Skip to main content

Overview and Understanding of Human Circadian Immunology

  • Chapter
  • First Online:
Allergy and Sleep
  • 650 Accesses

Abstract

Immune cells have their own “circadian clock” and are under circadian control due to endogenous and exogenous factors, resulting in time of day differences in cell counts and function. Functionally human circadian immunology plays a crucial role in appropriate timing of vaccination, immunotherapy, treatment of infections, and exacerbation of inflammatory disease. Despite the breakthroughs described in this chapter, more work is needed. Specific areas would improve the care of allergic disease, including better knowledge of human immune rhythms and disease-specific research. Dr. Fishbein and her team have developed innovative approaches to the measurement of human immune rhythms. A personalized, timed-based treatment approach is in the future for allergic disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Halberg F, Johnson EA, Brown BW, Bittner JJ. Susceptibility rhythm to E. coli endotoxin and bioassay. Proc Soc Exp Biol Med. 1960;103:142–4.

    Article  CAS  PubMed  Google Scholar 

  2. Shackelford PG, Feigin RD. Periodicity of susceptibility to pneumococcal infection: influence of light and adrenocortical secretions. Science. 1973;182:285–7.

    Article  CAS  PubMed  Google Scholar 

  3. Man K, Loudon A, Chawla A. Immunity around the clock. Science. 2016;354:999–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stratmann M, Schibler U. Properties, entrainment, and physiological functions of mammalian peripheral oscillators. J Biol Rhythm. 2006;21:494–506.

    Article  CAS  Google Scholar 

  5. Lowrey PL, Takahashi JS. Genetics of circadian rhythms in Mammalian model organisms. Adv Genet. 2011;74:175–230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cermakian N, Boivin DB. The regulation of central and peripheral circadian clocks in humans. Obes Rev. 2009;10(Suppl 2):25–36.

    Article  CAS  PubMed  Google Scholar 

  7. Keller M, Mazuch J, Abraham U, et al. A circadian clock in macrophages controls inflammatory immune responses. Proc Natl Acad Sci U S A. 2009;106:21407–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Oishi Y, Hayashi S, Isagawa T, et al. Bmal1 regulates inflammatory responses in macrophages by modulating enhancer RNA transcription. Sci Rep. 2017;7:7086.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Curtis AM, Fagundes CT, Yang G. Circadian control of innate immunity in macrophages by miR-155 targeting Bmal1. Proc Natl Acad Sci U S A. 2015;112:7231–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nguyen KD, Fentress SJ, Qiu Y, Yun K, Cox JS, Chawla A. Circadian gene Bmal1 regulates diurnal oscillations of Ly6C(hi) inflammatory monocytes. Science. 2013;341:1483–8.

    Article  CAS  PubMed  Google Scholar 

  11. Baumann A, Gonnenwein S, Bischoff SC, et al. The circadian clock is functional in eosinophils and mast cells. Immunology. 2013;140:465–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nakao A, Nakamura Y, Shibata S. The circadian clock functions as a potent regulator of allergic reaction. Allergy. 2015;70:467–73.

    Article  CAS  PubMed  Google Scholar 

  13. Nakamura Y, Nakano N, Ishimaru K, et al. Circadian regulation of allergic reactions by the mast cell clock in mice. J Allergy Clin Immunol. 2014;133:568–75.

    Article  CAS  PubMed  Google Scholar 

  14. Nakamura Y, Nakano N, Ishimaru K, et al. Inhibition of IgE-mediated allergic reactions by pharmacologically targeting the circadian clock. J Allergy Clin Immunol. 2016;137:1226–35.

    Article  CAS  PubMed  Google Scholar 

  15. Christ P, Sowa AS, Froy O, Lorentz A. The circadian clock drives mast cell functions in allergic reactions. Front Immunol. 2018;9:1526.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Ando N, Nakamura Y, Ishimaru K, et al. Allergen-specific basophil reactivity exhibits daily variations in seasonal allergic rhinitis. Allergy. 2015;70:319–22.

    Article  CAS  PubMed  Google Scholar 

  17. Baumann A, Skjold T, Hoffmann HJ, Lorentz A. Diurnal variation of CD63 expression on activated blood basophils: a pilot study. Ann Allergy Asthma Immunol. 2016;116:77–8.

    Article  CAS  PubMed  Google Scholar 

  18. Lind C, Skaarup SH, Lorentz A, Hoffmann HJ. Basophil testing with CD63 in pollen-sensitized patients is independent of the circadian clock. J Allergy Clin Immunol. 2018;141:1906–8.

    Article  CAS  PubMed  Google Scholar 

  19. Lambrecht BN, Hammad H. The immunology of asthma. Nat Immunol. 2015;16:45–56.

    Article  CAS  PubMed  Google Scholar 

  20. Gibbs J, Ince L, Matthews L, et al. An epithelial circadian clock controls pulmonary inflammation and glucocorticoid action. Nat Med. 2014;20:919–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nussbaum JC, Van Dyken SJ, von Moltke J, et al. Type 2 innate lymphoid cells control eosinophil homeostasis. Nature. 2013;502:245–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wolthers OD, Heuck C. Circadian variations in serum eosinophil cationic protein, and serum and urine eosinophil protein X. Pediatr Allergy Immunol. 2003;14:130–3.

    Article  CAS  PubMed  Google Scholar 

  23. Wojnarowski C, Roithner B, Koller DY, et al. Lack of relationship between eosinophil cationic protein and eosinophil protein X in nasal lavage and urine and the severity of childhood asthma in a 6-month follow-up study. Clin Exp Allergy. 1999;29:926–32.

    Article  CAS  PubMed  Google Scholar 

  24. Masera RG, Carignola R, Staurenghi AH, et al. Altered circadian rhythms of natural killer (NK) cell activity in patients with autoimmune rheumatic diseases. Chronobiologia. 1994;21:127–32.

    CAS  PubMed  Google Scholar 

  25. Mozzanica N, Frigerio U, Negri M, et al. Circadian rhythm of natural killer cell activity in vitiligo. J Am Acad Dermatol. 1989;20:591–6.

    Article  CAS  PubMed  Google Scholar 

  26. Gatti G, Del Ponte D, Cavallo R, et al. Circadian changes in human natural killer-cell activity. Prog Clin Biol Res. 1987;227a:399–409.

    CAS  PubMed  Google Scholar 

  27. Ackermann K, Revell VL, Lao O, Rombouts EJ, Skene DJ, Kayser M. Diurnal rhythms in blood cell populations and the effect of acute sleep deprivation in healthy young men. Sleep. 2012;35:933–40.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lu F, Liu Q. Validation of RUNX1 as a potential target for treating circadian clock-induced obesity through preventing migration of group 3 innate lymphoid cells into intestine. Med Hypotheses. 2018;113:98–101.

    Article  CAS  PubMed  Google Scholar 

  29. Li S, Bostick JW, Zhou L. Regulation of innate lymphoid cells by aryl hydrocarbon receptor. Front Immunol. 2017;8:1909.

    Article  PubMed  CAS  Google Scholar 

  30. Reis ES, Lange T, Kohl G, et al. Sleep and circadian rhythm regulate circulating complement factors and immunoregulatory properties of C5a. Brain Behav Immun. 2011;25:1416–26.

    Article  CAS  PubMed  Google Scholar 

  31. Hemmers S, Rudensky AY. The cell-intrinsic circadian clock is dispensable for lymphocyte differentiation and function. Cell Rep. 2015;11:1339–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pritchett D, Reddy AB. Circadian clocks in the hematologic system. J Biol Rhythm. 2015;30:374–88.

    Article  CAS  Google Scholar 

  33. Kirsch S, Thijssen S, Alarcon Salvador S, et al. T-cell numbers and antigen-specific T-cell function follow different circadian rhythms. J Clin Immunol. 2012;32:1381–9.

    Article  CAS  PubMed  Google Scholar 

  34. Palm S, Postler E, Hinrichsen H, Maier H, Zabel P, Kirch W. Twenty-four-hour analysis of lymphocyte subpopulations and cytokines in healthy subjects. Chronobiol Int. 1996;13:423–34.

    Article  CAS  PubMed  Google Scholar 

  35. Druzd D, Matveeva O, Ince L, et al. Lymphocyte circadian clocks control lymph node trafficking and adaptive immune responses. Immunity. 2017;46:120–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dimitrov S, Benedict C, Heutling D, Westermann J, Born J, Lange T. Cortisol and epinephrine control opposing circadian rhythms in T cell subsets. Blood. 2009;113:5134–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bollinger T, Bollinger A, Skrum L, Dimitrov S, Lange T, Solbach W. Sleep-dependent activity of T cells and regulatory T cells. Clin Exp Immunol. 2009;155:231–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Abo T, Kawate T, Itoh K, Kumagai K. Studies on the bioperiodicity of the immune response. I. Circadian rhythms of human T, B, and K cell traffic in the peripheral blood. J Immunol. 1981;126:1360–3.

    CAS  PubMed  Google Scholar 

  39. Bollinger T, Leutz A, Leliavski A, et al. Circadian clocks in mouse and human CD4+ T cells. PLoS One. 2011;6:e29801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nilsonne G, Lekander M, Akerstedt T, Axelsson J, Ingre M. Diurnal variation of circulating interleukin-6 in humans: a meta-analysis. PLoS One. 2016;11:e0165799.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Yu X, Rollins D, Ruhn KA, et al. TH17 cell differentiation is regulated by the circadian clock. Science. 2013;342:727–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shimba A, Cui G, Tani-Ichi S, et al. Glucocorticoids drive diurnal oscillations in T cell distribution and responses by inducing interleukin-7 receptor and CXCR4. Immunity. 2018;48:286–98.e6.

    Article  CAS  PubMed  Google Scholar 

  43. Suzuki K, Hayano Y. Adrenergic control of the adaptive immune response by diurnal lymphocyte recirculation through lymph nodes. J Exp Med. 2016;213:2567–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Scheiermann C, Kunisaki Y, Lucas D, et al. Adrenergic nerves govern circadian leukocyte recruitment to tissues. Immunity. 2012;37:290–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cuesta M, Boudreau P, Dubeau-Laramee G, Cermakian N, Boivin DB. Simulated night shift disrupts circadian rhythms of immune functions in humans. J Immunol. 2016;196:2466–75.

    Article  CAS  PubMed  Google Scholar 

  46. Boivin DB, James FO, Wu A, Cho-Park PF, Xiong H, Sun ZS. Circadian clock genes oscillate in human peripheral blood mononuclear cells. Blood. 2003;102:4143–5.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang Y, Fear DJ, Willis-Owen SA, Cookson WO, Moffatt MF. Global gene regulation during activation of immunoglobulin class switching in human B cells. Sci Rep. 2016;6:37988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nakashima A, Kawamoto T, Honda KK, et al. DEC1 modulates the circadian phase of clock gene expression. Mol Cell Biol. 2008;28:4080–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Scheiermann C, Kunisaki Y, Frenette PS. Circadian control of the immune system. Nat Rev Immunol. 2013;13:190–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Calvo JR, Gonzalez-Yanes C, Maldonado MD. The role of melatonin in the cells of the innate immunity: a review. J Pineal Res. 2013;55:103–20.

    Article  CAS  PubMed  Google Scholar 

  51. Prendergast BJ, Cable EJ, Patel PN, et al. Impaired leukocyte trafficking and skin inflammatory responses in hamsters lacking a functional circadian system. Brain Behav Immun. 2013;32:94–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sutherland ER, Martin RJ, Ellison MC, Kraft M. Immunomodulatory effects of melatonin in asthma. Am J Respir Crit Care Med. 2002;166:1055–61.

    Article  PubMed  Google Scholar 

  53. Sutherland ER, Ellison MC, Kraft M, Martin RJ. Elevated serum melatonin is associated with the nocturnal worsening of asthma. J Allergy Clin Immunol. 2003;112:513–7.

    Article  CAS  PubMed  Google Scholar 

  54. Lardone PJ, Carrillo-Vico A, Molinero P, Rubio A, Guerrero JM. A novel interplay between membrane and nuclear melatonin receptors in human lymphocytes: significance in IL-2 production. Cell Mol Life Sci. 2009;66:516–25.

    Article  CAS  PubMed  Google Scholar 

  55. Garcia-Maurino S, Gonzalez-Haba MG, Calvo JR, et al. Melatonin enhances IL-2, IL-6, and IFN-gamma production by human circulating CD4+ cells: a possible nuclear receptor-mediated mechanism involving T helper type 1 lymphocytes and monocytes. J Immunol. 1997;159:574–81.

    CAS  PubMed  Google Scholar 

  56. Garcia-Maurino S, Pozo D, Carrillo-Vico A, Calvo JR, Guerrero JM. Melatonin activates Th1 lymphocytes by increasing IL-12 production. Life Sci. 1999;65:2143–50.

    Article  CAS  PubMed  Google Scholar 

  57. Garcia-Perganeda A, Pozo D, Guerrero JM, Calvo JR. Signal transduction for melatonin in human lymphocytes: involvement of a pertussis toxin-sensitive G protein. J Immunol. 1997;159:3774–81.

    CAS  PubMed  Google Scholar 

  58. Chang YS, Lin MH, Lee JH, et al. Melatonin supplementation for children with atopic dermatitis and sleep disturbance: a randomized clinical trial. JAMA Pediatr. 2016;170:35–42.

    Article  PubMed  Google Scholar 

  59. Chang YS, Chiang BL. Sleep disorders and atopic dermatitis: a two-way street? J Allergy Clin Immunol. 2018;142(4):1033–40.

    Article  PubMed  Google Scholar 

  60. Cisse YM, Borniger JC, Lemanski E, Walker WH 2nd, Nelson RJ. Time-restricted feeding alters the innate immune response to bacterial endotoxin. J Immunol. 2018;200:681–7.

    Article  CAS  PubMed  Google Scholar 

  61. Kim SM, Neuendorff N, Alaniz RC, Sun Y, Chapkin RS, Earnest DJ. Shift work cycle-induced alterations of circadian rhythms potentiate the effects of high fat diet on inflammation and metabolism. FASEB J. 2018;32:3085–95. https://doi.org/10.1096/fj201700784R.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Pijut SS, Corbett DE, Wang Y, Li J, Charnigo RJ, Graf GA. Effect of peripheral circadian dysfunction on metabolic disease in response to a diabetogenic diet. Am J Phys Endocrinol Metab. 2016;310:E900–11.

    Article  Google Scholar 

  63. Goni L, Sun D, Heianza Y, et al. A circadian rhythm-related MTNR1B genetic variant modulates the effect of weight-loss diets on changes in adiposity and body composition: the POUNDS Lost trial. Eur J Nutr. 2018; https://doi.org/10.1007/s00394-018-1660-y.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Wang H, van Spyk E, Liu Q, et al. Time-restricted feeding shifts the skin circadian clock and alters UVB-induced DNA damage. Cell Rep. 2017;20:1061–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Baron KG, Reid KJ, Kern AS, Zee PC. Role of sleep timing in caloric intake and BMI. Obesity. 2011;19:1374–81.

    Article  PubMed  Google Scholar 

  66. Zelazowska EB, Singh A, Raybourne RB, Sternberg EM, Gold PW, Deuster PA. Lymphocyte subpopulation expression in women: effect of exercise and circadian rhythm. Med Sci Sports Exerc. 1997;29:467–73.

    Article  CAS  PubMed  Google Scholar 

  67. Kim HK, Ando K, Tabata H, et al. Effects of different intensities of endurance exercise in morning and evening on the lipid metabolism response. J Sports Sci Med. 2016;15:467–76.

    PubMed  PubMed Central  Google Scholar 

  68. Pledge D, Grosset JF, Onambele-Pearson GL. Is there a morning-to-evening difference in the acute IL-6 and cortisol responses to resistance exercise? Cytokine. 2011;55:318–23.

    Article  CAS  PubMed  Google Scholar 

  69. Scheer FA, Hu K, Evoniuk H, et al. Impact of the human circadian system, exercise, and their interaction on cardiovascular function. Proc Natl Acad Sci U S A. 2010;107:20541–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bedrosian TA, Fonken LK, Walton JC, Nelson RJ. Chronic exposure to dim light at night suppresses immune responses in Siberian hamsters. Biol Lett. 2011;7:468–71.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Fonken LK, Haim A, Nelson RJ. Dim light at night increases immune function in Nile grass rats, a diurnal rodent. Chronobiol Int. 2012;29:26–34.

    Article  PubMed  Google Scholar 

  72. Prather AA, Janicki-Deverts D, Hall MH, Cohen S. Behaviorally assessed sleep and susceptibility to the common cold. Sleep. 2015;38:1353–9.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Orzech KM, Acebo C, Seifer R, Barker D, Carskadon MA. Sleep patterns are associated with common illness in adolescents. J Sleep Res. 2014;23:133–42.

    Article  PubMed  Google Scholar 

  74. Spiegel K, Sheridan JF, Van Cauter E. Effect of sleep deprivation on response to immunization. JAMA. 2002;288:1471–2.

    Article  PubMed  Google Scholar 

  75. Lange T, Perras B, Fehm HL, Born J. Sleep enhances the human antibody response to hepatitis A vaccination. Psychosom Med. 2003;65:831–5.

    Article  PubMed  Google Scholar 

  76. Prather AA, Hall M, Fury JM, et al. Sleep and antibody response to hepatitis B vaccination. Sleep. 2012;35:1063–9.

    PubMed  PubMed Central  Google Scholar 

  77. Kecklund G, Axelsson J. Health consequences of shift work and insufficient sleep. BMJ. 2016;355:i5210.

    Article  PubMed  Google Scholar 

  78. Travis RC, Balkwill A, Fensom GK, et al. Night shift work and breast cancer incidence: three prospective studies and meta-analysis of published studies. J Natl Cancer Inst. 2016;108:djw169.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Masri S, Kinouchi K, Sassone-Corsi P. Circadian clocks, epigenetics, and cancer. Curr Opin Oncol. 2015;27:50–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Canuto R, Garcez AS, Olinto MT. Metabolic syndrome and shift work: a systematic review. Sleep Med Rev. 2013;17:425–31.

    Article  PubMed  Google Scholar 

  81. Proper KI, van de Langenberg D, Rodenburg W, et al. The relationship between shift work and metabolic risk factors: a systematic review of longitudinal studies. Am J Prev Med. 2016;50:e147–e57.

    Article  PubMed  Google Scholar 

  82. Almeida CM, Malheiro A. Sleep, immunity and shift workers: a review. Sleep Sci. 2016;9:164–8.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Wirth MD, Andrew ME, Burchfiel CM, et al. Association of shiftwork and immune cells among police officers from the Buffalo Cardio-Metabolic Occupational Police Stress study. Chronobiol Int. 2017;34:721–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kervezee L, Cuesta M, Cermakian N, Boivin DB. Simulated night shift work induces circadian misalignment of the human peripheral blood mononuclear cell transcriptome. Proc Natl Acad Sci U S A. 2018;115:5540–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Li WQ, Qureshi AA, Schernhammer ES, Han J. Rotating night-shift work and risk of psoriasis in US women. J Invest Dermatol. 2013;133:565–7.

    Article  CAS  PubMed  Google Scholar 

  86. Knutsson A, Boggild H. Gastrointestinal disorders among shift workers. Scand J Work Environ Health. 2010;36:85–95.

    Article  PubMed  Google Scholar 

  87. Voigt RM, Forsyth CB, Green SJ, et al. Circadian disorganization alters intestinal microbiota. PLoS One. 2014;9:e97500.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Fishbein AB, Vitaterna O, Haugh IM, et al. Nocturnal eczema: review of sleep and circadian rhythms in children with atopic dermatitis and future research directions. J Allergy Clin Immunol. 2015;136:1170–7.

    Article  PubMed  Google Scholar 

  89. Fishbein AB, Lin B, Beaumont J, Paller AS, Zee P. Nocturnal movements in children with atopic dermatitis have a timing pattern: a case control study. J Am Acad Dermatol. 2018; https://doi.org/10.1016/j.jaad.2018.04.020.

  90. Bavishi AA, Grammer LC, Pongracic J, et al. Diurnal variations in subcutaneous allergen immunotherapy reactions. Ann Allergy Asthma Immunol. 2017;118:103–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Fishbein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Padem, N., Fishbein, A. (2019). Overview and Understanding of Human Circadian Immunology. In: Fishbein, A., Sheldon, S. (eds) Allergy and Sleep. Springer, Cham. https://doi.org/10.1007/978-3-030-14738-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14738-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14737-2

  • Online ISBN: 978-3-030-14738-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics