Skip to main content

Microbiome of Drinking Water Distribution Systems

  • Chapter
  • First Online:
The Structure and Function of Aquatic Microbial Communities

Part of the book series: Advances in Environmental Microbiology ((AEM,volume 7))

Abstract

Drinking water distribution systems appear as vulnerable engineered systems constantly sown and colonized by microorganisms representing several hundreds of species. Such microorganisms originate firstly from finished potable drinking water, secondly from growth in the distribution systems in the bulk water and on the surface of pipes and reservoirs as biofilms, and thirdly from accidental or continuously low introduction of pathogens.

This biomass is a source of technological problems (microbiologically influenced corrosion, red water, odor, and taste of tap water) caused by some specific microbes. Investigation and control of the microbial population community and its behavior in drinking water distribution systems should be the cornerstone of efforts to protect distribution system integrity, water quality, and public health. This silent contamination could also be responsible for endemic gastrointestinal illnesses attributable to tap water meeting current standards.

As shown throughout this literature review (mainly limited to papers published from 1990 to 2014), distribution systems must be considered as bioreactors. First, we present bugs systematically found in drinking water distribution systems all over the world (bacteria, viruses, yeasts, fungi, protozoa, microcrustaceans, rotifers, and oligochaete worms). Then, we analyze and discuss several items related to biofilms grown under conditions relevant to drinking water environments including mechanisms of biofilm formation, structure, cohesiveness, biodiversity, and pathogen reservoirs. Finally, the chapter concludes with a review of some of the parameters governing biofilm accumulation in drinking water distribution systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe Y, Polyakov P, Skali-Lami S et al (2011) Elasticity and physico-chemical properties during drinking water biofilm formation. Biofouling 27(7):739–750

    Article  PubMed  Google Scholar 

  • Abe Y, Skali-Lami S, Block JC et al (2012) Cohesiveness and hydrodynamic properties of young drinking water biofilms. Water Res 46(4):1155–1166

    Article  CAS  PubMed  Google Scholar 

  • Al-gabr HM, Zheng T, Yu X (2014) Occurrence and quantification of fungi and detection of mycotoxigenic fungi in drinking water in Xiamen City, China. Sci Total Environ 466–467:1103–1111

    Article  CAS  PubMed  Google Scholar 

  • Allion A, Lassiaz S, Peguet L et al (2011) A long term study on biofilm development in drinking water distribution system: comparison of stainless steel grades with commonly used materials. Revue de Métallurgie 108:258–268

    Article  CAS  Google Scholar 

  • Appenzeller BM, Batte M, Mathieu L et al (2001) Effect of adding phosphate to drinking water on bacterial growth in slightly and highly corroded pipes. Water Res 35(4):1100–1105

    Article  CAS  PubMed  Google Scholar 

  • Appenzeller BM, Duval YB, Thomas F et al (2002) Influence of phosphate on bacterial adhesion onto iron oxyhydroxide in drinking water. Environ Sci Technol 36(4):646–652

    Article  CAS  PubMed  Google Scholar 

  • Appenzeller BM, Yanez C, Jorand F et al (2005) Advantage provided by iron for Escherichia coli growth and cultivability in drinking water. Appl Environ Microbiol 71(9):5621–5623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashbolt NJ (2015) Microbial contamination of drinking water and human health from community water systems. Curr Environ Health Rep 2:95–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azevedo NF, Pacheco AP, Keevil CW, Vieira MJ (2006) Adhesion of water stressed Helicobacter pylori to abiotic surfaces. J Appl Microbiol 101:718–724

    Article  CAS  PubMed  Google Scholar 

  • Bagh LK, Albrechtsen HJ, Arvin E et al (2004) Distribution of bacteria in a domestic hot water system in a Danish apartment building. Water Res 38(1):225–235

    Article  CAS  PubMed  Google Scholar 

  • Bal Krishna KC, Sathasivan A, Ginige MP (2013) Microbial community changes with decaying chloramine residuals in a lab-scale system. Water Res 47(13):4666–4679

    Article  CAS  PubMed  Google Scholar 

  • Batté M, Appenzeller BRM, Grandjean D et al (2003) Biofilms in drinking water distribution systems. Rev Environ Sci Biotechnol 2:147–168

    Article  Google Scholar 

  • Beale DJ, Barratt R, Marlow DR et al (2013) Application of metabolomics to understanding biofilms in water distribution systems: a pilot study. Biofouling 29(3):283–294

    Article  CAS  PubMed  Google Scholar 

  • Berney M, Vital M, Hulshoff I et al (2008) Rapid, cultivation-independent assessment of microbial viability in drinking water. Water Res 42(14):4010–4018

    Article  CAS  PubMed  Google Scholar 

  • Berry D, Xi C, Raskin L (2009) Effect of growth conditions on inactivation of Escherichia coli with monochloramine. Environ Sci Technol 43(3):884–889

    Article  CAS  PubMed  Google Scholar 

  • Berry D, Holder D, Xi C et al (2010) Comparative transcriptomics of the response of to the disinfectant monochloramine and to growth conditions inducing monochloramine resistance. Water Res 44(17):4924–4931

    Article  CAS  PubMed  Google Scholar 

  • Besner MC, Prévost M, Regli S (2011) Assessing the public health risk of microbial intrusion events in distribution systems: conceptual model, available data, and challenges. Water Res 45(3):961–979

    Article  CAS  PubMed  Google Scholar 

  • Bichai F, Payment P, Barbeau B (2008) Protection of waterborne pathogens by higher organisms in drinking water: a review. Can J Microbiol 54:509–524

    Article  CAS  PubMed  Google Scholar 

  • Bichai F, Dullemont Y, Hijnen W et al (2014) Predation and transport of persistent pathogens in GAC and slow sand filters: a threat to drinking water safety? Water Res 64:296–308

    Article  CAS  PubMed  Google Scholar 

  • Block JC, Haudidier K, Paquin JL et al (1993) Biofilm accumulation in drinking water distribution systems. Biofouling 6:333–343

    Article  CAS  Google Scholar 

  • Bodet C, Sahr T, Dupuy M et al (2012) Legionella pneumophila transcriptional response to chlorine treatment. Water Res 46(3):808–816

    Article  CAS  PubMed  Google Scholar 

  • Boe-Hansen R, Albrechtsen H-J, Arvin E, Jorgensen C (2002) Bulk water phase and biofilm growth in drinking water at low nutrient conditions. Water Res 36:4477–4486

    Article  CAS  PubMed  Google Scholar 

  • Bois F, Fahmy T, Block JC et al (1997) Dynamic modeling of bacteria in a pilot drinking-water distribution system. Water Res 31(12):3146–3156

    Article  CAS  Google Scholar 

  • Bucheli-Witschel M, Kotzsch S, Darr S et al (2012) A new method to assess the influence of migration from polymeric materials on the biostability of drinking water. Water Res 46(13):4246–4260

    Article  CAS  PubMed  Google Scholar 

  • Buse HY, Lu J, Struewing IT et al (2014) Preferential colonization and release of Legionella pneumophila from mature drinking water biofilms grown on copper versus unplasticized polyvinylchloride coupons. Int J Hyg Environ Health 217(2–3):219–225

    Article  CAS  PubMed  Google Scholar 

  • Butterfield PW, Camper AK, Biederman JA et al (2002) Minimizing biofilm in the presence of iron oxides and humic substances. Water Res 36(15):3898–3910

    Article  CAS  PubMed  Google Scholar 

  • Camper AK (2004) Involvement of humic substances in regrowth. Int J Food Microbiol 92(3):355–364

    Article  CAS  PubMed  Google Scholar 

  • Camper K, McFeters GA, Characklis WG, Jones WL (1991) Growth kinetics of coliform bacteria under conditions relevant to drinking water distribution systems. Appl Environ Microbiol 57(8):2233–2239

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Stewart PS (1996) Chlorine penetration into artificial biofilm is limited by a reaction-diffusion interaction. Environ Sci Technol 30:2078–2083

    Article  CAS  Google Scholar 

  • Chen L, Jia RB, Li L (2013) Bacterial community of iron tubercles from a drinking water distribution system and its occurrence in stagnant tap water. Environ Sci Process Impacts 15(7):1332–1340

    Article  CAS  PubMed  Google Scholar 

  • Chesney JA, Eaton JW, Mahoney JJ Jr (1996) Bacterial glutathione: a sacrificial defense against chlorine compounds. J Bacteriol 17(7):2131–2135

    Article  Google Scholar 

  • Christensen SC, Nissen E, Arvin E et al (2011) Distribution of Asellus aquaticus and microinvertebrates in a non-chlorinated drinking water supply system-effects of pipe material and sedimentation. Water Res 45(10):3215–3224

    Article  CAS  PubMed  Google Scholar 

  • Codony F, Morato J, Mas J (2005) Role of discontinuous chlorination on microbial production by drinking water biofilms. Water Res 39(9):1896–1906

    Article  CAS  PubMed  Google Scholar 

  • Cooper IR, White J, Mahenthiralingam E et al (2008) Long-term persistence of a single Legionella pneumophila strain possessing the mip gene in a municipal shower despite repeated cycles of chlorination. J Hosp Infect 70(2):154–159

    Article  CAS  PubMed  Google Scholar 

  • Corsaro D, Venditti D (2010) Phylogenetic evidence for a new genotype of Acanthamoeba (Amoebozoa, Acanthamoebida). Parasitol Res 107(1):233–238

    Article  PubMed  Google Scholar 

  • Craun GF (2012) The importance of waterborne disease outbreak surveillance in the United States. Ann Ist Super Sanita 48(4):447–459

    Article  PubMed  Google Scholar 

  • Dang H, Lowell CR (2000) Bacterial primary colonization and early succession on surfaces in marine waters as determined by amplified rRNA gene restriction analysis and sequence analysis of 16S rRNA genes. Appl Environ Microbiol 66(2):467–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Beer D, Srinivasan R, Stewart PS (1994) Direct measurement of chlorine penetration into biofilms during disinfection. Appl Environ Microbiol 60(12):4339–4344

    PubMed  PubMed Central  Google Scholar 

  • Declerck P, Behets J, Margineanu A et al (2009) Replication of Legionella pneumophila in biofilms of water distribution pipes. Microbiol Res 164(6):593–603

    Article  CAS  PubMed  Google Scholar 

  • Delafont V, Brouke A, Bouchon D et al (2013) Microbiome of free-living amoebae isolated from drinking water. Water Res 47(19):6958–6965

    Article  CAS  PubMed  Google Scholar 

  • Delafont V, Mougari F, Cambau E et al (2014) First evidence of amoebae-mycobacteria association in drinking water network. Environ Sci Technol 48(20):11872–11882

    Article  CAS  PubMed  Google Scholar 

  • Derlon N, Peter-Varbanets M, Scheidegger A et al (2012) Predation influences the structure of biofilm developed on ultrafiltration membranes. Water Res 46(10):3323–3333

    Article  CAS  PubMed  Google Scholar 

  • Digiano FA, Zhang W (2004) Uncertainty analysis in a mechanistic model of bacterial regrowth in distribution systems. Environ Sci Technol 38(22):5925–5931

    Article  CAS  PubMed  Google Scholar 

  • Donohue MJ, O’Connell K, Vesper SJ et al (2014) Widespread molecular detection of Legionella pneumophila serogroup 1 in cold water taps across the United States. Environ Sci Technol 48(6):3145–3152

    Article  CAS  PubMed  Google Scholar 

  • Douterelo I, Sharpe RL, Boxall JB (2013) Influence of hydraulic regimes on bacterial community structure and composition in an experimental drinking water distribution system. Water Res 47(2):503–516

    Article  CAS  PubMed  Google Scholar 

  • Douterelo I, Boxall JB, Deines P et al (2014a) Methodological approaches for studying the microbial ecology of drinking water distribution systems. Water Res 65:134–156

    Article  CAS  PubMed  Google Scholar 

  • Douterelo I, Husband S, Boxall JB (2014b) The bacteriological composition of biomass recovered by flushing an operational drinking water distribution system. Water Res 54:100–114

    Article  CAS  PubMed  Google Scholar 

  • Douterelo I, Sharpe R, Boxall J (2014c) Bacterial community dynamics during the early stages of biofilm formation in a chlorinated experimental drinking water distribution system: implications for drinking water discolouration. J Appl Microbiol 117(1):286–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du Z, Nandakumar R, Nickerson KW, Li X (2015) Proteomic adaptations to starvation prepare Escherichia coli for disinfection tolerance. Water Res 69:110–119

    Article  CAS  PubMed  Google Scholar 

  • Dukan S, Touati D (1996) Hypochlorous acid stress in Escherichia coli: resistance, DNA damage, and comparison with hydrogen peroxide stress. J Bacteriol 178(21):6145–6150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dupuy M, Mazoua S, Berne F, Bodet C, Garrec N, Herbelin P, Ménard-Szczebara F, Oberti S, Rodier M-H, Soreau S, Wallet F, Héchard Y (2011) Efficiency of water disinfectants against Legionella pneumophila and Acanthamoeba. Water Res 45:1087–1094

    Article  CAS  PubMed  Google Scholar 

  • Dupuy M, Berne F, Herbelin P, Binet M, Berthelot N, Rodier M-H, Soreau S, Héchard Y (2014) Sensitivity of free-living amoeba trophozoites and cysts to water disinfectants. Int J Hyg Environ Health 217:335–339

    Article  CAS  PubMed  Google Scholar 

  • Eichler S, Christen R, Holtje C et al (2006) Composition and dynamics of bacterial communities of a drinking water supply system as assessed by RNA- and DNA-based 16S rRNA gene fingerprinting. Appl Environ Microbiol 72(3):1858–1872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falkinham JO III, Norton CD, LeChevallier MW (2001) Factors influencing numbers of Mycobacterium avium, Mycobacterium intracellulare, and other Mycobacteria in drinking water distribution systems. Appl Environ Microbiol 67(3):1225–1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farkas A, Butiuc-Keul A, Ciataras D et al (2013) Microbiological contamination and resistance genes in biofilms occurring during the drinking water treatment process. Sci Total Environ 443:932–938

    Article  CAS  PubMed  Google Scholar 

  • Fass S, Dincher ML, Reasoner DJ et al (1996) Fate of Escherichia coli experimentally injected in a drinking water distribution system. Water Res 30(9):2215–2221

    Article  CAS  Google Scholar 

  • Feazel LM, Baumgartner LK, Peterson KL et al (2009) Opportunistic pathogens enriched in showerhead biofilms. Proc Natl Acad Sci U S A 106(38):16393–16399

    Article  PubMed  PubMed Central  Google Scholar 

  • Flemming HC (2016) EPS – then and now. Microorganisms 4(41):2–18. https://doi.org/10.3390/microorganisms4040041

    Article  CAS  Google Scholar 

  • Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8(9):623–633

    Article  CAS  PubMed  Google Scholar 

  • Francius G, El Zein R, Mathieu L et al (2017) Nano-exploration of organic conditioning film formed on polymeric surfaces exposed to drinking water. Water Res 109:155–163

    Article  CAS  PubMed  Google Scholar 

  • Gaboriaud F, Gee ML, Strugnell R et al (2008) Coupled electrostatic, hydrodynamic, and mechanical properties of bacterial interfaces in aqueous media. Langmuir 24(19):10988–10995

    Article  CAS  PubMed  Google Scholar 

  • Gagnon GA, Rand JL, O’Leary KC et al (2005) Disinfectant efficacy of chlorite and chlorine dioxide in drinking water biofilms. Water Res 39(9):1809–1817

    Article  CAS  PubMed  Google Scholar 

  • Garcia A, Goni P, Cieloszyk J et al (2013) Identification of free-living amoebae and amoeba-associated bacteria from reservoirs and water treatment plants by molecular techniques. Environ Sci Technol 47(7):3132–3140

    Article  CAS  PubMed  Google Scholar 

  • Gauthier V, Gérard B, Portal J-M et al (1999a) Organic matter as loose deposits in a drinking water distribution system. Water Res 33(4):1014–1026

    Article  CAS  Google Scholar 

  • Gauthier V, Redercher S, Block JC (1999b) Chlorine inactivation of Sphingomonas cells attached to goethite particles in drinking water. Appl Environ Microbiol 65(1):355–357

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giao MS, Azevedo NF, Wilks SA et al (2008) Persistence of Helicobacter pylori in heterotrophic drinking-water biofilms. Appl Environ Microbiol 74(19):5898–5904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giraud C, Bernard C, Ruer S et al (2010) Biological ‘glue’ and ‘Velcro’: molecular tools for adhesion and biofilm formation in the hairy and gluey bug Pseudomonas aeruginosa. Environ Microbiol Rep 2(3):343–358

    Article  CAS  PubMed  Google Scholar 

  • Gosselin F, Duval JF, Simonet J et al (2011) Impact of the virulence-associated MAb3/1 epitope on the physicochemical surface properties of Legionella pneumophila sg1: an issue to explain infection potential? Colloids Surf B Biointerfaces 82(2):283–290

    Article  CAS  PubMed  Google Scholar 

  • Gouider M, Bouzid J, Sayadi S et al (2009) Impact of orthophosphate addition on biofilm development in drinking water distribution systems. J Hazard Mater 167(1–3):1198–1202

    Article  CAS  PubMed  Google Scholar 

  • Grandjean D, Fass S, Tozza D et al (2005) Coliform culturability in over- versus undersaturated drinking waters. Water Res 39(9):1878–1886

    Article  CAS  PubMed  Google Scholar 

  • Grandjean D, Jorand F, Guilloteau H et al (2006) Iron uptake is essential for Escherichia coli survival in drinking water. Lett Appl Microbiol 43(1):111–117

    Article  CAS  PubMed  Google Scholar 

  • Gray MJ, Wholey W-Y, Jakob U (2013) Bacterial responses to reactive chlorine species. Annu Rev Microbiol 67:141–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hageskal G, Knutsen AK, Gaustad P et al (2006) Diversity and significance of mold species in Norwegian drinking water. Appl Environ Microbiol 72(12):7586–7593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hageskal G, Lima N, Skaar I (2009) The study of fungi in drinking water. Mycol Res 113:165–172

    Article  CAS  PubMed  Google Scholar 

  • Hallam NB, West JR, Forster CF et al (2001) The potential for biofilm growth in water distribution systems. Water Res 35(17):4063–4071

    Article  CAS  PubMed  Google Scholar 

  • Hammes F, Egli T (2010) Cytometric methods for measuring bacteria in water: advantages, pitfalls and applications. Anal Bioanal Chem 397(3):1083–1095

    Article  CAS  PubMed  Google Scholar 

  • Hammes F, Berney M, Wang Y et al (2008) Flow-cytometric total bacterial cell counts as a descriptive microbiological parameter for drinking water treatment processes. Water Res 42(1–2):269–277

    Article  CAS  PubMed  Google Scholar 

  • Hammes F, Goldschmidt F, Vital M et al (2010a) Measurement and interpretation of microbial adenosine tri-phosphate (ATP) in aquatic environments. Water Res 44(13):3915–3923

    Article  CAS  PubMed  Google Scholar 

  • Hammes F, Vital M, Egli T (2010b) Critical evaluation of the volumetric “bottle effect” on microbial batch growth. Appl Environ Microbiol 76(4):1278–1281

    Article  CAS  PubMed  Google Scholar 

  • Hébrant M, Pelleïeux S, Mathieu L et al (2014) Distinct adsorption kinetics of Qß and GA bacteriophages on drinking water biofilms. Adsorption 20(5–6):823–828

    Article  CAS  Google Scholar 

  • Helmi K, Skraber S, Gantzer C et al (2008) Interactions of Cryptosporidium parvum, Giardia lamblia, vaccinal poliovirus type 1, and bacteriophages phiX174 and MS2 with a drinking water biofilm and a wastewater biofilm. Appl Environ Microbiol 74(7):2079–2088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henne K, Kahlisch L, Brettar I et al (2012) Analysis of structure and composition of bacterial core communities in mature drinking water biofilms and bulk water of a citywide network in Germany. Appl Environ Microbiol 78(10):3530–3538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henne K, Kahlisch L, Hofle MG et al (2013) Seasonal dynamics of bacterial community structure and composition in cold and hot drinking water derived from surface water reservoirs. Water Res 47(15):5614–5630

    Article  CAS  PubMed  Google Scholar 

  • Hindre T, Bruggemann H, Buchrieser C et al (2008) Transcriptional profiling of Legionella pneumophila biofilm cells and the influence of iron on biofilm formation. Microbiology 154(Pt 1):30–41

    Article  CAS  PubMed  Google Scholar 

  • Holder D, Berry D, Dai D et al (2013) A dynamic and complex monochloramine stress response in Escherichia coli revealed by transcriptome analysis. Water Res 47(14):4978–4985

    Article  CAS  PubMed  Google Scholar 

  • Holinger EP, Ross KA, Robertson CE et al (2014) Molecular analysis of point-of-use municipal drinking water microbiology. Water Res 49:225–235

    Article  CAS  PubMed  Google Scholar 

  • Hong PY, Hwang C, Ling F et al (2010) Pyrosequencing analysis of bacterial biofilm communities in water meters of a drinking water distribution system. Appl Environ Microbiol 76(16):5631–5635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hrudey SE, Hrudey EJ (2004) Safe drinking water. Lessons from recent outbreaks in affluent nations. IWA Publishing, London

    Google Scholar 

  • Hwang C, Ling F, Andersen GL et al (2012) Microbial community dynamics of an urban drinking water distribution system subjected to phases of chloramination and chlorination treatments. Appl Environ Microbiol 78(22):7856–7865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingerson-Mahar M, Reid A (2012) Microbes in pipes: the microbiology of water distribution systems. A report on an American Academy of Microbiology Colloquium, Boulder, CO. ASM, Washington, DC

    Google Scholar 

  • Inkinen J, Kaunisto T, Pursiainen A et al (2014) Drinking water quality and formation of biofilms in an office building during its first year of operation, a full scale study. Water Res 49:83–91

    Article  CAS  PubMed  Google Scholar 

  • Janjaroen D, Ling FQ, Monroy G et al (2013) Roles of ionic strength and biofilm roughness on adhesion kinetics of Escherichia coli onto groundwater biofilm grown on PVC surfaces. Water Res 47(7):2531–2542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang D, Chen Y, Ni G (2011) Effect of total phosphorus (TP) and microbially available phosphorus (MAP) on bacterial regrowth in drinking water distribution system. Syst Eng Procedia 1:124–129

    Article  Google Scholar 

  • Juhna T, Birzniece D, Larsson S et al (2007) Detection of Escherichia coli in biofilms from pipe samples and coupons in drinking water distribution networks. Appl Environ Microbiol 73(22):7456–7464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jungfer C, Friedrich F, Varela Villarreal J et al (2013) Drinking water biofilms on copper and stainless steel exhibit specific molecular responses towards different disinfection regimes at waterworks. Biofouling 29(8):891–907

    Article  CAS  PubMed  Google Scholar 

  • Kahlisch L, Henne K, Grobe L et al (2012) Assessing the viability of bacterial species in drinking water by combined cellular and molecular analyses. Microb Ecol 63(2):383–397

    Article  PubMed  Google Scholar 

  • Kalmbach S, Manz W, Szewzyk U (1997) Isolation of new bacterial species from drinking water biofilms and proof of their in situ dominance with highly specific 16S rRNA probes. Appl Environ Microbiol 63(11):4164–4170

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kalmbach S, Manz W, Bendinger B et al (2000) In situ probing reveals Aquabacterium commune as a widespread and highly abundant bacterial species in drinking water biofilms. Water Res 34(2):575–581

    Article  CAS  Google Scholar 

  • Keinänen-Toivola MM, Revetta RP, Santo Domingo JW (2006) Identification of active bacterial communities in a model drinking water biofilm system using 16S rRNA-based clone libraries. FEMS Microbiol Lett 257(2):182–188

    Article  CAS  PubMed  Google Scholar 

  • Kelly JJ, Minalt N, Culotti A et al (2014) Temporal variations in the abundance and composition of biofilm communities colonizing drinking water distribution pipes. PLoS One 9(5):e98542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerr CJ, Osborn KS, Robson GD et al (1999) The relationship between pipe material and biofilm formation in a laboratory model system. J Appl Microbiol Symposium Suppl 85:29S–38S

    Article  Google Scholar 

  • Kilb B, Lange B, Shaule G et al (2003) Contamination of drinking water by coliforms from biofilms grown on rubber-coated valves. Int J Hyg Environ Health 206:563–573

    Article  PubMed  Google Scholar 

  • Kim J, Park HJ, Lee JH et al (2009) Differential effect of chlorine on the oxidative stress generation in dormant and active cells within colony biofilm. Water Res 43(20):5252–5259

    Article  CAS  PubMed  Google Scholar 

  • Kjellerup BV, Gudmonsson G, Sowers K et al (2006) Evaluation of analytical methods for determining the distribution of biofilm and active bacteria in a commercial heating system. Biofouling 22(3–4):145–151

    CAS  PubMed  Google Scholar 

  • Kormas KA, Neofitou C, Pachiadaki M et al (2010) Changes of the bacterial assemblages throughout an urban drinking water distribution system. Environ Monit Assess 165(1–4):27–38

    Article  CAS  PubMed  Google Scholar 

  • Langmark J, Storey MV, Ashbolt NJ et al (2007) The effects of UV disinfection on distribution pipe biofilm growth and pathogen incidence within the greater Stockholm area, Sweden. Water Res 41(15):3327–3336

    Article  CAS  PubMed  Google Scholar 

  • Larsen P, Nielsen JL, Dueholm MS et al (2007) Amyloid adhesins are abundant in natural biofilms. Environ Microbiol 9(12):3077–3090

    Article  CAS  PubMed  Google Scholar 

  • Lautenschlager K, Boon N, Wang Y et al (2010) Overnight stagnation of drinking water in household taps induces microbial growth and changes in community composition. Water Res 44(17):4868–4877

    Article  CAS  PubMed  Google Scholar 

  • Lautenschlager K, Hwang C, Liu WT et al (2013) A microbiology-based multi-parametric approach towards assessing biological stability in drinking water distribution networks. Water Res 47(9):3015–3025

    Article  CAS  PubMed  Google Scholar 

  • Lautenschlager K, Hwang C, Ling F et al (2014) Abundance and composition of indigenous bacterial communities in a multi-step biofiltration-based drinking water treatment plant. Water Res 62:40–52

    Article  CAS  PubMed  Google Scholar 

  • LeChevallier MW, Seidler RJ, Evans TM (1980) Enumeration and characterization of standard plate count bacteria in chlorinated and raw water supplies. Appl Environ Microbiol 40(5):922–930

    CAS  PubMed  PubMed Central  Google Scholar 

  • LeChevallier MW, Schulz W, Lee RG (1991) Bacterial nutrients in drinking water. Appl Environ Microbiol 57(3):857–862

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee WH, Wahman DG, Bishop PL et al (2011) Free chlorine and monochloramine application to nitrifying biofilm: comparison of biofilm penetration, activity, and viability. Environ Sci Technol 45(4):1412–1419

    Article  CAS  PubMed  Google Scholar 

  • Lehtola MJ, Miettinen IT, Vartiainen T et al (2002) Changes in content of microbially available phosphorus, assimilable organic carbon and microbial growth potential during drinking water treatment processes. Water Res 36(15):3681–3690

    Article  CAS  PubMed  Google Scholar 

  • Lehtola MJ, Miettinen IT, Keinanen MM et al (2004) Microbiology, chemistry and biofilm development in a pilot drinking water distribution system with copper and plastic pipes. Water Res 38(17):3769–3779

    Article  CAS  PubMed  Google Scholar 

  • Lehtola MJ, Miettinen IT, Lampola T et al (2005) Pipeline materials modify the effectiveness of disinfectants in drinking water distribution systems. Water Res 39(10):1962–1971

    Article  CAS  PubMed  Google Scholar 

  • Lehtola MJ, Torvinen E, Kusnetsov J et al (2007) Survival of Mycobacterium avium, Legionella pneumophila, Escherichia coli, and caliciviruses in drinking water-associated biofilms grown under high-shear turbulent flow. Appl Environ Microbiol 73(9):2854–2859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewandowski Z, Boltz JP (2011) Biofilms in water and water treatment. In: Treatise on water science. Elsevier, Chapter 4–15, pp 529–570. https://doi.org/10.1016/B978-0-444-53199-5.00095-6

  • Li J, McLellan S, Ogawa S (2006) Accumulation and fate of green fluorescent labeled Escherichia coli in laboratory-scale drinking water biofilters. Water Res 40(16):3023–3028

    Article  CAS  PubMed  Google Scholar 

  • Li D, Li Z, Yu J et al (2010) Characterization of bacterial community structure in a drinking water distribution system during an occurrence of red water. Appl Environ Microbiol 76(21):7171–7180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin W, Yu Z, Zhang H et al (2014) Diversity and dynamics of microbial communities at each step of treatment plant for potable water generation. Water Res 52:218–230

    Article  CAS  PubMed  Google Scholar 

  • Ling F, Liu WT (2013) Impact of chloramination on the development of laboratory-grown biofilms fed with filter-pretreated groundwater. Microbes Environ 28(1):50–57

    Article  PubMed  Google Scholar 

  • Linke S, Lenz J, Gemein S et al (2010) Detection of Helicobacter pylori in biofilms by real-time PCR. Int J Hyg Environ Health 213(3):176–182

    Article  CAS  PubMed  Google Scholar 

  • Lipponen MT, Suutari MH, Martikainen PJ (2002) Occurrence of nitrifying bacteria and nitrification in Finnish drinking water distribution systems. Water Res 36(17):4319–4329

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Ling FQ, Magic-Knezev A et al (2013a) Quantification and identification of particle-associated bacteria in unchlorinated drinking water from three treatment plants by cultivation-independent methods. Water Res 47(10):3523–3533

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Van der Mark EJ, Verberk JQ et al (2013b) Flow cytometry total cell counts: a field study assessing microbiological water quality and growth in unchlorinated drinking water distribution systems. Biomed Res Int 2013:595872

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu G, Bakker GL, Li S et al (2014a) Pyrosequencing reveals bacterial communities in unchlorinated drinking water distribution system: an integral study of bulk water, suspended solids, loose deposits, and pipe wall biofilm. Environ Sci Technol 48(10):5467–5476

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Zhu J, Yu Z et al (2014b) Molecular analysis of long-term biofilm formation on PVC and cast iron surfaces in drinking water distribution system. J Environ Sci (China) 26(4):865–874

    Article  CAS  Google Scholar 

  • Liu S, Gunawan C, Barraud N, Rice SA, Harry EJ, Amal R (2016) Understanding, monitoring, and controlling biofilm growth in drinking water distribution systems. Environ Sci Technol 50:8954–8976

    Article  CAS  PubMed  Google Scholar 

  • Loret JF, Greub G (2010) Free-living amoebae: biological by-passes in water treatment. Int J Hyg Environ Health 213(3):167–175

    Article  CAS  PubMed  Google Scholar 

  • Lu W, Kiéné L, Lévi Y (1999) Chlorine demand of biofilms in water distribution systems. Water Res 33(3):827–835

    Article  CAS  Google Scholar 

  • Lürhig K, Canbäck B, Paul CJ, Johansson T, Persson K, Radström P (2015) Bacterial community analysis of drinking water biofilms in southern Sweden. Microbes Environ 30(1):99–107

    Article  Google Scholar 

  • Ma X, Baron JL, Vikram A, Stout JE, Bibby K (2015) Fungal diversity and presence of potentially pathogenic fungi in a hospital hot water system treated with on-site monochloramine. Water Res 71:197–206

    Article  CAS  PubMed  Google Scholar 

  • Mackay WG, Gribbon LT, Barer MR, Reid DC (1998) Biofilms in drinking water systems – a possible reservoir for Helicobacter pylori. Water Sci Technol 38(12):181–18S

    Article  CAS  Google Scholar 

  • Malm A, Ljunggren O, Bergstedt O et al (2012) Replacement predictions for drinking water networks through historical data. Water Res 46(7):2149–2158

    Article  CAS  PubMed  Google Scholar 

  • Manuel CM, Nunes OC, Melo LF (2007) Dynamics of drinking water biofilm in flow/non-flow conditions. Water Res 41:551–562

    Article  CAS  PubMed  Google Scholar 

  • Manuel CM, Nunes OC, Melo LF (2010) Unsteady state flow and stagnation in distribution systems affect the biological stability of drinking water. Biofouling 26(2):129–139

    Article  CAS  PubMed  Google Scholar 

  • Marciano-Cabral F, Jamerson M, Kaneshiro ES (2010) Free-living amoebae, Legionella and Mycobacterium in tap water supplied by a municipal drinking water utility in the USA. J Water Health 8(1):71–82

    Article  CAS  PubMed  Google Scholar 

  • Martiny AC, Jorgensen TM, Albrechtsen HJ et al (2003) Long-term succession of structure and diversity of a biofilm formed in a model drinking water distribution system. Appl Environ Microbiol 69(11):6899–6907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martiny AC, Albrechtsen HJ, Arvin E et al (2005) Identification of bacteria in biofilm and bulk water samples from a nonchlorinated model drinking water distribution system: detection of a large nitrite-oxidizing population associated with Nitrospira spp. Appl Environ Microbiol 71(12):8611–8617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathieu L, Block JC, Prévost M et al (1995) Biological stability of drinking-water in the city of Metz distribution system. J Water SRT-Aqua 44(5):230–239

    CAS  Google Scholar 

  • Mathieu L, Bouteleux C, Fass S et al (2009) Reversible shift in the alpha-, beta- and gamma-proteobacteria populations of drinking water biofilms during discontinuous chlorination. Water Res 43(14):3375–3386

    Article  CAS  PubMed  Google Scholar 

  • Mathieu L, Bertrand I, Abe Y et al (2014) Drinking water biofilm cohesiveness changes under chlorination or hydrodynamic stress. Water Res 55:175–184

    Article  CAS  PubMed  Google Scholar 

  • Maul A (2014) Heterogeneity: a major factor influencing microbial exposure and risk assessment. Risk Anal 34(9):1606–1617

    Article  PubMed  Google Scholar 

  • McCoy ST, Van Briesen JM (2014) Comparing spatial and temporal diversity of bacteria in a chlorinated drinking water distribution system. Environ Eng Sci 31(1):32–41

    Article  CAS  Google Scholar 

  • Miettinen IT, Vartiainen T, Martikainen PJ (1997) Phosphorus and bacterial growth in drinking water. Appl Environ Microbiol 63(8):3242–3245

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miles SL, Gerba CP, Pepper IL et al (2009) Point-of-use drinking water devices for assessing microbial contamination in finished water and distribution systems. Environ Sci Technol 43(5):1425–1429

    Article  CAS  PubMed  Google Scholar 

  • Milferstedt K, Santa-Catalina G, Godon JJ et al (2013) Disturbance frequency determines morphology and community development in multi-species biofilm at the landscape scale. PLoS One 8(11):e80692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mogoa E, Bodet C, Legube B et al (2010) Acanthamoeba castellanii: cellular changes induced by chlorination. Exp Parasitol 126(1):97–102

    Article  CAS  PubMed  Google Scholar 

  • Moritz MM, Flemming HC, Wingender J (2010) Integration of Pseudomonas aeruginosa and Legionella pneumophila in drinking water biofilms grown on domestic plumbing materials. Int J Hyg Environ Health 213(3):190–197

    Article  CAS  PubMed  Google Scholar 

  • Morrow JB, Almeida JL, Fitzgerald LA et al (2008) Association and decontamination of Bacillus spores in a simulated drinking water system. Water Res 42(20):5011–5021

    Article  CAS  PubMed  Google Scholar 

  • Morton SC, Zhang Y, Edwards MA (2005) Implications of nutrient release from iron metal for microbial regrowth in water distribution systems. Water Res 39(13):2883–2892

    Article  CAS  PubMed  Google Scholar 

  • Nescerecka A, Rubulis J, Vital M et al (2014) Biological instability in a chlorinated drinking water distribution network. PLoS One 9(5):e96354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niquette P, Servais P, Savoir R (2000) Impacts of pipe materials on densities of fixed bacterial biomass in a drinking water distribution system. Water Res 34(6):1952–1956

    Article  CAS  Google Scholar 

  • Niquette P, Servais P, Savoir R (2001) Bacterial dynamics in the drinking water distribution system of Brussels. Water Res 35(3):675–682

    Article  CAS  PubMed  Google Scholar 

  • Norton CD, LeChevallier MW (2000) A pilot study of bacteriological population changes through potable water treatment and distribution. Appl Environ Microbiol 66(1):268–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norton CD, LeChevallier MW, Falkinham JO 3rd (2004) Survival of Mycobacterium avium in a model distribution system. Water Res 38(6):1457–1466

    Article  CAS  PubMed  Google Scholar 

  • Ojeda JJ, Romero-Gonzalez ME, Bachmann RT et al (2008) Characterization of the cell surface and cell wall chemistry of drinking water bacteria by combining XPS, FTIR spectroscopy, modeling, and potentiometric titrations. Langmuir 24(8):4032–4040

    Article  CAS  PubMed  Google Scholar 

  • Oliveira BR, Crespo MT, San Romao MV et al (2013) New insights concerning the occurrence of fungi in water sources and their potential pathogenicity. Water Res 47(16):6338–6347

    Article  CAS  PubMed  Google Scholar 

  • Otterholt E, Charnock C (2011) Identification and phylogeny of the small eukaryote population of raw and drinking waters. Water Res 45(8):2527–2538

    Article  CAS  PubMed  Google Scholar 

  • Ovrutsky AR, Chan ED, Kartalija M, Bai X, Jackson M, Gibbs S, Falkinham JO, Iseman MD, Reynolds PR, McDonnell G, Thomas V (2013) Cooccurrence of free-living amoebae and nontuberculous mycobacteria in hospital water networks, and preferential growth of Mycobacterium avium in Acanthamoeba lenticulata. Appl Environ Microbiol 79(10):3185–3192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paris T, Skali-Lami S, Block JC (2007) Effect of wall shear rate on biofilm deposition and grazing in drinking water flow chambers. Biotechnol Bioeng 97(6):1550–1561

    Article  CAS  PubMed  Google Scholar 

  • Park S-K, Choi J-H, Hu JY (2012) Assessing bacterial growth potential in a model distribution system receiving nanofiltration membrane treated water. Desalination 296:7–15

    Article  CAS  Google Scholar 

  • Pavissich JP, Vargas IT, Gonzalez B et al (2010) Culture dependent and independent analyses of bacterial communities involved in copper plumbing corrosion. J Appl Microbiol 109(3):771–782

    Article  CAS  PubMed  Google Scholar 

  • Payment P, Siemiatycki J, Richardson L et al (1997) A prospective epidemiological study of gastrointestinal health effects due to the consumption of drinking water. Int J Environ Health Res 7:5–31

    Article  Google Scholar 

  • Pedersen K (1990) Biofilm development on stainless steel and PVC surface in drinking water. Water Res 24(2):239–243

    Article  CAS  Google Scholar 

  • Percival SL, Knapp JS, Edyvean RGJ et al (1998) Biofilms, mains water and stainless steel. Water Res 32(7):2187–2201

    Article  CAS  Google Scholar 

  • Pereira VJ, Basilio MC, Fernandes D et al (2009) Occurrence of filamentous fungi and yeasts in three different drinking water sources. Water Res 43(15):3813–3819

    Article  CAS  PubMed  Google Scholar 

  • Pereira VJ, Fernandes D, Carvalho G et al (2010) Assessment of the presence and dynamics of fungi in drinking water sources using cultural and molecular methods. Water Res 44(17):4850–4859

    Article  CAS  PubMed  Google Scholar 

  • Phe MH, Dossot M, Guilloteau H et al (2005) Nucleic acid fluorochromes and flow cytometry prove useful in assessing the effect of chlorination on drinking water bacteria. Water Res 39(15):3618–3628

    Article  CAS  PubMed  Google Scholar 

  • Pinto AJ, Xi C, Raskin L (2012) Bacterial community structure in the drinking water microbiome is governed by filtration processes. Environ Sci Technol 46(16):8851–8859

    Article  CAS  PubMed  Google Scholar 

  • Pinto AJ, Schroeder J, Lunn M et al (2014) Spatial-temporal survey and occupancy-abundance modeling to predict bacterial community dynamics in the drinking water microbiome. MBio 5(3):e01135–e01114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poitelon JB, Joyeux M, Welte B et al (2009a) Identification and phylogeny of eukaryotic 18S rDNA phylotypes detected in chlorinated finished drinking water samples from three Parisian surface water treatment plants. Lett Appl Microbiol 49(5):589–595

    Article  CAS  PubMed  Google Scholar 

  • Poitelon JB, Joyeux M, Welte B et al (2009b) Assessment of phylogenetic diversity of bacterial microflora in drinking water using serial analysis of ribosomal sequence tags. Water Res 43(17):4197–4206

    Article  CAS  PubMed  Google Scholar 

  • Polanska M, Huysman K, Van Keer C (2005) Investigation of microbially available phosphorus (MAP) in flemish drinking water. Water Res 39(11):2267–2272

    Article  CAS  PubMed  Google Scholar 

  • Power KN, Nagy LA (1999) Relationship between bacterial regrowth and some physical and chemical parameters within Sydney’s drinking water distribution system. Water Res 33(3):741–750

    Article  CAS  Google Scholar 

  • Prest EI, El-Chakhtoura J, Hammes F et al (2014) Combining flow cytometry and 16S rRNA gene pyrosequencing: a promising approach for drinking water monitoring and characterization. Water Res 63:179–189

    Article  CAS  PubMed  Google Scholar 

  • Prévost M, Rompré A, Coallier J et al (1998) Suspended bacterial biomass and activity in full-scale drinking water distribution systems: impact of water treatment. Water Res 32(5):1393–1406

    Article  Google Scholar 

  • Proctor CR, Hammes F (2015) Drinking water microbiology – from measurement to management. Curr Opin Biotechnol 33:87–94

    Article  CAS  PubMed  Google Scholar 

  • Pryor M, Springthorpe S, Riffard S, Brooks T, Huo Y, Davis G, Satter SA (2004) Investigation of opportunistic pathogens in municipal drinking water under different supply and treatment regimes. Water Sci Technol 50:83–90

    Article  CAS  PubMed  Google Scholar 

  • Ramseier MK, von Gunten U, Freihofer P et al (2011) Kinetics of membrane damage to high (HNA) and low (LNA) nucleic acid bacterial clusters in drinking water by ozone, chlorine, chlorine dioxide, monochloramine, ferrate(VI), and permanganate. Water Res 45(3):1490–1500

    Article  CAS  PubMed  Google Scholar 

  • Revetta RP, Pemberton A, Lamendella R et al (2010) Identification of bacterial populations in drinking water using 16S rRNA-based sequence analyses. Water Res 44(5):1353–1360

    Article  CAS  PubMed  Google Scholar 

  • Revetta RP, Gomez-Alvarez V, Gerke TL et al (2013) Establishment and early succession of bacterial communities in monochloramine-treated drinking water biofilms. FEMS Microbiol Ecol 86(3):404–414

    Article  CAS  PubMed  Google Scholar 

  • Rinta-Kanto JM, Lethola MJ, Vartiainen T et al (2004) Rapid enumeration of virus-like particles in drinking water samples using SYBR green I-staining. Water Res 38:2614–2618

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues AL, Pereira MA, Janknecht P, Broto AG, Nogueira R (2010) Biofilms formed on humic substances: response to flow conditions and carbon concentrations. Bioresour Technol 101:6888–6894

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Martinez S, Sharaby Y, Pecellin M, Brettar I, Höfle M, Halpern M (2015) Spatial distribution of Legionella pneumophila MLVA-genotypes in a drinking water system. Water Res 77:119–132

    Article  CAS  PubMed  Google Scholar 

  • Roeder RS, Lenz J, Tarne P et al (2010) Long-term effects of disinfectants on the community composition of drinking water biofilms. Int J Hyg Environ Health 213(3):183–189

    Article  CAS  PubMed  Google Scholar 

  • Rogers J, Dowsett AB, Dennis PJ et al (1994) Influence of plumbing materials on biofilm formation and growth of Legionella pneumophila in potable water Systems. Appl Environ Microbiol 60(6):1842–1851

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saby S, Sibille I, Mathieu L et al (1997) Influence of water chlorination on the counting of bacteria with DAPI (4′,6-diamidino-2-phenylindole). Appl Environ Microbiol 63(4):1564–1569

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saby S, Leroy P, Block JC (1999) Escherichia coli resistance to chlorine and glutathione synthesis in response to oxygenation and starvation. Appl Environ Microbiol 65(12):5600–5603

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sack EL, van der Wielen PW, van der Kooij D (2014) Polysaccharides and proteins added to flowing drinking water at microgram-per-liter levels promote the formation of biofilms predominated by bacteroidetes and proteobacteria. Appl Environ Microbiol 80(8):2360–2371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santo Domingo JW, Meckes MC, Simpson JM, Sloss B, Reasoner DJ (2003) Molecular characterization of bacteria inhabiting a water distribution system simulator. Water Sci Technol 47:149–154

    Article  CAS  PubMed  Google Scholar 

  • Sathasivan A, Ohgaki S (1999) Application of new bacterial regrowth potential method for water distribution system – a clear evidence of phosphorus limitation. Water Res 33(1):137–144

    Article  CAS  Google Scholar 

  • Sautour M, Edel-Hermann V, Steinberg C et al (2012) Fusarium species recovered from the water distribution system of a French university hospital. Int J Hyg Environ Health 215(3):286–292

    Article  PubMed  Google Scholar 

  • Schmeisser C, Stockigt C, Raasch C et al (2003) Metagenome survey of biofilms in drinking-water networks. Appl Environ Microbiol 69(12):7298–7309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz T, Hoffmann S, Obst U (2003) Formation of natural biofilms during chlorine dioxide and u.v. disinfection in a public drinking water distribution system. J Appl Microbiol 95(3):591–601

    Article  CAS  PubMed  Google Scholar 

  • Schwering M, Song J, Louie M, Turner RJ, Ceri H (2014) Multi-species biofilms defined from drinking water microorganisms provided increased protection against chlorine disinfection. Biofouling 29(8):917–928

    Article  CAS  Google Scholar 

  • September SM, Brozel VS, Venter SN (2004) Diversity of nontuberculoid Mycobacterium species in biofilms of urban and semiurban drinking water distribution systems. Appl Environ Microbiol 70(12):7571–7573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Servais P, Billen G, Ventresque C et al (1991) Microbial activity in GAC filters at the Choisy-le-Roi treatment plant. J Am Water Works Assoc 83(2):62–68

    Article  CAS  Google Scholar 

  • Servais P, Laurent P, Billen G et al (1995) Development of a model of BDOC and bacterial biomass fluctuations in distribution systems. Revue des Sciences de l’Eau 8:427–464

    Article  CAS  Google Scholar 

  • Shen Y, Monroy GL, Derlon N, Janjaroen D, Huang C, Morgenroth E, Boppart SA, Ashbolt NJ, Liu W-T, Nguyen TH (2015) Role of biofilm roughness and hydrodynamic conditions in Legionella pneumophila adhesion to and detachment from simulated drinking water biofilms. Environ Sci Technol 49:4274–4282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sibille I, Mathieu L, Paquin JL et al (1997) Microbial characteristics of a distribution system fed with nanofiltered drinking water. Water Res 31(9):2318–2326

    Article  CAS  Google Scholar 

  • Sibille I, Sime-Ngando T, Mathieu L et al (1998) Protozoan bacterivory and Escherichia coli survival in drinking water distribution systems. Appl Environ Microbiol 64(1):197–202

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silbaq FS (2009) Viable ultramicrocells in drinking water. J Appl Microbiol 106:106–117

    Article  CAS  PubMed  Google Scholar 

  • Silhan J, Corfitzen CB, Albrechtsen HJ (2006) Effect of temperature and pipe material on biofilm formation and survival of Escherichia coli in used drinking water pipes: a laboratory-based study. Water Sci Technol 54(3):49–56

    Article  CAS  PubMed  Google Scholar 

  • Simoes LC, Simoes M, Vieira MJ (2010) Adhesion and biofilm formation on polystyrene by drinking water-isolated bacteria. Antonie Van Leeuwenhoek 98(3):317–329

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Stine OC, Smith DL et al (2003) Microbial diversity of biofilms in dental unit water systems. Appl Environ Microbiol 69(6):3412–3420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siqueira VM, Oliveira HM, Santos C et al (2011) Filamentous fungi in drinking water, particularly in relation to biofilm formation. Int J Environ Res Public Health 8(2):456–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steed K, Falkinham JO III (2006) Effect of growth in biofilms on chlorine susceptibility of Mycobacterium avium and Mycobacterium intracellulare. Appl Environ Microbiol 72(6):4007–4011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6(3):199–210

    Article  CAS  PubMed  Google Scholar 

  • Stewart CR, Muthye V, Cianciotto NP (2012) Legionella pneumophila persists within biofilms formed by Klebsiella pneumoniae, Flavobacterium sp., and Pseudomonas fluorescens under dynamic flow conditions. PLoS One 7(11):e50560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stockman LJ, Wright CJ, Visvesvara GS et al (2011) Prevalence of Acanthamoeba spp. and other free-living amoebae in household water, Ohio, USA – 1990-1992. Parasitol Res 108(3):621–627

    Article  PubMed  Google Scholar 

  • Stoodley P, Wilson S, Hall-Stoodley L et al (2001) Growth and detachment of cell clusters from mature mixed-species biofilms. Appl Environ Microbiol 67(12):5608–5613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szabo J, Minamyer S (2014) Decontamination of biological agents from drinking water infrastructure: a literature review and summary. Environ Int 72:124–128

    Article  CAS  PubMed  Google Scholar 

  • Szabo JG, Rice EW, Bishop PL (2007) Persistence and decontamination of Bacillus atrophaeus subsp. globigii spores on corroded iron in a model drinking water system. Appl Environ Microbiol 73(8):2451–2457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szabo JG, Muhammad N, Heckman L et al (2012) Germinant-enhanced decontamination of Bacillus spores adhered to iron and cement-mortar drinking water infrastructures. Appl Environ Microbiol 78(7):2449–2451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szewzyk U, Manz W, Amann R et al (1994) Growth and in situ detection of a pathogenic Escherichia coli in biofilms of a heterotrophic water-bacterium by use of 16S- and 23S-rRNAdirected fluorescent oligonucleotide probes. FEMS Microbiol Ecol 13:169–176

    Article  CAS  Google Scholar 

  • Tachikawa M, Yamanaka K (2014) Synergistic disinfection and removal of biofilms by a sequential two-step treatment with ozone followed by hydrogen peroxide. Water Res 64:94–101

    Article  CAS  PubMed  Google Scholar 

  • Tatchou-Nyamsi-König JA, Dague E, Mullet M et al (2008) Adhesion of Campylobacter jejuni and Mycobacterium avium onto polyethylene terephtalate (PET) used for bottled waters. Water Res 42(19):4751–4760

    Article  CAS  PubMed  Google Scholar 

  • Temmerman R, Vervaeren H, Boon N, Verstraete W (2006) Necrotrophic growth of Legionella pneumophila. Appl Environ Microbiol 72:4323–4328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas JM, Ashbolt NJ (2011) Do free-living amoebae in treated drinking water systems present an emerging health risk? Environ Sci Technol 45(3):860–869

    Article  CAS  PubMed  Google Scholar 

  • Torvinen E, Suomalainen S, Lehtola MJ et al (2004) Mycobacteria in water and loose deposits of drinking water distribution systems in Finland. Appl Environ Microbiol 70(4):1973–1981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai YP, Paib TY, Qiu JM (2004) The impacts of the AOC concentration on biofilm formation under higher shear force condition. J Biotechnol 111:155–167

    Article  CAS  PubMed  Google Scholar 

  • Vaerewijck MJ, Huys G, Palomino JC et al (2005) Mycobacteria in drinking water distribution systems: ecology and significance for human health. FEMS Microbiol Rev 29(5):911–934

    Article  CAS  PubMed  Google Scholar 

  • Valster RM, Wullings BA, Bakker G et al (2009) Free-living protozoa in two unchlorinated drinking water supplies, identified by phylogenic analysis of 18S rRNA gene sequences. Appl Environ Microbiol 75(14):4736–4746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valster RM, Wullings BA, van den Berg R et al (2011) Relationships between free-living protozoa, cultivable Legionella spp., and water quality characteristics in three drinking water supplies in the Caribbean. Appl Environ Microbiol 77(20):7321–7328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Kooij D, Hijnen WA (1988) Nutritional versatility and growth kinetics of an Aeromonas hydrophila strain isolated from drinking water. Appl Environ Microbiol 54(11):2842–2851

    PubMed  PubMed Central  Google Scholar 

  • van der Kooij D, Veenendaal HR, Baars-Lorist C et al (1995) Biofilm formation on surfaces of glass and teflon exposed to treated water. Water Res 29(7):1655–1662

    Article  Google Scholar 

  • van der Kooij D, Veenendaal HR, Scheffer WJ (2005) Biofilm formation and multiplication of Legionella in a model warm water system with pipes of copper, stainless steel and cross-linked polyethylene. Water Res 39(13):2789–2798

    Article  CAS  PubMed  Google Scholar 

  • Van der Wende E, Characklis WG, Smith C (1989) Biofilms and bacterial drinking water quality. Water Res 23(10):1313–1322

    Article  Google Scholar 

  • van der Wielen PW, van der Kooij D (2013) Nontuberculous mycobacteria, fungi, and opportunistic pathogens in unchlorinated drinking water in The Netherlands. Appl Environ Microbiol 79(3):825–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Lieverloo JH, Hoogenboezem W, Veenendaal G et al (2012) Variability of invertebrate abundance in drinking water distribution systems in the Netherlands in relation to biostability and sediment volumes. Water Res 46(16):4918–4932

    Article  CAS  PubMed  Google Scholar 

  • Van Loosdrecht MCM, Lyklema J, Norde W et al (1987) Electrophoretic mobility and hydrophobicity as a measure to predict the initial steps of bacterial adhesion. Appl Environ Microbiol 53(8):1898–1901

    PubMed  PubMed Central  Google Scholar 

  • Van Nevel S, Hennebel T, De Beuf K et al (2012) Transparent exopolymer particle removal in different drinking water production centers. Water Res 46(11):3603–3611

    Article  CAS  PubMed  Google Scholar 

  • Vaz-Moreira I, Egas C, Nunes OC et al (2013) Bacterial diversity from the source to the tap: a comparative study based on 16S rRNA gene-DGGE and culture-dependent methods. FEMS Microbiol Ecol 83(2):361–374

    Article  CAS  PubMed  Google Scholar 

  • Velten S, Boller M, Koster O et al (2011) Development of biomass in a drinking water granular active carbon (GAC) filter. Water Res 45(19):6347–6354

    Article  CAS  PubMed  Google Scholar 

  • Vervaeren H, Temmerman R, Devos L et al (2006) Introduction of a boost of Legionella pneumophila into a stagnant-water model by heat treatment. FEMS Microbiol Ecol 58(3):583–592

    Article  CAS  PubMed  Google Scholar 

  • Vital M, Stucki D, Egli T et al (2010) Evaluating the growth potential of pathogenic bacteria in water. Appl Environ Microbiol 76(19):6477–6484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Völker S, Schreiber C, Kistemann T (2010) Drinking water quality in household supply infrastructure – a survey of the current situation in Germany. Int J Hyg Environ Health 213(3):204–209

    Article  PubMed  Google Scholar 

  • Walker SL, Hill JE, Redman JA et al (2005) Influence of growth phase on adhesion kinetics of Escherichia coli D21g. Appl Environ Microbiol 71(6):3093–3099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker JT, Jhutty A, Parks S et al (2014) Investigation of healthcare-acquired infections associated with Pseudomonas aeruginosa biofilms in taps in neonatal units in Northern Ireland. J Hosp Infect 86(1):16–23

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Hammes F, Boon N et al (2007) Quantification of the filterability of freshwater bacteria through 0.45, 0.22, and 0.1 microm pore size filters and shape-dependent enrichment of filterable bacterial communities. Environ Sci Technol 41(20):7080–7086

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Edwards M, Falkinham JO III et al (2012a) Molecular survey of the occurrence of Legionella spp., Mycobacterium spp., Pseudomonas aeruginosa, and amoeba hosts in two chloraminated drinking water distribution systems. Appl Environ Microbiol 78(17):6285–6294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Hu C, Hu X et al (2012b) Effects of disinfectant and biofilm on the corrosion of cast iron pipes in a reclaimed water distribution system. Water Res 46(4):1070–1078

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Masters S, Hong Y et al (2012c) Effect of disinfectant, water age, and pipe material on occurrence and persistence of Legionella, mycobacteria, Pseudomonas aeruginosa, and two amoebas. Environ Sci Technol 46(21):11566–11574

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Edwards MA, Falkinham JO III et al (2013a) Probiotic approach to pathogen control in premise plumbing systems? A review. Environ Sci Technol 47(18):10117–10128

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Pryor MA, Edwards MA et al (2013b) Effect of GAC pre-treatment and disinfectant on microbial community structure and opportunistic pathogen occurrence. Water Res 47(15):5760–5772

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Masters S, Edwards MA et al (2014a) Effect of disinfectant, water age, and pipe materials on bacterial and eukaryotic community structure in drinking water biofilm. Environ Sci Technol 48(3):1426–1435

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Proctor CR, Edwards MA et al (2014b) Microbial community response to chlorine conversion in a chloraminated drinking water distribution system. Environ Sci Technol 48(18):10624–10633

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Hu C, Li X (2015) Characterization of biofilm bacterial communities and cast iron corrosion in bench-scale reactors with chloraminated drinking water. Eng Fail Anal 57:423–433

    Article  CAS  Google Scholar 

  • Westrell T, Bergstedt O, Stenstrom TA et al (2003) A theoretical approach to assess microbial risks due to failures in drinking water systems. Int J Environ Health Res 13(2):181–197

    Article  CAS  PubMed  Google Scholar 

  • Williams MM, Domingo JWS, Meckes MC et al (2004) Phylogenetic diversity of drinking water bacteria in a distribution system simulator. J Appl Microbiol 96(5):954–964

    Article  CAS  PubMed  Google Scholar 

  • Williams MM, Santo Domingo JW, Meckes MC (2005) Population diversity in model potable water biofilms receiving chlorine or chloramine residual. Biofouling 21(5–6):279–288

    Article  PubMed  Google Scholar 

  • Wullings BA, Bakker G, van der Kooij D (2011) Concentration and diversity of uncultured Legionella spp. in two unchlorinated drinking water supplies with different concentrations of natural organic matter. Appl Environ Microbiol 77(2):634–641

    Article  CAS  PubMed  Google Scholar 

  • Xue Z, Seo Y (2013) Impact of chlorine disinfection on redistribution of cell clusters from biofilms. Environ Sci Technol 47(3):1365–1372

    CAS  PubMed  Google Scholar 

  • Xue Z, Sendamangalam VR, Gruden CL et al (2012) Multiple roles of extracellular polymeric substances on resistance of biofilm and detached clusters. Environ Sci Technol 46(24):13212–13219

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Kim D, Lee T (2010) Microbial diversity in biofilms on water distribution pipes of different materials. Water Sci Technol 61(1):163–171

    Article  CAS  PubMed  Google Scholar 

  • Zacheus OM, Lehtola MJ, Korhonen LK et al (2001) Soft deposits, the key site for microbial growth in drinking water distribution networks. Water Res 35(7):1757–1765

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, DiGiano FA (2002) Comparison of bacterial regrowth in distribution systems using free chlorine and chloramine: a statistical study of causative factors. Water Res 36(6):1469–1482

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence Mathieu .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest

Laurence Mathieu declares that she has no conflict of interest. Tony Paris declares that he has no conflict of interest. Jean-Claude Block declares that he has no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mathieu, L., Paris, T., Block, JC. (2019). Microbiome of Drinking Water Distribution Systems. In: Hurst, C. (eds) The Structure and Function of Aquatic Microbial Communities. Advances in Environmental Microbiology, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-030-16775-2_9

Download citation

Publish with us

Policies and ethics