Skip to main content

Synthesis of Metallic Nanoparticles by Halotolerant Fungi

  • Chapter
  • First Online:
Fungi in Extreme Environments: Ecological Role and Biotechnological Significance

Abstract

The field of nanotechnology is an immensely developing field because of its wide-ranging applications in different areas of science and technology. An important area of research in nanotechnology is the synthesis of nanoparticles by microorganisms. Although chemical methods can produce larger quantities of nanoparticles with a defined size and shape in a relatively short time, they are complicated, outdated, costly, and inefficient and produce hazardous toxic waste that are harmful not only to the environment, but also to human health. Halotolerant microorganisms represent a valuable resource of enzymes with stability in harsh conditions of pH or/and ionic strength. In this chapter, the ability of halotolerant fungi to produce nanoparticles is discussed along with the mechanisms of nanomaterial fabrication and their potential applications. To date, nanoparticle-producing halotolerant fungi synthesize mostly silver nanoparticles, followed by gold. Very few are capable of synthesizing cadmium, lead, or zinc nanoparticles. While biologically active products from halotolerant fungi represent excellent scaffolds for this purpose, there is a need to understand the mechanisms involved in the synthetic process. Another limitation of the current studies is that the experiments are conducted at laboratory scale and there are hardly any efforts on the scale-up of these processes. These shortcomings need to be addressed to harness the actual nanoparticle synthetic potential of the halotolerant to their full extent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Hafez SII, Maubasher AH, Abdel-Fattah HM (1978) Cellulose decomposing fungi of salt marshes in Egypt. Folia Microbiol 23:3744

    Article  Google Scholar 

  • Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry M (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J Am Chem Soc 124:12108–12109

    Article  CAS  PubMed  Google Scholar 

  • Anil Kumar S, Abyaneh MK, Gosavi SW, Kulkarni SK, Pasricha R, Ahmad A, Khan MI (2007) Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett 29:439–445

    Article  CAS  PubMed  Google Scholar 

  • Apte M, Girme G, Nair R, Bankar A, Kumar AR, Zinjarde S (2013a) Melanin mediated synthesis of gold nanoparticles by Yarrowia lipolytica. Mater Lett 95:149–152

    Article  CAS  Google Scholar 

  • Apte M, Sambre D, Gaikawad S, Joshi S, Bankar A, Kumar AR, Zinjarde S (2013b) Psychrotrophic yeast Yarrowia lipolytica NCYC 789 mediates the synthesis of antimicrobial silver nanoparticles via cell-associated melanin. AMB Express 3:32. https://doi.org/10.1186/2191-0855-3-32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asmathunisha N, Kathiresan K (2013) A review on biosynthesis of nanoparticles by marine organisms. Colloids Surf B Biointerfaces 103:283–287

    Article  CAS  PubMed  Google Scholar 

  • Bai HJ, Zhang ZM (2009) Microbial synthesis of semiconductor lead sulfide nanoparticles usingimmobilized Rhodobacter sphaeroides. Mater Lett 63:764–766

    Article  CAS  Google Scholar 

  • Bankar AV, Kumar AR, Zinjarde SS (2009) Environmental and industrial applications of Yarrowia lipolytica. Appl Microbiol Biotechnol 84:847–865

    Article  CAS  PubMed  Google Scholar 

  • Baxter BK, Litchfield CD, Sowers K, Griffith JD, Dassarma PA, Dassarma S (2005) Microbial diversity of Great Salt Lake. In: Gunde-Cimerman N, Oren A, PlemenitaÅ¡ A (eds) Adaptation to life at high salt concentrations in Archaea, Bacteria, and Eukarya, Cellular origin, life in extreme habitats and astrobiology, vol 9. Springer, Dordrecht, pp 9–25

    Chapter  Google Scholar 

  • Bodaker I, Sharon I, Suzuki MT, Reingersch R, Shmoish M, Andreishcheva E, Sogin ML, Rosenberg M, Belkin S, Oren A, Béjà O (2010) The dying Dead Sea: comparative community genomics in an increasingly extreme environment. ISME J 4:399–407

    Article  PubMed  Google Scholar 

  • Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38:1759–1782

    Article  CAS  PubMed  Google Scholar 

  • Boroumand Moghaddam AB, Moniri M, Azizi S, Rahim RA, Ariff AB, Saad WZ, Namvar F, Navaderi M, Mohamad R (2017) Biosynthesis of ZnO nanoparticles by a new Pichia kudriavzevii yeast strain and evaluation of their antimicrobial and antioxidant activities. Molecules 22(6):872. https://doi.org/10.3390/molecules22060872

    Article  CAS  PubMed Central  Google Scholar 

  • Buchalo AS, Nevo E, Wasser SP, Oren A, Molitoris HP (1998) Fungal life in the extremely hypersaline water of the Dead Sea: first records. Proc R Soc Lond 265:1461–1465

    Article  CAS  Google Scholar 

  • Butinar L, Sonjak S, Zalar P, Plemenitas A, Gunde-Cimerman N (2005) Melanized halophilic fungi are eukaryotic members of microbial communities in hypersaline waters of solar salterns. Bot Mar 48:73–79

    Article  Google Scholar 

  • Cai F, Chen FY, Tang YB (2014) Isolation, identification of a halotolerant acid red B degrading strain and its decolorization performance. APCBEE Proc 9:131–139

    Article  CAS  Google Scholar 

  • Cantrell SA, Casillas-Martinez L, Molina M (2006) Characterization of fungi from hypersaline environments of solar salterns using morphological and molecular techniques. Mycol Res 110:962–970

    Article  CAS  PubMed  Google Scholar 

  • Chen YL, Tuan HY, Tien CW, Lo WH, Liang HC, Hu YC (2009) Augmented biosynthesis of cadmium sulfide nanoparticles by genetically engineered Escherichia coli. Biotechnol Prog 25:1260–1266

    Article  CAS  PubMed  Google Scholar 

  • Chernousova S, Epple M (2013) Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed 52:1636–1653

    Article  CAS  Google Scholar 

  • Dameron CT, Reese RN, Mehra RK, Kortan AR, Carroll PJ, Steigerwald ML, Brus LE, Wingeet DR (1989) Biosynthesis of cadmium-sulfide quantum semiconductor crystallites. Nature 338:596–597

    Article  CAS  Google Scholar 

  • De Hoog GS, Zalar P, van den Ende BG, Gunde-Cimerman N (2005) Relation of human pathogenicity in the fungal tree of life: an overview of ecology and evolution under stress. In: Gunde-Cimerman N, Oren A, PlemenitaÅ¡ A (eds) Adaptation to life at high salt concentrations in Archaea, Bacteria and Eukarya. Springer, Dordrecht, pp 397–423

    Google Scholar 

  • Deepa K, Panda T (2014) Synthesis of gold nanoparticles from different cellular fractions of Fusarium oxysporum. J Nanosci Nanotechnol 14:3455–3463

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Munoz G, Montalvo-Rodriguez R (2005) Halophilic black yeasts Hortaea wernekii in the Cabo Rojo Solar Salterns: its first record for this extreme environment in Puerto Rico. Caribb J Sci 41:360–365

    Google Scholar 

  • Girard V, Dieryckx C, Job C, Job D (2013) Secretomes: the fungal strike force. Proteomics 13:597–608

    Article  CAS  PubMed  Google Scholar 

  • Gonsalves V, Nayak S, Nazareth S (2012) Halophilic fungi in a polyhaline estuarine habitat. J Yeast Fungal Res 3:30–36

    Google Scholar 

  • Gunde-Cimerman N, Zalar P, de Hoog GS, Plemenitasˇ A (2000) Hypersaline waters in salterns: natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol 32:235–240

    CAS  Google Scholar 

  • Gunde-Cimerman N, Butinar L, Sonjak S, Turk M, UrÅ¡ic V, Zalar P, PlemenitaÅ¡ A (2005) Halotolerant and halophilic fungi from coastal environments in the Arctics. In: Gunde-Cimerman N, Oren A, PlemenitaÅ¡ A (eds) Adaptation to life at high salt concentrations in Archaea, Bacteria and Eukarya. Springer, Dordrecht, pp 397–423

    Chapter  Google Scholar 

  • Gunde-Cimerman N, Ramos J, Plemenitas A (2009) Halotolerant and halophilic fungi. Mycol Res 113:1231–1241

    Article  CAS  PubMed  Google Scholar 

  • Hujslova M, Kubatova A, Chudickova M, Kolarik M (2010) Diversity of fungal communities in saline and acidic soils in the Soos National Natural Reserve, Czech Republic. Mycol Prog 9:1–15

    Article  Google Scholar 

  • Jain N, Bhargava A, Majumdar S, Tarafdar JC, Panwar J (2011) Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective. Nanoscale 3:635–641

    Article  CAS  PubMed  Google Scholar 

  • Jayaseelan C, Rahuman AA, Kirthi AV, Marimuthu S, Santhoshkumar T, Bagavan A, Gaurav K, Karthik L, Rao KV (2012) Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim Acta A Mol Biomol Spectrosc 90:78–84

    Article  CAS  PubMed  Google Scholar 

  • Jiang L, Li X, Liu L, Zhang Q (2013) Thiolated chitosan-modified PLA-PCLTPGS nanoparticles for oral chemotherapy of lung cancer. Nanoscale Res Lett 8:1–11

    Article  CAS  Google Scholar 

  • Jones BE, Grant WD (1999) Microbial diversity and ecology of the Soda Lakes of East Africa. In: Bell CR, Brylinsky M, Johnson-Green P (eds) Proceedings of the 8th international symposium on microbial ecology. Atlantic Canada Society for Microbial Ecology, Halifax, 7 p

    Google Scholar 

  • Kathiresan K, Manivannan S, Nabeel MA, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf B Biointerfaces 71:133–137

    Article  CAS  PubMed  Google Scholar 

  • Kirkland BH, Keyhani NO (2011) Expression and purification of a functionally active class I fungal hydrophobin from the entomopathogenic fungus Beauveria bassiana in Escherichia coli. J Ind Microbiol Biotechnol 38:327–335

    Article  CAS  PubMed  Google Scholar 

  • Kis-Papo T, Grishkan I, Gunde-Cimerman N, Oren A, Wasser SP, Nevo E (2003a) Spatiotemporal patterns of filamentous fungi in the hypersaline Dead Sea. In: Nevo E, Oren A, Wasser SP (eds) Fungal life in the Dead Sea. Gantner Verlag, Ruggel, pp 271–292

    Google Scholar 

  • Kis-Papo T, Oren A, Wasser SP, Nevo E (2003b) Survival of filamentous fungi in hypersaline Dead Sea water. Microb Ecol 45:183–190

    Article  CAS  PubMed  Google Scholar 

  • Kowshik M, Deshmukh N, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2002a) Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnol Bioeng 78:583–588

    Article  CAS  PubMed  Google Scholar 

  • Kowshik M, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2002b) Microbial synthesis of semiconductor PbS nanocrystallites. Adv Mater 14:815–818

    Article  CAS  Google Scholar 

  • Li WR, Xie XB, Shi QS, Zeng HY, Ou-Yang YS, Chen YB (2010) Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 8:1115–1122

    Article  CAS  Google Scholar 

  • Li CY, Zhang YJ, Wang M, Zhang Y, Chen G, Li L, Wu D, Wang Q (2014) In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window. Biomaterials 35:393–400

    Article  CAS  PubMed  Google Scholar 

  • Ma RM, Wei XL, Dai L, Huo HB, Qin GG (2007) Synthesis of CdS nanowire networks and their optical and electrical properties. Nanotechnology 18:1–5

    Google Scholar 

  • Ma H, Hsiao BS, Chu B (2012) Ultrafine cellulose nanofibers as efficient adsorbents for theremoval of UO22+ in water. ACS Macro Lett 1:213–316

    Article  CAS  PubMed  Google Scholar 

  • Manivannan S, Alikunhi NM, Kandasamy K (2010) In vitro synthesis of silver nanoparticles by marine yeasts from coastal mangrove sediment. Adv Sci Lett 3:1–6

    Article  CAS  Google Scholar 

  • Margesin R, Schinner F (2001) Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5:73–83

    Article  CAS  PubMed  Google Scholar 

  • McKindles K, Tiquia-Arashiro SM (2012) Functional gene arrays for analysis of microbial communities on ocean platform. In: Tiquia-Arahiro SM (ed) Molecular biological technologies for ocean sensing. Humana Press, Totowa, NJ, Chap. 9, 169–701 p

    Google Scholar 

  • McKnight TE, Melechko AV, Griffin GD, Guillorn MA, Merkulov VI, Serna F, Hensley DK, Doktycz MJ, Lowndes DH, Simpson ML (2003) Intracellular integration of synthetic nanostructures with viable cells for controlled biochemical manipulation. Nanotechnology 14:551–556

    Article  CAS  Google Scholar 

  • Mohite P, Apte M, Kumar AR, Zinjarde S (2016) Biogenic nanoparticles from Schwanniomyces occidentalis NCIM 3459: mechanistic aspects and catalytic applications. App Biochem Biotechnol 179:583–596

    Article  CAS  Google Scholar 

  • Mohite P, Kumar AR, Zinjarde S (2017) Relationship between salt tolerance and nanoparticle synthesis by Williopsis saturnus NCIM 3298. World J Microbiol Biotechnol 33:163

    Article  PubMed  CAS  Google Scholar 

  • Muller A, Ni Z, Hessler N, Wesarg F, Muller FA, Kralisch D, Fischer D (2013) The biopolymer bacterial nanocellulose as drug delivery system: investigation of drug loading and release using the model protein albumin. J Pharm Sci 102:579–592

    Article  PubMed  CAS  Google Scholar 

  • Nair V, Sambre D, Joshi S, Bankar A, Kumar AR, Zinjarde S (2013) Yeast-derived melanin mediated synthesis of gold nanoparticles. J Bionanosci 7:159–168

    Article  CAS  Google Scholar 

  • Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci 156:1–13

    Article  CAS  PubMed  Google Scholar 

  • Nayak S, Gonsalves V, Nazareth S (2012) Isolation and salt tolerance of halophilic fungi from mangroves and solar salterns in Goa–India. Indian J Mar Sci 41:164–172

    CAS  Google Scholar 

  • Nazareth S, Gonsalves V, Nayak S (2012) A first record of obligate halophilic aspergilli from the Dead Sea. Indian J Microbiol 52:22–27

    Article  PubMed  Google Scholar 

  • Nina Gunde-Cimerman N, Zalar P (2014) Extremely halotolerant and halophilic fungi inhabit brine in solar salterns around the globe. Food Technol Biotechnol 52(2):170–179

    Google Scholar 

  • Oren A (2010) Industrial and environmental applications of halophilic microorganisms. Environ Technol 31:825–834

    Article  CAS  PubMed  Google Scholar 

  • Pagaling E, Wang HZ, Venables M, Wallace A, Grant WD, Cowan DA, Jones BE, Ma Y, Ventosa A, Heaphy S (2009) Microbial biogeography of six salt lakes in Inner Mongolia, China, and a salt lake in Argentina. Appl Environ Microbiol 75:5750–5760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pawar V, Shinde A, Kumar AR, Zinjarde S, Gosavi S (2012) Tropical marine microbe mediated synthesis of cadmium nanostructures. Sci Adv Mater 4:135–142

    Article  CAS  Google Scholar 

  • Prasad K, Jha AK (2010) Biosynthesis of CdS nanoparticles: an improved green and rapid procedure. J Colloid Interface Sci 342(1):68–72

    Article  CAS  PubMed  Google Scholar 

  • Rai M, Deshmukh S, Gade A, Elsalam KA (2012) Strategic nanoparticles-mediated gene transfer in plants and animals—a novel approach. Curr Nanosci 8:170–179

    Article  CAS  Google Scholar 

  • Sanghi R, Verma P, Puri S (2011) Enzymatic formation of gold nanoparticles using Phanerochaete chrysosporium. Adv Chem Eng Sci 1:154–162

    Article  CAS  Google Scholar 

  • Seshadri S, Saranya K, Kowshik M (2011) Green synthesis of lead sulfide nanoparticles by the lead resistant marine yeast, Rhodosporidium diobovatum. Biotechnol Prog 7:1464–1469

    Article  CAS  Google Scholar 

  • Setati ME (2010) Diversity and industrial potential of hydrolase-producing halophilic/halotolerant eubacteria. Afr J Biotechnol 9:1555–1560

    Article  CAS  Google Scholar 

  • Siddiqi KS, Husen A (2016) Fabrication of metal nanoparticles from fungi and metal salts: scope and application. Nanoscale Res Lett 11:98

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182

    Article  CAS  PubMed  Google Scholar 

  • Soni N, Prakash S (2011) Factors affecting the geometry of silver nanoparticles synthesis in Chrysosporium tropicum and Fusarium oxysporum. Am J Nanotechnol 2:112–121

    CAS  Google Scholar 

  • Srivastava S, Kardam A, Raj KR (2012) Nanotech reinforcement onto cellulose fibers: green remediation of toxic metals. Int J Green Nanotechnol 4:46–53

    Article  CAS  Google Scholar 

  • Steiman R, Ford L, Ducros V, Lafond JL, Guiraud P (2004) First survey of fungi in hypersaline soil and water of Mono Lake area (California). Antonie Van Leeuwenhoek 85:69–83

    Article  CAS  PubMed  Google Scholar 

  • Tiquia SM (2010) Salt-adapted bacteria isolated from the Rouge River and potential for degradation of contaminants and biotechnological applications. Environ Technol 31:967–978

    Article  CAS  PubMed  Google Scholar 

  • Tiquia SM, Mormile M (2010) Extremophiles—a source of innovation for industrial and environmental applications. Environ Technol 31(8–9):823

    Article  CAS  PubMed  Google Scholar 

  • Tiquia SM, Davis D, Hadid H, Kasparian S, Ismail M, Sahly R, Shim J, Singh S, Murray KS (2007) Halophilic and halotolerant bacteria from river waters and shallow groundwater along the Rouge River of southeastern Michigan. Environ Technol 28:297–307

    Article  CAS  PubMed  Google Scholar 

  • Tiquia-Arashiro SM (2012) Molecular biological technologies for ocean sensing. Humana Press, Totowa, NJ, 295 p

    Book  Google Scholar 

  • Tiquia-Arashiro SM, Rodrigues D (2016a) Extremophiles: applications in nanotechnology. Springer International Publishing, New York, 193 p

    Book  Google Scholar 

  • Tiquia-Arashiro SM, Rodrigues D (2016b) Nanoparticles synthesized by microorganisms. In: Extremophiles: applications in nanotechnology. Springer International Publishing, New York, pp 1–51

    Chapter  Google Scholar 

  • Tiquia-Arashiro SM, Rodrigues D (2016c) Applications of nanoparticles. In: Extremophiles: applications in nanotechnology. Springer International Publishing, New York, pp 163–193

    Chapter  Google Scholar 

  • Tiquia-Arashiro SM, Rodrigues D (2016d) Halophiles in nanotechnology. In: Extremophiles: applications in nanotechnology. Springer International Publishing, New York, pp 53–58

    Chapter  Google Scholar 

  • Tiquia-Arashiro SM, Rodrigues D (2016e) Thermophiles and psychrophiles in nanotechnology. In: Extremophiles: applications in nanotechnology. Springer International Publishing, New York, pp 89–127

    Chapter  Google Scholar 

  • Tiquia-Arashiro SM, Rodrigues D (2016f) Alkaliphiles and acidophiles in nanotechnology. In: Extremophiles: applications in nanotechnology. Springer International Publishing, New York, pp 129–162

    Chapter  Google Scholar 

  • van der Wielen PW, Bolhuis H, Borin S, Daffonchio D, Corselli C, Giuliano L, D’Auria G, de Lange GJ, Huebner A, Varnavas SP, Thomson J, Tamburini C, Marty D, McGenity TJ, Timmis KN (2005) The enigma of prokaryotic life in deep hypersaline anoxic basins. Nature 307:121–123

    Google Scholar 

  • Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH (2006) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61:1413–1418

    Article  CAS  Google Scholar 

  • Wan Y, Yang Z, Xiong G, Ruisong G, Liu Z, Luo H (2015) Anchoring Fe3O4 nanoparticles on three-dimensional carbon nanofibers toward flexible high-performance anodes for lithium-ion batteries. J Power Sources 294:414–419

    Article  CAS  Google Scholar 

  • Wang CC, Luconi MO, Masi AN, Fernández LP (2009) Derivatized silver nanoparticles as sensor for ultra-trace nitrate determination based on light scattering phenomenon. Talanta 77:1238–1243

    Article  CAS  PubMed  Google Scholar 

  • Wasser SP, Grishkan I, Kis-Papo T, Buchalo AS, Paul AV, Gunde-Cimerman N, Zalar P, Nevo E (2003) Species diversity of the Dead Sea fungi. In: Nevo E, Oren A, Wasser SP (eds) Fungal life in the Dead Sea. Gantner Verlag, Ruggel, pp 203–270

    Google Scholar 

  • Yu A, Liang Z, Cho J, Caruso F (2003) Nanostructured electrochemical sensor based on dense gold nanoparticle films. Nano Lett 3:1203–1207

    Article  CAS  Google Scholar 

  • Yu X, Tong S, Ge M, Wu L, Zuo J, Cao C, Song W (2013) Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals. J Environ Sci (China) 25:933–943

    Article  CAS  Google Scholar 

  • Zajc J, Zalar P, PlemenitaÅ¡ A, Gunde-Cimerman N (2012) The mycobiota of the salterns. In: Raghukumar C (ed) Biology of marine fungi. Progress in molecular and subcellular biology, vol 53. Springer, Berlin, pp 133–158

    Google Scholar 

  • Zhang YC, Wang GY, Hu XY (2007) Solvothermal synthesis of hexagonal CdS nanostructures from a single-source molecular precursor. J Alloys Compd 437:47–52

    Article  CAS  Google Scholar 

  • Zhang XF, Liu ZG, Shen W, Gurunathan S (2016) Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci 17(9):pii: E1534. https://doi.org/10.3390/ijms17091534

    Article  CAS  Google Scholar 

  • Zhao PQ, Wu XL, Fan JY, Chu PK, Siu GG (2006) Enhanced and tunable blue luminescence from CdS nanocrystal–polymer composites. Scr Mater 55:1123–1126

    Article  CAS  Google Scholar 

  • Zomorodian K, Pourshahid P, Sadatsharifi A, Mehryar P, Pakshir K, Rahimi MJ, Monfared AA (2016) Biosynthesis and characterization of silver nanoparticles by Aspergillus Species. Biomed Res Int 2016:5435397, 6 p. https://doi.org/10.1155/2016/5435397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia M. Tiquia-Arashiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tiquia-Arashiro, S.M. (2019). Synthesis of Metallic Nanoparticles by Halotolerant Fungi. In: Tiquia-Arashiro, S., Grube, M. (eds) Fungi in Extreme Environments: Ecological Role and Biotechnological Significance. Springer, Cham. https://doi.org/10.1007/978-3-030-19030-9_19

Download citation

Publish with us

Policies and ethics