils R (2003) Microbial ecology of an extreme acidic environment, the Tinto River. Appl Environ Microbiol 69:4853–4865

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • González-Toril E, Santofimia E, Blanco Y, López-Pamo E, Gómez MJ, Bobadilla M, Cruz R, Palomino EJ, Aguilera A (2015) Pyrosequencing-based assessment of the microbial community structure of Pastoruri Glacier area (Huascarán Park, Perú), a natural extreme acidic environment. Microb Ecol 70:936–947

    Article  PubMed  CAS  Google Scholar 

  • Gostincar C, Grube M, De Hoog S, Zalar P, Gunde-Cimerman N (2010) Extremotolerance in fungi: evolution on the edge. FEMS Microbiol Ecol 71:2–11

    Article  CAS  PubMed  Google Scholar 

  • Grant WD (2004) Life at low water activity. Philos Trans R Soc Lond B 359:1249–1267

    Article  CAS  Google Scholar 

  • Gross S, Robbins EI (2000) Acidophilic and acid-tolerant fungi and yeasts. Hydrobiologia 433:91–109

    Article  Google Scholar 

  • Gunde-Cimerman N, Zalar P, De Hoog GS, Plemenitas A (2000) Hypersaline waters in salterns – natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol 32:235–240

    CAS  Google Scholar 

  • Gunde-Cimerman N, Sonjak S, Zalar P, Frisvad JC, Diderichsen B, Plemenitas A (2003) Extremophilic fungi in Arctic ice: a relationship between adaptation to low temperature and water activity. Phys Chem Earth 28:1273–1278

    Article  Google Scholar 

  • Gunde-Cimerman N, Frisvad JC, Zalar P, Plemenitas A (2005a) Halotolerant and halophilic fungi. In: Deshmukh SK, Rai MK (eds) Biodiversity of fungi: their role in human life. Oxford and IBH Publishing Co. Pvt. Ltd, New Delhi, pp 69–127

    Google Scholar 

  • Gunde-Cimerman N, Oren A, Plemenitas A (2005b) Adaptation to Life in High Salt Concentrations in Archaea, Bacteria, and Eukarya. Springer, Dordrecht, p 233

    Book  Google Scholar 

  • Johnson DB (1998) Biodiversity and ecology of acidophilic microorganisms. FEMS Microb Ecol 27:307–317

    Article  CAS  Google Scholar 

  • Johnson DB (2009) Extremophiles: acid environments. In: Schaechter M (ed) Encyclopaedia of microbiology. Elsevier, Oxford, pp 107–126

    Chapter  Google Scholar 

  • Johnson BD, Aguilera A (2016) Environmental microbiology in acidophilic environments. In: Manual of environmental microbiology, 4th edn. (MEM4). ASM Press, Washington, DC, pp 34–47

    Google Scholar 

  • Kambura AK, Mwirichia RK, Kasili RW, Karanja EN, Makonde HM, Boga HI (2016) Bacteria and Archaea diversity within the hot springs of Lake Magadi and Little Magadi in Kenya. BMC Microbiol 16:136

    Article  PubMed  PubMed Central  Google Scholar 

  • Kogej T, Wheeler MH, Lanisnik Rizner T, Gunde-Cimerman N (2004) Evidence for 1,8-dihydroxynaphthalene melanin in three halophilic black yeasts grown under saline and nonsaline conditions. FEMS Microbiol Lett 232:203–209

    Article  CAS  PubMed  Google Scholar 

  • Kogej T, Ramos J, Plemenitas A, Gunde-Cimerman N (2005) The halophilic fungus Hortaea werneckii and the halotolerant fungus Aureobasidium pullulans maintain low intracellular cation concentrations in hypersaline environments. Appl Environ Microbiol 71:6600–6605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kogej T, Gostincar C, Volkmann M, Gorbushina AA, Gunde-Cimerman N (2006) Mycosporines in extremophilic fungi – novel complementary osmolytes? Environ Chem 3:105–110

    Article  CAS  Google Scholar 

  • Krüger A, Schäfers C, Schröder C, Antranikian G (2018) Towards a sustainable biobased industry: highlighting the impact of extremophiles. New Biotechnol 40:144–153

    Article  CAS  Google Scholar 

  • Leong SL, Pettersson OV, Rice T, Hocking AD, Schnürer J (2011) The extreme xerophilic mould Xeromyces bisporus – growth and competition at various water activities. Int J Food Microbiol 145:57–63

    Article  PubMed  Google Scholar 

  • Leong SL, Lantz H, Pettersson OV, Frisvad JC, Thrane U, Heipieper HJ, Dijksterhuis J, Grabherr M, Pettersson M, Tellgren-Roth C, Schnürer J (2015) Genome and physiology of the ascomycete filamentous fungus Xeromyces bisporus, the most xerophilic organism isolated to date. Environ Microbiol 17:496–513

    Article  CAS  PubMed  Google Scholar 

  • Lopatina A, Krylenkov V, Severinov K (2013) Activity and bacterial diversity of snow around Russian Antarctic stations. Res Microbiol 164:949–958

    Article  PubMed  Google Scholar 

  • Ma Y, Galinski EA, Grant WD, Oren A, Ventosa A (2010) Halophiles 2010: life in saline environments. Appl Environ Microbiol 76:6971–6981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magan N (2007) Fungi in extreme environments. In: Magan N (ed) Mycota: environmental and microbial relationships, vol 4. Elsevier, Amsterdam, pp 4–85

    Google Scholar 

  • Masquelier S, Lepe C, Domaizon I, Curie M, Lepère C, Masquelier S (2010) Vertical structure of small eukaryotes in three lakes that differ by their trophic status: a quantitative approach. ISME J 4:1509–1519

    Article  PubMed  Google Scholar 

  • Mehra RK, Winge DR (1991) Metal ion resistance in fungi: molecular mechanisms and their regulated expression. J Cell Biochem 45:30–40

    Article  CAS  PubMed  Google Scholar 

  • Méndez-García C, Peláez AI, Mesa V, Sánchez J, GolyshinaOV FM (2015) Microbial diversity and metabolic networks in acid mine drainage habitats. Front Microbiol 6:475

    PubMed  PubMed Central  Google Scholar 

  • Mesa V, Gallego JL, González-Gil R, Lauga B, Sánchez J, Méndez-García C, Peláez AI (2017) Bacterial, archaeal, and eukaryotic diversity across distinct microhabitats in an acid mine drainage. Front Microbiol 8:1756

    Article  PubMed  PubMed Central  Google Scholar 

  • Nazareth S, Gonsalves V (2014) Aspergillus penicillioides – a true halophile existing in hypersaline and polyhaline econiches. Front Microbiol 5:412

    Article  PubMed  PubMed Central  Google Scholar 

  • Oggerin M, Rodríguez M, del Moral C, Amils R (2014) Fungal jarosite biomineralization in Río Tinto. Res Microbiol 165:719–725

    Article  CAS  PubMed  Google Scholar 

  • Orandi S, Yaghubpur A, Sahraei H (2007) Influence of AMD on aquatic life at Sar Cheshmeh copper mine. Abstract Goldschmidt Conference, Cologne, August 2007

    Google Scholar 

  • Oren A (2002) Halophilic microorganisms and their environments. Kluwer Academic Publishers, Dordrecht, p 575

    Book  Google Scholar 

  • Ottow JGG, von Klopotek A (1969) Enzymatic reduction of iron oxide by fungi. Appl Microbiol 18:41–43

    CAS  PubMed  PubMed Central  Google Scholar 

  • Petrovic U, Gunde-Cimerman N, Plemenitas A (2002) Cellular responses to environmental salinity in the halophilic black yeast Hortaea werneckii. Mol Microbiol 45:665–672

    Article  CAS  PubMed  Google Scholar 

  • Pitt JI, Hocking AD (2009) Fungi and food spoilage, 3rd edn. Springer, Dordrecht, p 366

    Book  Google Scholar 

  • Plemenitas A, Vaupotic T, Lenassi M, Kogej T, Gunde-Cimerman N (2008) Adaptation of extremely halotolerant black yeast Hortaea werneckii to increased osmolarity: a molecular perspective at a glance. Stud Mycol 61:67–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ragon M, Fontaine MC, Moreira D, López-García P (2012) Different biogeographic patterns of prokaryotes and microbial eukaryotes in epilithic biofilms. Mol Ecol 21:3852–3868

    Article  PubMed  Google Scholar 

  • Roberts DML (1999) Eukaryotic cells under extreme conditions. In: Seckbach J (ed) Enigmatic microorganisms and life in extreme environments. Kluwer Academic Publishers, London, pp 165–173

    Google Scholar 

  • Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101

    Article  CAS  PubMed  Google Scholar 

  • Russo G, Libkind D, Sampaio JP, VanBrock MR (2008) Yeast diversity in the acidic Río Agrio-Lake Caviahue volcanic environment (Patagonia, Argentina). FEMS Microbiol Ecol 65:415–424

    Article  CAS  PubMed  Google Scholar 

  • Schleper C, Pühler G, Kühlmorgen B, Zillig W (1995) Life at extremely low pH. Nature 375:741–742

    Article  CAS  PubMed  Google Scholar 

  • Schulze-Makuch D, Airo A, Schirmack J (2017) The adaptability of life on Earth and the diversity of planetary habitats. Front Microbiol 8:2011

    Article  PubMed  PubMed Central  Google Scholar 

  • Seckbach J (1994) Evolutionary pathways and enigmatic algae: Cyanidium caldarium (Rhodophyta) and related cells. In: Developments in hydrobiology, vol 91. Kluwer Academic Publishers, Dordrecht, p 349

    Google Scholar 

  • Shiomi N, Yasuda T, Inoue Y, Kusumoto N, Iwasaki S, Katsuda T, Katoh S (2004) Characteristics of neutralization of acids by newly isolated fungal cells. Journal of Bioscience and Bioengineering 97(1):54–58

    Article  CAS  PubMed  Google Scholar 

  • Siefert J, Mutz M (2001) Processing of leaf litter in acid waters of the post-mining landscape in Lusatia, Germany. Ecol Eng 17:297–306

    Article  Google Scholar 

  • Skorupa DJ, Reeb V, Castenholz RW, Bhattacharya D, McDermott TR (2013) Cyanidiales diversity in Yellowstone National Park. Lett Appl Microbiol 57:459–466

    Article  CAS  PubMed  Google Scholar 

  • Sletten O, Skinner CE (1948) Fungi capable of growing in strongly acid media and in concentrated copper sulfate solutions. J Bacteriol 56:679–681

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sonjak S, Frisvad JC, Gunde-Cimerman N (2007a) Genetic variation among Penicillium crustosum isolates from the arctic and other ecological niches. Microb Ecol 54:298–305

    Article  CAS  PubMed  Google Scholar 

  • Sonjak S, Ursic V, Frisvad JC, Gunde-Cimerman N (2007b) Penicillium svalbardense, a new species from Arctic glacial ice. Antonie Van Leeuwenhoek 92:43–51

    Article  CAS  PubMed  Google Scholar 

  • Sonjak S, Frisvad JC, Gunde-Cimerman N (2009) Fingerprinting using extrolite profiles and physiological data shows sub-specific groupings of Penicillium crustosum strains. Mycol Res 113:836–841

    Article  PubMed  Google Scholar 

  • Sterflinger K, De Hoog GS, Haase G (1999) Phylogeny and ecology of meristematic ascomycetes. Stud Mycol 43:5–22

    Google Scholar 

  • Stevenson A, Cray JA, Williams JP, Santos R, Sahay R, Neuenkirchen N (2015a) Is there a common water-activity limit for the three domains of life? ISME J 9:1333–1351

    Article  CAS  PubMed  Google Scholar 

  • Stevenson A, Burkhardt J, Cockell CS, Cray JA, Dijksterhuis J, Fox-Powell M (2015b) Multiplication of microbes below 0.690 water activity: implications for terrestrial and extraterrestrial life. Environ Microbiol 2:257–277

    Article  Google Scholar 

  • Stokes PM, Lindsay JE (1979) Copper tolerance and accumulation in Penicillium ochro-chloron isolated from copper-plating solution. Mycologia 71:796–806

    Article  CAS  Google Scholar 

  • Starkey RL, Waksman SA (1943) Arthur Trautmein Henrici. J Bacteriol 46:i2-490

    Google Scholar 

  • Tatsuyama K, Egawa H, Senmaru H, Yamamoto H, Ishioka S, Tamatsukuri T, Saito K (1975) Penicillium lilacinum: its tolerance to cadmium. Experientia 31:1037–1038

    Article  CAS  Google Scholar 

  • Tiquia SM, Mormile M (2010) Extremophiles–A source of innovation for industrial and environmental applications. Environ Technol 31(8–9):823

    Article  CAS  PubMed  Google Scholar 

  • Tiquia-Arashiro SM (2014) Thermophilic carboxydotrophs and their biotechnological applications. In: Springerbriefs in microbiology: extremophilic microorganisms, vol 131. Springer, New York

    Google Scholar 

  • Tiquia-Arashiro SM (2018) Lead absorption mechanisms in bacteria as strategies for lead bioremediation. Appl Microbiol Biotechnol 102:5437–5444

    Article  CAS  PubMed  Google Scholar 

  • Tiquia-Arashiro SM, Rodrigues D (2016) Alkaliphiles and acidophiles in nanotechnology. In: Extremophiles: applications in nanotechnology. Springer, New York, pp 129–162

    Chapter  Google Scholar 

  • Turk M, Plemenitas A (2002) The HOG pathway in the halophilic black yeast Hortaea werneckii: isolation of the HOG1 homologue gene and activation of HwHog1p. FEMS Microbiol Lett 216:193–199

    Article  CAS  PubMed  Google Scholar 

  • Turk M, Mejanelle L, Sentjurc M, Grimalt JO, Gunde-Cimerman N, Plemenitas A (2004) Salt-induced changes in lipid composition and membrane fluidity of halophilic yeast-like melanized fungi. Extremophiles 8:53–61

    Article  CAS  PubMed  Google Scholar 

  • Turk M, Abramovic Z, Plemenitas A, Gunde-Cimerman N (2007) Salt stress and plasma-membrane fluidity in selected extremophilic yeasts and yeast-like fungi. FEMS Yeast Res 7:550–557

    Article  CAS  PubMed  Google Scholar 

  • Vaupotic T, Plemenitas A (2007) Differential gene expression and Hog1 interaction with osmoresponsive genes in the extremely halotolerant black yeast Hortaea werneckii. BMC Genomics 8:280–295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vera M, Schippers A, Sand W (2013) Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation – Part A. Appl Microbiol Biotechnol 97:7529–7541

    Article  CAS  PubMed  Google Scholar 

  • Volant A, Héry M, Desoeuvre A, Casiot C, Morin G, Bertin PN (2016) Spatial distribution of eukaryotic communities using high-throughput sequencing along a pollution gradient in the arsenic-rich creek sediments of carnoulès mine, France. Microb Ecol 72:608–620

    Article  CAS  PubMed  Google Scholar 

  • Wicklow D, Malloch D (1971) Studies in the genus Thelebolus temperature optima for growth and ascocarp development. Mycologia 63:118–131

    Article  Google Scholar 

  • Williams JP, Hallsworth JE (2009) Limits of life in hostile environments: no barriers to biosphere function? Environ Microbiol 11:3292–3308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang XY, Zhang Y, Xu XY, Qi SH (2013) Diverse deep-sea fungi from the South China Sea and their antimicrobial activity. Curr Microbiol 67:525–530

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funding was provided by the Spanish Ministry of Economy and Competitivity (MINECO) under Grant No. CGL2015-69758.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angeles Aguilera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aguilera, A., González-Toril, E. (2019). Eukaryotic Life in Extreme Environments: Acidophilic Fungi. In: Tiquia-Arashiro, S., Grube, M. (eds) Fungi in Extreme Environments: Ecological Role and Biotechnological Significance. Springer, Cham. https://doi.org/10.1007/978-3-030-19030-9_2

Download citation

Publish with us

Policies and ethics