Skip to main content

Intranasal Delivering Method in the Treatment of Ischemic Stroke

  • Chapter
  • First Online:
Therapeutic Intranasal Delivery for Stroke and Neurological Disorders

Part of the book series: Springer Series in Translational Stroke Research ((SSTSR))

Abstract

Ischemic stroke is a leading cause of death and disability worldwide. Advances in early recognition of stroke symptoms and the transport of patients to specialized stroke centers has been a major step in improvement of mortality and morbidity. Speed is essential since current intravenous thrombolytic treatments can only be delivered in a very narrow therapeutic window. Intravenous therapy requires specialized skills, subjects the medication to first pass metabolism, and the issue of blood to brain transport is a major problem.

An alternate approach, the intranasal route, could deliver medication to the target in a quick manner and overcome the blood brain barrier to the central nervous system while avoiding first pass metabolism. Intranasal medication also requires minimal skill to administer in a hospital or in the field.

This chapter will address the pathway through which substances travel from the nasal epithelium to various regions of the central nervous system. This includes multiple substances for intranasal administration for the potential treatment of ischemic stroke, such as proteins and peptides, stem cells, gene vectors and nanoparticles. The chapter will conclude with the merits and potential issues of intranasal administration, as well as future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Powers WJ, et al. 2018 guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2018;49(3):e46–e110.

    Article  PubMed  Google Scholar 

  2. Thorne RG, et al. Delivery of interferon-beta to the monkey nervous system following intranasal administration. Neuroscience. 2008;152(3):785–97.

    Article  CAS  PubMed  Google Scholar 

  3. Thorne RG, et al. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience. 2004;127(2):481–96.

    Article  CAS  PubMed  Google Scholar 

  4. Doty RL. The olfactory vector hypothesis of neurodegenerative disease: is it viable? Ann Neurol. 2008;63(1):7–15.

    Article  PubMed  Google Scholar 

  5. Kristensson K, Olsson Y. Uptake of exogenous proteins in mouse olfactory cells. Acta Neuropathol. 1971;19(2):145–54.

    Article  CAS  PubMed  Google Scholar 

  6. Broadwell RD, Balin BJ. Endocytic and exocytic pathways of the neuronal secretory process and trans-synaptic transfer of wheat germ agglutinin-horseradish peroxidase in vivo. J Comp Neurol. 1985;242(4):632–50.

    Article  CAS  PubMed  Google Scholar 

  7. Thorne RG, et al. Quantitative analysis of the olfactory pathway for drug delivery to the brain. Brain Res. 1995;692(1–2):278–82.

    Article  CAS  PubMed  Google Scholar 

  8. Baker H, Spencer RF. Transneuronal transport of peroxidase-conjugated wheat germ agglutinin (WGA-HRP) from the olfactory epithelium to the brain of the adult rat. Exp Brain Res. 1986;63(3):461–73.

    Article  CAS  PubMed  Google Scholar 

  9. Kristensson K. Microbes’ roadmap to neurons. Nat Rev Neurosci. 2011;12(6):345–57.

    Article  CAS  PubMed  Google Scholar 

  10. Anton F, Peppel P. Central projections of trigeminal primary afferents innervating the nasal mucosa: a horseradish peroxidase study in the rat. Neuroscience. 1991;41(2–3):617–28.

    Article  CAS  PubMed  Google Scholar 

  11. Deatly AM, et al. Human herpes virus infections and Alzheimer’s disease. Neuropathol Appl Neurobiol. 1990;16(3):213–23.

    Article  CAS  PubMed  Google Scholar 

  12. Jin Y, et al. Neural route of cerebral Listeria monocytogenes murine infection: role of immune response mechanisms in controlling bacterial neuroinvasion. Infect Immun. 2001;69(2):1093–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Balin BJ, et al. Avenues for entry of peripherally administered protein to the central nervous system in mouse, rat, and squirrel monkey. J Comp Neurol. 1986;251(2):260–80.

    Article  CAS  PubMed  Google Scholar 

  14. Wolburg H, et al. Epithelial and endothelial barriers in the olfactory region of the nasal cavity of the rat. Histochem Cell Biol. 2008;130(1):127–40.

    Article  CAS  PubMed  Google Scholar 

  15. Steinke A, et al. Molecular composition of tight and adherens junctions in the rat olfactory epithelium and fila. Histochem Cell Biol. 2008;130(2):339–61.

    Article  CAS  PubMed  Google Scholar 

  16. Li Y, Field PM, Raisman G. Olfactory ensheathing cells and olfactory nerve fibroblasts maintain continuous open channels for regrowth of olfactory nerve fibres. Glia. 2005;52(3):245–51.

    Article  PubMed  Google Scholar 

  17. Bilston LE, et al. Arterial pulsation-driven cerebrospinal fluid flow in the perivascular space: a computational model. Comput Methods Biomech Biomed Engin. 2003;6(4):235–41.

    Article  PubMed  Google Scholar 

  18. Schley D, et al. Mechanisms to explain the reverse perivascular transport of solutes out of the brain. J Theor Biol. 2006;238(4):962–74.

    Article  CAS  PubMed  Google Scholar 

  19. Wang P, Olbricht WL. Fluid mechanics in the perivascular space. J Theor Biol. 2011;274(1):52–7.

    Article  PubMed  Google Scholar 

  20. Hadaczek P, et al. The “perivascular pump” driven by arterial pulsation is a powerful mechanism for the distribution of therapeutic molecules within the brain. Mol Ther. 2006;14(1):69–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guerra-Crespo M, et al. Intranasal administration of PEGylated transforming growth factor-alpha improves behavioral deficits in a chronic stroke model. J Stroke Cerebrovasc Dis. 2010;19(1):3–9.

    Article  PubMed  Google Scholar 

  22. Illum L. Nasal drug delivery—possibilities, problems and solutions. J Control Release. 2003;87(1–3):187–98.

    Article  CAS  PubMed  Google Scholar 

  23. Lee MR, et al. Oxytocin by intranasal and intravenous routes reaches the cerebrospinal fluid in rhesus macaques: determination using a novel oxytocin assay. Mol Psychiatry. 2018;23(1):115–22.

    Article  CAS  PubMed  Google Scholar 

  24. Rennels ML, et al. Evidence for a ‘paravascular’ fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res. 1985;326(1):47–63.

    Article  CAS  PubMed  Google Scholar 

  25. Iliff JJ, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med. 2012;4(147):147ra111.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Kida S, Pantazis A, Weller RO. CSF drains directly from the subarachnoid space into nasal lymphatics in the rat. Anatomy, histology and immunological significance. Neuropathol Appl Neurobiol. 1993;19(6):480–8.

    Article  CAS  PubMed  Google Scholar 

  27. Szentistvanyi I, et al. Drainage of interstitial fluid from different regions of rat brain. Am J Phys. 1984;246(6 Pt 2):F835–44.

    CAS  Google Scholar 

  28. Liu XF, et al. The window of opportunity for treatment of focal cerebral ischemic damage with noninvasive intranasal insulin-like growth factor-I in rats. J Stroke Cerebrovasc Dis. 2004;13(1):16–23.

    Article  PubMed  Google Scholar 

  29. Lioutas VA, et al. Intranasal insulin and insulin-like growth factor 1 as neuroprotectants in acute ischemic stroke. Transl Stroke Res. 2015;6(4):264–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fletcher L, et al. Intranasal delivery of erythropoietin plus insulin-like growth factor-I for acute neuroprotection in stroke. Laboratory investigation. J Neurosurg. 2009;111(1):164–70.

    Article  CAS  PubMed  Google Scholar 

  31. Sun BL, et al. Intranasal delivery of granulocyte colony-stimulating factor enhances its neuroprotective effects against ischemic brain injury in rats. Mol Neurobiol. 2016;53(1):320–30.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang H, et al. Intranasal delivery of exendin-4 confers neuroprotective effect against cerebral ischemia in mice. AAPS J. 2016;18(2):385–94.

    Article  CAS  PubMed  Google Scholar 

  33. Kim ID, et al. Intranasal delivery of HMGB1-binding heptamer peptide confers a robust neuroprotection in the postischemic brain. Neurosci Lett. 2012;525(2):179–83.

    Article  CAS  PubMed  Google Scholar 

  34. Meng Y, et al. Subacute intranasal administration of tissue plasminogen activator promotes neuroplasticity and improves functional recovery following traumatic brain injury in rats. PLoS One. 2014;9(9):e106238.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Liu Z, et al. Subacute intranasal administration of tissue plasminogen activator increases functional recovery and axonal remodeling after stroke in rats. Neurobiol Dis. 2012;45(2):804–9.

    Article  CAS  PubMed  Google Scholar 

  36. Merelli A, et al. Experimental evidence of the potential use of erythropoietin by intranasal administration as a neuroprotective agent in cerebral hypoxia. Drug Metabol Drug Interact. 2011;26(2):65–9.

    Article  CAS  PubMed  Google Scholar 

  37. Merelli A, et al. Recovery of motor spontaneous activity after intranasal delivery of human recombinant erythropoietin in a focal brain hypoxia model induced by CoCl2 in rats. Neurotox Res. 2011;20(2):182–92.

    Article  CAS  PubMed  Google Scholar 

  38. Gao Y, et al. Different expression patterns of Ngb and EPOR in the cerebral cortex and hippocampus revealed distinctive therapeutic effects of intranasal delivery of Neuro-EPO for ischemic insults to the gerbil brain. J Histochem Cytochem. 2011;59(2):214–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rodriguez Cruz Y, et al. Treatment with nasal neuro-EPO improves the neurological, cognitive, and histological state in a gerbil model of focal ischemia. ScientificWorldJournal. 2010;10:2288–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ma M, et al. Intranasal delivery of transforming growth factor-beta1 in mice after stroke reduces infarct volume and increases neurogenesis in the subventricular zone. BMC Neurosci. 2008;9:117.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Wei ZZ, et al. Neuroprotective and regenerative roles of intranasal Wnt-3a administration after focal ischemic stroke in mice. J Cereb Blood Flow Metab. 2018;38(3):404–21.

    Article  CAS  PubMed  Google Scholar 

  42. Chen D, et al. Intranasal delivery of Apelin-13 is neuroprotective and promotes angiogenesis after ischemic stroke in mice. ASN Neuro. 2015;7(5):1759091415605114. https://doi.org/10.1177/1759091415605114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhao HM, et al. Intranasal delivery of nerve growth factor to protect the central nervous system against acute cerebral infarction. Chin Med Sci J. 2004;19(4):257–61.

    CAS  PubMed  Google Scholar 

  44. Yang D, et al. Taming neonatal hypoxic-ischemic brain injury by intranasal delivery of plasminogen activator inhibitor-1. Stroke. 2013;44(9):2623–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Akpan N, et al. Intranasal delivery of caspase-9 inhibitor reduces caspase-6-dependent axon/neuron loss and improves neurological function after stroke. J Neurosci. 2011;31(24):8894–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee JH, et al. Intranasal administration of interleukin-1 receptor antagonist in a transient focal cerebral ischemia rat model. Biomol Ther (Seoul). 2017;25(2):149–57.

    Article  CAS  Google Scholar 

  47. Jin YC, et al. Intranasal delivery of RGD motif-containing osteopontin icosamer confers neuroprotection in the postischemic brain via alphavbeta3 integrin binding. Mol Neurobiol. 2016;53(8):5652–63.

    Article  CAS  PubMed  Google Scholar 

  48. Doyle KP, et al. Nasal administration of osteopontin peptide mimetics confers neuroprotection in stroke. J Cereb Blood Flow Metab. 2008;28(6):1235–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wei N, et al. Delayed intranasal delivery of hypoxic-preconditioned bone marrow mesenchymal stem cells enhanced cell homing and therapeutic benefits after ischemic stroke in mice. Cell Transplant. 2013;22(6):977–91.

    Article  PubMed  Google Scholar 

  50. Wei ZZ, et al. Intranasal delivery of bone marrow mesenchymal stem cells improved neurovascular regeneration and rescued neuropsychiatric deficits after neonatal stroke in rats. Cell Transplant. 2015;24(3):391–402.

    Article  PubMed  Google Scholar 

  51. van Velthoven CT, et al. Mesenchymal stem cell transplantation attenuates brain injury after neonatal stroke. Stroke. 2013;44(5):1426–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Kim ID, et al. Intranasal delivery of HMGB1 siRNA confers target gene knockdown and robust neuroprotection in the postischemic brain. Mol Ther. 2012;20(4):829–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kim ID, et al. Robust neuroprotective effects of intranasally delivered iNOS siRNA encapsulated in gelatin nanoparticles in the postischemic brain. Nanomedicine. 2016;12(5):1219–29.

    Article  CAS  PubMed  Google Scholar 

  54. Chen C, et al. The role of kappa opioid receptor in brain ischemia. Crit Care Med. 2016;44(12):e1219–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Choi YS, et al. Enhanced cell survival of pH-sensitive bioenergetic nucleotide nanoparticles in energy/oxygen-depleted cells and their intranasal delivery for reduced brain infarction. Acta Biomater. 2016;41:147–60.

    Article  CAS  PubMed  Google Scholar 

  56. Zhao YZ, et al. Intranasal delivery of bFGF with nanoliposomes enhances in vivo neuroprotection and neural injury recovery in a rodent stroke model. J Control Release. 2016;224:165–75.

    Article  CAS  PubMed  Google Scholar 

  57. Frechou M, et al. Intranasal delivery of progesterone after transient ischemic stroke decreases mortality and provides neuroprotection. Neuropharmacology. 2015;97:394–403.

    Article  CAS  PubMed  Google Scholar 

  58. Lu T, et al. Intranasal ginsenoside Rb1 targets the brain and ameliorates cerebral ischemia/reperfusion injury in rats. Biol Pharm Bull. 2011;34(8):1319–24.

    Article  CAS  PubMed  Google Scholar 

  59. Hanson LR, et al. Intranasal deferoxamine provides increased brain exposure and significant protection in rat ischemic stroke. J Pharmacol Exp Ther. 2009;330(3):679–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dalpiaz A, et al. Brain uptake of an anti-ischemic agent by nasal administration of microparticles. J Pharm Sci. 2008;97(11):4889–903.

    Article  CAS  PubMed  Google Scholar 

  61. Li J, et al. Intranasal pretreatment with Z-ligustilide, the main volatile component of Rhizoma Chuanxiong, confers prophylaxis against cerebral ischemia via Nrf2 and HSP70 signaling pathways. J Agric Food Chem. 2017;65(8):1533–42.

    Article  CAS  PubMed  Google Scholar 

  62. Wen R, et al. Xingnaojing mPEG2000-PLA modified microemulsion for transnasal delivery: pharmacokinetic and brain-targeting evaluation. Drug Dev Ind Pharm. 2016;42(6):926–35.

    Article  CAS  PubMed  Google Scholar 

  63. Joachim E, et al. Gelatin nanoparticles enhance the neuroprotective effects of intranasally administered osteopontin in rat ischemic stroke model. Drug Deliv Transl Res. 2014;4(5–6):395–9.

    Article  CAS  PubMed  Google Scholar 

  64. Kamble MS, Bhalerao KK, Bhosale AV, Chaudhari PD. A review on nose-to-brain drug delivery. Int J Pharm Chem Sci. 2013;2(1):516–22.

    Google Scholar 

  65. Kiran KA. Stratergies and prospects of nasal drug delivery systems. Int J Pharm Sci Res. 2012;3(3):648–58.

    Google Scholar 

  66. Chien YW, Su KSE, Chang S‐F. Nasal systemic drug delivery, vol. 1. New York: Marcel-Dekker; 1989. p. 1–77.

    Google Scholar 

  67. Bahadur S, Pathak K. Physicochemical and physiological considerations for efficient nose-to-brain targeting. Expert Opin Drug Deliv. 2012;9(1):19–31.

    Article  CAS  PubMed  Google Scholar 

  68. Lochhead JJ, Thorne RG. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev. 2012;64(7):614–28.

    Article  CAS  PubMed  Google Scholar 

  69. Dogrukol-Ak D, et al. Passage of vasoactive intestinal peptide across the blood-brain barrier. Peptides. 2003;24(3):437–44.

    Article  CAS  PubMed  Google Scholar 

  70. Salam KA, et al. Intravenous thrombolysis for acute ischemic stroke in the 3- to 4.5-hour window—the Malabar experience. Int J Stroke. 2014;9(4):426–8.

    Article  PubMed  Google Scholar 

  71. Culp WC, et al. Dodecafluoropentane emulsion extends window for tPA therapy in a rabbit stroke model. Mol Neurobiol. 2015;52(2):979–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chen Z, et al. Enhancing effect of borneol and muscone on geniposide transport across the human nasal epithelial cell monolayer. PLoS One. 2014;9(7):e101414.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Bhowmik D, Kharel R, Jaiswal J, Biswajit C, Kumar KP. Innovative approaches for nasal drug delivery system and its challenges and opportunities. Ann Biol Res. 2010;1(1):21–6.

    CAS  Google Scholar 

  74. Schipper NGM, Verhoef JC, Merkus FW. The nasal mucociliary clearance: relevance to nasal drug delivery. Pharm Res. 1991;8(7):807–14.

    Article  CAS  PubMed  Google Scholar 

  75. Bhumkar DR, et al. Chitosan reduced gold nanoparticles as novel carriers for transdermal delivery of insulin. Pharm Res. 2007;24:1415–27.

    Article  CAS  PubMed  Google Scholar 

  76. Jones N. The nose and paranasal sinuses physiology and anatomy. Adv Drug Deliv Rev. 2001;51(1–3):5–19.

    Article  CAS  PubMed  Google Scholar 

  77. Illum L. Is nose-to-brain transport of drugs in man a reality? J Pharm Pharmacol. 2004;56(1):3–14.

    Article  CAS  PubMed  Google Scholar 

  78. Kao HD, et al. Enhancement of the systemic and CNS specific delivery of L-dopa by the nasal administration of its water soluble prodrugs. Pharm Res. 2000;17(8):978–84.

    Article  CAS  PubMed  Google Scholar 

  79. Santos-Morales O, et al. Nasal administration of the neuroprotective candidate NeuroEPO to healthy volunteers: a randomized, parallel, open-label safety study. BMC Neurol. 2017;17(1):129.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renyu Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, C., Zhang, M., Wu, Y., Zhou, C., Liu, R. (2019). Intranasal Delivering Method in the Treatment of Ischemic Stroke. In: Chen, J., Wang, J., Wei, L., Zhang, J. (eds) Therapeutic Intranasal Delivery for Stroke and Neurological Disorders. Springer Series in Translational Stroke Research. Springer, Cham. https://doi.org/10.1007/978-3-030-16715-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16715-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16713-4

  • Online ISBN: 978-3-030-16715-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics