Skip to main content

History and Evolution of Minimally Invasive Spine Surgery

  • Chapter
  • First Online:
Minimally Invasive Spine Surgery

Abstract

Minimally invasive spine surgery (MISS) is a combination of specialized techniques, instruments, and technology for performing operations with less disruption of the adjacent tissues that surround the spine than traditional, open approaches. Three surgical objectives have driven the evolution of MISS: minimize tissue disruption, achieve bilateral decompression via a unilateral approach, and achieve indirect neural decompression. MISS began with the treatment of herniated lumbar intervertebral discs and has evolved tremendously since to be applicable to the treatment of a variety of spinal pathologies involving the entirety of the spinal column, including foraminotomies, fusion procedures, tumor resections, and fixation of traumatic fractures. The key elements of MISS include a small access approach to limit exposure-related tissue damage, magnification and illumination with the use of a microscope or endoscope, supplemental localization such as computer-assisted navigation, and surgical instruments that facilitate minimal access to the relevant spinal anatomy, all contributing to the goal of leaving the smallest possible operative footprint while achieving good clinical outcomes. The rapid advancement in technology has allowed the field to evolve significantly, such that traditional procedures that previously required larger exposures with increased morbidity are being effectively and efficiently performed in a minimally invasive fashion. In this chapter, the authors present a review of the history and evolution of MISS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marketos SG, Skiadas P. Hippocrates: the father of the spine surgery. Spine (Phila Pa 1976). 1999;24:1381–7.

    Article  CAS  Google Scholar 

  2. Elsberg CA. Extradural spinal tumors: primary, secondary, metastatic. Surg Gynec and Obst. 1928;46:1.

    Google Scholar 

  3. Clymer G, Mixter WJ, Mella H. Experience with spinal cord tumors during the past ten years. Arch Neurol Psychiatr. 1921;5:213.

    Google Scholar 

  4. Stookey B. Compression of the spinal cord due to ventral extradural cervical chondromas. Arch Neurol Psychiatr. 1928;20:275.

    Article  Google Scholar 

  5. Schmorl G, Junghanns H. Die gesunde und kranke wirbelsaule im rontgenbild: pathologisch-anatomische untersuchungen. In: Junghanns H, editor. Archiv und atlas der normalen und pathologischen anatomie in typischen rontgenbildern. Leipsig: G. Thieme; 1932. p. 182.

    Google Scholar 

  6. Mixter WJ, Barr JS. Rupture of the intervertebral disc with involvement of the spinal canal. N Engl J Med. 1934;211:210–5.

    Article  Google Scholar 

  7. Love J. Protruded intervertebral disks with a note regarding hypertrophy of ligamenta flava. JAMA. 1939;113:2029–35.

    Google Scholar 

  8. Yasargil MG. Microsurgical operation of herniated lumbar disc. In: Wullenweber R, Brock M, Hamer J, Klinger M, Spoerri O, editors. Lumbar disc adult hydrocephalus, Advances in Neurosurgery, vol. 4. Berlin, Heiderlberg: Springer; 1977. p. 81.

    Chapter  Google Scholar 

  9. Williams RW. Microlumbar discectomy: a conservative surgical approach to the virgin herniated lumbar disc. Spine (Phila Pa 1976). 1978;3:175–82.

    Article  CAS  Google Scholar 

  10. Kambin P, Casey K, O’Brien E, Zhou L. Transforaminal arthroscopic decompression of lateral recess stenosis. J Neurosurg. 1996;84:462–7. https://doi.org/10.3171/jns.1996.84.3.0462.

    Article  CAS  PubMed  Google Scholar 

  11. Pool J. Direct visualization of dorsal nerve roots of the cauda equina by means of a myeloscope. Arch Neurol Psychiatr. 1938;39:1308–12.

    Article  Google Scholar 

  12. Smith L. Enzyme dissolution of the nucleus pulposus in humans. JAMA. 1964;187:137–40.

    Article  CAS  PubMed  Google Scholar 

  13. Jansen EF, Balls AK. Chymopapain: a new crystalline proteinase from papaya latex. J Biol Chem. 1941;137:459–60.

    CAS  Google Scholar 

  14. Thongtrangan I, Le H, Park J, Kim DH. Minimally invasive spinal surgery: a historical perspective. Neurosurg Focus. 2004;16:E13. https://doi.org/10.3171/foc.2004.16.1.14.

    Article  PubMed  Google Scholar 

  15. Watts C, Dickhaus E. Chemonucleolysis: a note of caution. Surg Neurol. 1986;26:236–40.

    Article  CAS  PubMed  Google Scholar 

  16. Hijikata S. Percutaneous nucleotomy. A new concept technique and 12 years’ experience. Clin Orthop Relat Res. 1989;238:9–23.

    Article  Google Scholar 

  17. Friedman WA. Percutaneous discectomy: an alternative to chemonucleolysis? Neurosurgery. 1983;13:542–7.

    Article  CAS  PubMed  Google Scholar 

  18. Kanter SL, Friedman WA. Percutaneous discectomy: an anatomical study. Neurosurgery. 1985;16:141–7.

    Article  CAS  PubMed  Google Scholar 

  19. Maroon JC, Onik G. Percutaneous automated discectomy: a new method for lumbar disc removal. Technical note. J Neurosurg. 1987;66:143–6. https://doi.org/10.3171/jns.1987.66.1.0143.

    Article  CAS  PubMed  Google Scholar 

  20. Onik G, Mooney V, Maroon JC, Wiltse L, Helms C, Schweigel J, et al. Automated percutaneous discectomy: a prospective multi-institutional study. Neurosurgery. 1990;26:228–32.

    Article  CAS  PubMed  Google Scholar 

  21. Forst R, Hausmann G. Nucleoscopy—a new examination technique. Arch Orthop Trauma Surg. 1983;101:219–21.

    Article  CAS  PubMed  Google Scholar 

  22. Schreiber A, Suezawa Y, Leu H. Does percutaneous nucleotomy with discoscopy replace conventional discectomy? Eight years of experience and results in treatment of herniated lumbar disc. Clin Orthop Rel Res. 1989;238:35–42.

    Article  Google Scholar 

  23. Choy DS, Case RB, Fielding W, Hughes J, Liebler W, Ascher P. Percutaneous laser nucleolysis of lumbar disks. N Engl J Med. 1987;317:771–2. https://doi.org/10.1056/NEJM198709173171217.

    Article  CAS  PubMed  Google Scholar 

  24. Brouwer PA, Brand R, van den Akker-van Marie ME, Jacobs WC, Schenk B, van den Berg-Huijsmans AA, et al. Percutaneous laser disc decompression versus conventional microdiscectomy for patients with sciatica: two-year results of a randomised controlled trial. Interv Neuroradiol. 2017;23:313–24. https://doi.org/10.1177/1591019917699981.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Saal JA, Saal JS. Intradiscal electrothermal treatment for chronic discogenic low back pain: prospective outcome study with a minimum 2-year follow-up. Spine (Phila Pa 1976). 2002;27:966–73.

    Article  Google Scholar 

  26. Gibson JN, Waddell G. Surgical interventions for lumbar disc prolapse: updated Cochrane review. Spine (Phila Pa 1976). 2007;32:1735–47. https://doi.org/10.1097/BRS.0b013e3180bc2431.

    Article  Google Scholar 

  27. Faubert C, Caspar W. Lumbar percutaneous discectomy. Initial experience in 28 cases. Neuroradiology. 1991;33:407–10.

    Article  CAS  PubMed  Google Scholar 

  28. Foley KT, Smith MM. Microendoscopic discectomy. Tech Neurosurg. 1997;3:301–7.

    Google Scholar 

  29. Nowitzke AM. Assessment of the learning curve for lumbar microendoscopic discectomy. Neurosurgery. 2005;56:755–62. https://doi.org/10.1227/01.NEU.0000156470.79032.7B.

    Article  PubMed  Google Scholar 

  30. Rong LM, Xie PG, Shi DH, Dong JW, Liu B, Feng F, et al. Spinal surgeons’ learning curve for lumbar microendoscopic discectomy: a prospective study of our first 50 and latest 10 cases. Chin Med J. 2008;121:2148–51.

    Article  PubMed  Google Scholar 

  31. Ahn J, Iqbal A, Manning BT, Leblang S, Bohl DD, Mayo BC, et al. Minimally invasive lumbar decompression-the surgical learning curve. Spine J. 2016;16:909–16. https://doi.org/10.1016/j.spinee.2015.07.455.

    Article  PubMed  Google Scholar 

  32. Palmer S. Use of a tubular retractor system in microscopic lumbar discectomy: 1 year prospective results in 135 patients. Neurosurg Focus. 2002;13:E5. https://doi.org/10.3171/foc.2002.13.2.6.

    Article  PubMed  Google Scholar 

  33. He J, Xiao S, Wu Z, Yuan Z. Microendoscopic discectomy versus open discectomy for lumbar disc herniation: a meta-analysis. Eur Spine J. 2016;25:1373–81. https://doi.org/10.1007/s00586–016–4523–3.

    Article  PubMed  Google Scholar 

  34. Dasenbrock HH, Juraschek SP, Schultz LR, Witham TF, Sciubba DM, Wolinsky JP, et al. The efficacy of minimally invasive discectomy compared with open discectomy: a meta-analysis of prospective randomized controlled trials. J Neurosurg Spine. 2012;16:452–62. https://doi.org/10.3171/2012.1.SPINE11404.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Spetzger U, Bertalanffy H, MHT R, Gilsback JM. Unilateral laminotomy for bilateral decompression of lumbar spinal stenosis. Part II: clinical experiences. Acta Neurochir. 1997;139:397–403. doi:10.1007%2FBF01808874.

    Article  CAS  PubMed  Google Scholar 

  36. Guiot BH, Khoo LT, Fessler RG. A minimally invasive technique for decompression of the lumbar spine. Spine (Phila Pa 1976). 2002;27:432–8.

    Article  Google Scholar 

  37. Khoo LT, Fessler RG. Microendoscopic decompressive laminotomy for the treatment of lumbar stenosis. Neurosurgery. 2002;51(Suppl 5):S146–54.

    PubMed  Google Scholar 

  38. Palmer S, Turner R, Palmer R. Bilateral decompressive surgery in lumbar spinal stenosis associated with spondylolisthesis: unilateral approach and use of a microscope and tubular retractor system. Neurosurg Focus. 2002;13:E4.

    PubMed  Google Scholar 

  39. Phan K, Mobbs RJ. Minimally invasive versus open laminectomy for lumbar stenosis: a systematic review and meta-analysis. Spine (Phila Pa 1976). 2016;41:E91–100. https://doi.org/10.1097/BRS.0000000000001161.

    Article  Google Scholar 

  40. Mayer HM, Heider F. “Slalom”: microsurgical cross-over decompression for multilevel degenerative lumbar stenosis. Biomed Res Int. 2016;2016:9074257. https://doi.org/10.1155/2016/9074257.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Schöller K, Alimi M, Cong GT, Christos P, Härtl R. Lumbar spinal stenosis associated with degenerative lumbar spondylolisthesis: a systematic review and meta-analysis of secondary fusion rates following open vs minimally invasive decompression. Neurosurgery. 2017;80(3):355–67. https://doi.org/10.1093/neuros/nyw091.

    Article  PubMed  Google Scholar 

  42. Sandhu FA, Santiago P, Fessler RG, Palmer S. Minimally invasive surgical treatment of lumbar synovial cysts. Neurosurgery. 2004;54:107–11. https://doi.org/10.1227/01.NEU.0000097269.79994.2F.

    Article  PubMed  Google Scholar 

  43. Foley KT, Smith MM, Rampersaud YR. Microendoscopic approach to far-lateral lumbar disc herniation. Neurosurg Focus. 1999;7:e5. https://doi.org/10.3171/foc.1999.7.6.6.

    Article  CAS  PubMed  Google Scholar 

  44. Haji FA, Cenic A, Crevier L, Murty N, Redd K. Minimally invasive approach for the resection of spinal neoplasm. Spine (Phila Pa 1976). 2011;36:E1018–26. https://doi.org/10.1097/BRS.0b013e31820019f9.

    Article  Google Scholar 

  45. Tredway TL, Musleh W, Christie SD, Khavkin Y, Fessler RG, Curry DJ. A novel minimally invasive technique for spinal cord untethering. Neurosurgery. 2007;60(Suppl 2):ONS70–4. https://doi.org/10.1227/01.NEU.0000249254.63546.D7.

    Article  Google Scholar 

  46. Cloward RB. The treatment of ruptured lumbar intervertebral discs by vertebral body fusion. I. Indications, operative technique, after care. J Neurosurg. 1953;10:154–68. https://doi.org/10.3171/jns.1953.10.2.0154.

    Article  CAS  PubMed  Google Scholar 

  47. Magerl F. External skeletal fixation of the lower thoracic and the lumbar spine. In: Uhthoff HK, Stahl E, editors. Current concepts of external fixation of fractures. Berlin, Heidelberg: Springer; 1982. p. 353–66. https://doi.org/10.1007/978–3–642–68448–7_40.

    Chapter  Google Scholar 

  48. Leu HF, Hauser RK. Percutaneous endoscopic lumbar spine fusion. Neurosurg Clin N Am. 1996;7:107–17.

    Article  CAS  PubMed  Google Scholar 

  49. Matthews HH, Long BH. Endoscopy assisted percutaneous anterior interbody fusion with subcutaneous suprafascial internal fixation: evolution of technique and surgical considerations. Orthop Int Ed. 1995;3:496–500.

    Google Scholar 

  50. Lowery GL, Kulkarni SS. Posterior percutaneous spine instrumentation. Eur Spine J. 2000;9(Suppl 1):S126–30. https://doi.org/10.1007/PL00008318.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Foley KT, Gupta SK. Percutaneous pedicle screw fixation of the lumbar spine: preliminary clinical results. J Neurosurg. 2002;97(Suppl 1):7–12.

    PubMed  Google Scholar 

  52. Mobbs RJ, Sivabalan P, Li J. Technique, challenges and indications for percutaneous pedicle screw fixation. J Clin Neurosci. 2011;18:741–9. https://doi.org/10.1016/j.jocn.2010.09.019.

    Article  PubMed  Google Scholar 

  53. Foley KT, Lefkowitz MA. Advances in minimally invasive spine surgery. Clin Neurosurg. 2002;49:499–517.

    PubMed  Google Scholar 

  54. Foley KT, Holly LT, Schwender JD. Minimally invasive lumbar fusion. Spine (Phila Pa 1976). 2003;28(Suppl 15):S26–35. https://doi.org/10.1097/01.BRS.0000076895.52418.5E.

    Article  Google Scholar 

  55. Wong AP, Smith ZA, Stadler JA III, Hu XY, Yan JZ, Li XF, et al. Minimally invasive transforaminal lumbar interbody fusion (MI-TLIF): surgical technique, long-term 4-year prospective outcomes, and complications compared with an open TLIF cohort. Neurosurg Clin N Am. 2014;25:279–304. https://doi.org/10.1016/j.nec.2013.12.007.

    Article  PubMed  Google Scholar 

  56. Wu RH, Fraser JF, Härtl R. Minimal access versus open transforaminal lumbar interbody fusion: meta-analysis of fusion rates. Spine (Phila Pa 1976). 2010;35:2273–81. https://doi.org/10.1097/BRS.0b013e3181cd42cc.

    Article  Google Scholar 

  57. Carpenter N. Spondylolisthesis. Br J Surg. 1932;19:374–86.

    Article  Google Scholar 

  58. Burns BH. An operation for spondylolisthesis. Lancet. 1933;221:1233. https://doi.org/10.1016/S0140–6736(00)85724–4.

    Article  Google Scholar 

  59. Obenchain TG. Laparoscopic lumbar discectomy: case report. J Laparoendosc Surg. 1991;1:145–9. https://doi.org/10.1089/lps.1991.1.145.

    Article  CAS  PubMed  Google Scholar 

  60. Zucherman JF, Zdeblick TA, Bailey SA, Mahvi D, Hsu KY, Kohrs D. Instrumented laparoscopic spinal fusion. Preliminary results. Spine (Phila Pa 1976). 1995;20:2029–34.

    Article  CAS  Google Scholar 

  61. Mayer HM. A new microsurgical technique for minimally invasive anterior lumbar interbody fusion. Spine (Phila Pa 1976). 1997;22:691–9. https://doi.org/10.1097/00007632–199703150–00023.

    Article  CAS  Google Scholar 

  62. Bateman DK, Millhouse PW, Shahi N, Kadam AB, Maltenfort MG, Koerner JD, et al. Anterior lumbar spine surgery: a systematic review and meta-analysis of associated complications. Spine J. 2015;26:S1529–94. https://doi.org/10.1016/j.spinee.2015.02.040.

    Article  Google Scholar 

  63. Ozgur BM, Aryan HE, Pimenta L, Taylor WR. Extreme Lateral Interbody Fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. Spine J. 2006;6:435–43. https://doi.org/10.1016/j.spinee.2005.08.012.

    Article  PubMed  Google Scholar 

  64. Inoue S, Watanabe T, Hirose A, Tanaka T, Matsui N, Saegusa O, et al. Anterior discectomy and interbody fusion for lumbar disc herniation. A review of 350 cases. Clin Orthop Relat Res. 1984;183:22–31.

    Google Scholar 

  65. Oliveira L, Marchi L, Coutinho E, Pimenta L. A radiographic assessment of the ability of the extreme lateral interbody fusion procedure to indirectly decompress the neural elements. Spine (Phila Pa 1976). 2010;35(Suppl 26):S331–7. https://doi.org/10.1097/BRS.0b013e3182022db0.

    Article  Google Scholar 

  66. Jacobaeus HC. Possibility of the use of cystoscope for investigation of serious cavities. Munch Med Wochenschr. 1910;57:2090–2.

    Google Scholar 

  67. Mack MJ, Regan JJ, Bobechko WP, Acuff TE. Application of thoracoscopy for diseases of the spine. Ann Thorac Surg. 1993;56:736–8. https://doi.org/10.1016/0003–4975(93)90966-L.

    Article  CAS  PubMed  Google Scholar 

  68. Rosenthal DJ, Rosenthal DR, Simone A. Removal of a protruded thoracic disc using microsurgical endos- copy: a new technique. Spine (Phila Pa 1976). 1994;19:1087–91.

    Article  CAS  Google Scholar 

  69. Kasliwal MK, Tan LA, Fessler RG. Minimally invasive spinal decompression and stabilization techniques II: clinical applications and results. In: Steinmetz MP, Benzel EC, editors. Benzel’s spine surgery: techniques, complication avoidance, and management. 4th ed. Philadelphia: Elsevier; 2017. p. 1474–98.

    Google Scholar 

  70. Jho HD. Endoscopic microscopic transpedicular thoracic discectomy. Technical note. J Neurosurg. 1997;87:125–9. https://doi.org/10.3171/jns.1997.87.1.0125.

    Article  CAS  PubMed  Google Scholar 

  71. Jho HD. Endoscopic transpedicular thoracic discectomy. Neurosurg Focus. 2000;9:e4. https://doi.org/10.3171/foc.2000.9.4.5.

    Article  CAS  PubMed  Google Scholar 

  72. Perez-Cruet MJ, Kim BS, Sandhu F, Samartzis D, Fessler RG. Thoracic microendoscopic discectomy. J Neurosurg Spine. 2004;1:58–63. https://doi.org/10.3171/spi.2004.1.1.0058.

    Article  PubMed  Google Scholar 

  73. Smith WD, Dakwar E, Le TV, Christian G, Serrano S, Uribe JS. Minimally invasive surgery for traumatic spinal pathologies: a mini-open, lateral approach in the thoracic and lumbar spine. Spine (Phila Pa 1976). 2010;35(Suppl 26):S338–46. https://doi.org/10.1097/BRS.0b013e3182023113.

    Article  Google Scholar 

  74. Uribe JS, Dakwar E, Le TV, Christian G, Serrano S, Smith WD. Minimally invasive surgery treatment for thoracic spine tumor removal: a mini-open, lateral approach. Spine (Phila Pa 1976). 2010;35(Suppl 26):S347–54. https://doi.org/10.1097/BRS.0b013e3182022d0f.

    Article  Google Scholar 

  75. Holly LT, Foley KT. Three-dimensional fluoroscopy-guided percutaneous thoracolumbar pedicle screw placement. Technical note. J Neurosurg. 2003;99(Suppl 3):324–9. https://doi.org/10.3171/spi.2003.99.3.0324.

    Article  PubMed  Google Scholar 

  76. Ringel F, Stoffel M, Stuer C, Meyer B. Minimally invasive transmuscular pedicle screw fixation of the thoracic and lumbar spine. Neurosurgery. 2006;59(Suppl 2):ONS361–6. https://doi.org/10.1227/01.NEU.0000223505.07815.74.

    Article  PubMed  Google Scholar 

  77. Smith GW, Robinson RA. The treatment of certain cervical spine disorders by anterior removal of the intervertebral disc and interbody fusion. J Bone Joint Surg Am. 1958;40:607–24.

    Article  PubMed  Google Scholar 

  78. Cloward R. The anterior approach for removal of ruptured cervical disks. J Neurosurg. 1958;15:602–17.

    Article  CAS  PubMed  Google Scholar 

  79. Orozco Delclos R, Llovet Tapies J. Osteosintesis en las fracturas de raquis cervical. Nota de tecnica. Rev Ortop Traumatol. 1970;14:285–8.

    Google Scholar 

  80. Ruetten S, Komp M, Merk H, Godolias G. Full-endoscopic anterior decompression versus conventional anterior decompression and fusion in cervical disc herniations. Int Orthop. 2009;33:1677–82. https://doi.org/10.1007/s00264–008–0684-y.

    Article  PubMed  Google Scholar 

  81. Horgan MA, Hsu FP, Frank EH. A novel endoscopic approach for anterior odontoid screw fixation: technical note. Minim Invasive Neurosurg. 1999;42:142–5. https://doi.org/10.1055/s-2008–1053387.

    Article  CAS  PubMed  Google Scholar 

  82. Chi YL, Wang XY, Xu HZ, Lin Y, Huang QS, Mao FM, et al. Management of odontoid fractures with percutaneous anterior odontoid screw fixation. Eur Spine J. 2007;16:1157–64. https://doi.org/10.1007/s00586–007–0331–0.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Snyder GM, Bernhardt M. Anterior cervical fractional interspace decompression for treatment of cervical radiculopathy. A review of the first 66 cases. Clin Orthop. 1989;246:92–9.

    Google Scholar 

  84. Hankinson HL, Wilson CB. Use of operating microscope in anterior cervical discectomy without fusion. J Neurosurg. 1975;43:452–6. https://doi.org/10.3171/jns.1975.43.4.0452.

    Article  CAS  PubMed  Google Scholar 

  85. Jho HD. Microsurgical anterior cervical foraminotomy for radiculopathy: a new approach to cervical disc herniation. J Neurosurg. 1996;84:155–60. https://doi.org/10.3171/jns.1996.84.2.0155.

    Article  CAS  PubMed  Google Scholar 

  86. Jho HD. Decompression via microsurgical anterior foraminotomy for cervical spondylotic myelopathy: technical note. J Neurosurg. 1997;86:297–302. https://doi.org/10.3171/jns.1997.86.2.0297.

    Article  CAS  PubMed  Google Scholar 

  87. Roh SW, Kim DH, Cardoso AC, Fessler RG. Endoscopic foraminotomy using MED system in cadaveric specimens. Neurosurg Focus. 2000;4:E4. https://doi.org/10.3171/foc.1998.4.2.5.

    Article  Google Scholar 

  88. Fessler RG, Khoo LT. Minimally invasive cervical microendoscopic foraminotomy: an initial clinical experience. Neurosurgery. 2002;51(Suppl 2):S37–45. https://doi.org/10.1097/00006123–200211002–00006.

    Article  PubMed  Google Scholar 

  89. Adamson TE. Microendoscopic posterior cervical laminoforaminotomy for unilateral radiculopathy: results of a new technique in 100 cases. J Neurosurg. 2001;95(Suppl 1):51–7. https://doi.org/10.3171/spi.2001.95.1.0051.

    Article  CAS  PubMed  Google Scholar 

  90. Song Z, Zhang Z, Hao J, Shen J, Zhou N, Xu S, et al. Microsurgery or open cervical foraminotomy for cervical radiculopathy? A systematic review. Int Orthop. 2016;40:1335–43. https://doi.org/10.1007/s00264–016–3193–4.

    Article  PubMed  Google Scholar 

  91. Wang MY, Levi AD. Minimally invasive lateral mass screw fixation in the cervical spine: initial clinical experience with long-term follow-up. Neurosurgery. 2006;58:907–12. https://doi.org/10.1227/01.NEU.0000209929.38213.72.

    Article  PubMed  Google Scholar 

  92. Wang MY, Green BA, Coscarella E, Baskaya MK, Levi A, Guest JD. Minimally invasive cervical expansile laminoplasty: an initial cadaveric study. Neurosurgery. 2003;52:370–3. https://doi.org/10.1227/01.NEU.0000043933.32287.EE.

    Article  PubMed  Google Scholar 

  93. Benglis DM, Guest JD, Wang MY. Clinical feasibility of minimally invasive cervical laminoplasty. Neurosurg Focus. 2008;25:E3. https://doi.org/10.3171/FOC/2008/25/8/E3.

    Article  PubMed  Google Scholar 

  94. Ahmad F, Sherman JD, Wang MY. Percutaneous trans-facet screws for supplemental posterior cervical fixation: technical case report. World Neurosurg. 2012;78:716.e1–4. https://doi.org/10.1016/j.wneu.2011.12.092.

    Article  Google Scholar 

  95. Goel A, Shah A. Facetal distraction as treatment for single and multilevel cervical spondylotic radiculopathy and myelopathy: a preliminary report. Technical note. J Neurosurg Spine. 2011;14:689–96. https://doi.org/10.3171/2011.2.SPINE10601.

    Article  PubMed  Google Scholar 

  96. McCormack BM, Bundoc RC, Ver MR, Ignacio JM, Berven SH, Eyster EF. Percutaneous posterior cervical fusion with the DTRAX Facet System for single-level radiculopathy: results in 60 patients. J Neurosurg Spine. 2013;18:245–54. https://doi.org/10.3171/2012.12.SPINE12477.

    Article  PubMed  Google Scholar 

  97. Grunert P, Darabi K, Espinosa J, Filippi R. Computer-aided navigation in neurosurgery. Neurosurg Rev. 2003;26:73–99. https://doi.org/10.1007/s10143–003–0262–0.

    Article  CAS  PubMed  Google Scholar 

  98. Kalfas IH, Kormos DW, Murphy MA, McKenzie RL, Barnett GH, Bell GR, et al. Application of frameless stereotaxy to pedicle screw fixation of the spine. J Neurosurg. 1995;83:641–7. https://doi.org/10.3171/jns.1995.83.4.0641.

    Article  CAS  PubMed  Google Scholar 

  99. Härtl R, Lam KS, Wang J, Korge A, Kandziora F, Audige L. Worldwide survey on the use of navigation in spine surgery. World Neurosurg. 2013;79:162–72. https://doi.org/10.1016/j.wneu.2012.03.011.

    Article  PubMed  Google Scholar 

  100. Foley KT, Simon DA, Rampersaud R. Virtual fluoroscopy: computer-assisted fluoroscopic navigation. Spine (Phila Pa 1976). 2001;26:347–51.

    Article  CAS  Google Scholar 

  101. Shin BJ, James AR, Njoku IU, Härtl R. Pedicle screw navigation: a systematic review and meta-analysis of perforation risk for computer-navigated versus freehand insertion. J Neurosurg Spine. 2012;17:113–22. https://doi.org/10.3171/2012.5.SPINE11399.

    Article  PubMed  Google Scholar 

  102. Mason A, Paulsen R, Babuska JM, Rajpal S, Burneikiene S, Nelson EL, et al. The accuracy of pedicle screw placement using intraoperative image guidance systems. J Neurosurg Spine. 2014;20:196–203. https://doi.org/10.3171/2013.11.SPINE13413.

    Article  PubMed  Google Scholar 

  103. Lian X, Navarro-Ramirez R, Berlin C, Jada A, Moriguchi Y, Zhang Q, et al. Total 3D Airo® navigation for minimally invasive transforaminal lumbar interbody fusion. Biomed Res Int. 2016;2016:1. https://doi.org/10.1155/2016/5027340.

    Article  Google Scholar 

  104. Phan K, Hogan JA, Mobbs RJ. Cost-utility of minimally invasive versus open transforaminal lumbar interbody fusion: systematic review and economic evaluation. Eur Spine J. 2015;24:2503–13. https://doi.org/10.1007/s00586–015–4126–4.

    Article  PubMed  Google Scholar 

  105. Vertuani S, Nilsson J, Borgman B, Buseghin G, Leonard C, Assietti R, et al. A cost-effectiveness analysis of minimally invasive versus open surgery techniques for lumbar spinal fusion in Italy and the United Kingdom. Value Health. 2015;18:810–6. https://doi.org/10.1016/j.jval.2015.05.002.

    Article  PubMed  Google Scholar 

  106. Cahill KS, Levi AD, Cummock MD, Liao W, Wang MY. A comparison of acute hospital charges after tubular versus open microdiskectomy. World Neurosurg. 2013;80:208–12. https://doi.org/10.1016/j.wneu.2012.08.015.

    Article  PubMed  Google Scholar 

  107. Goldstein CL, Phillips FM, Rampersaud YR. Comparative effectiveness and economic evaluations of open versus minimally invasive posterior or transforaminal lumbar interbody fusion: a systematic review. Spine (Phila Pa 1976). 2016;41(Suppl 8):S74–89. https://doi.org/10.1097/BRS.0000000000001462.

    Article  Google Scholar 

  108. Nandyala SV, Fineberg SJ, Pelton M, Singh K. Minimally invasive transforaminal lumbar interbody fusion: one surgeon’s learning curve. Spine J. 2014;14:1460–5. https://doi.org/10.1016/j.spinee.2013.08.045.

    Article  PubMed  Google Scholar 

  109. Sclafani JA, Kim CW. Complications associated with the initial learning curve of minimally invasive spine surgery: a systematic review. Clin Orthop Relat Res. 2014;472:1711–7. https://doi.org/10.1007/s11999–014–3495-z.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Helms CA, Onik G, Davis WG. Automated percutaneous lumbar discectomy. Skeletal Radiol. 1989;18:579–83.

    Article  CAS  PubMed  Google Scholar 

  111. Perez-Cruet MJ, Foley KT, Isaacs RE, Rice-Wyllie L, Wellington R, Smith MM, et al. Microendoscopic lumbar discectomy: technical note. Neurosurgery. 2002;51:S129–36.

    PubMed  Google Scholar 

  112. Khoo LT, Palmer S, Laich DT, Fessler RG. Minimally invasive percutaneous posterior lumbar interbody fusion. Neurosurgery. 2002;51(Suppl 2):166–81. https://doi.org/10.1227/01.NEU.0000031068.83783.7B.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Nick Hernandez .

Editor information

Editors and Affiliations

Appendices

Quiz Questions

  1. 1.

    Which of the following is not a surgical objective that has driven the evolution of MISS?

    1. (a)

      Achieve indirect neural decompression

    2. (b)

      Limit tissue disruption

    3. (c)

      Achieve bilateral decompression via a unilateral approach

    4. (d)

      Excessive bony resection resulting in destabilization

  2. 2.

    Minimally invasive techniques to the spine were first developed for treatment of which of the following pathologies?

    1. (a)

      Cervical disc herniation

    2. (b)

      Lumbar disc herniation

    3. (c)

      Lumbar spondylolisthesis

    4. (d)

      Thoracic disc herniation

  3. 3.

    Which of the following comparisons of MI-TLIF versus open TLIF is accurate?

    1. (a)

      Better fusion rates, long-term outcome, and patient satisfaction with MI-TLIF

    2. (b)

      Better fusion rates, long-term outcome, and patient satisfaction with open TLIF

    3. (c)

      Less blood loss and shorter hospital stay with MI-TLIF

    4. (d)

      Less blood loss and shorter hospital stay with open TLIF

  4. 4.

    Automatic patient registration , which significantly improved computer-assisted navigation and facilitates MISS, is a characteristic of which of the following navigation systems?

    1. (a)

      Intraoperative CT

    2. (b)

      Preoperative MRI

    3. (c)

      Preoperative CT

    4. (d)

      Cross-table XR

Answers

  1. 1.

    d

  2. 2.

    b

  3. 3.

    c

  4. 4.

    a

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hernandez, R.N., Nakhla, J., Navarro-Ramirez, R., Härtl, R. (2019). History and Evolution of Minimally Invasive Spine Surgery. In: Phillips, F., Lieberman, I., Polly Jr., D., Wang, M. (eds) Minimally Invasive Spine Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-19007-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19007-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19006-4

  • Online ISBN: 978-3-030-19007-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics