Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11395))

Abstract

Segmentation of the left atrium (LA) is crucial for assessing its anatomy in both pre-operative atrial fibrillation (AF) ablation planning and post-operative follow-up studies. In this paper, we present a fully automated framework for left atrial segmentation in gadolinium-enhanced magnetic resonance images (GE-MRI) based on deep learning. We propose a fully convolutional neural network and explore the benefits of multi-task learning for performing both atrial segmentation and pre/post ablation classification. Our results show that, by sharing features between related tasks, the network can gain additional anatomical information and achieve more accurate atrial segmentation, leading to a mean Dice score of 0.901 on a test set of 20 3D MRI images. Code of our proposed algorithm is available at https://github.com/cherise215/atria_segmentation_2018/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://atriaseg2018.cardiacatlas.org/.

References

  1. NHS. Atrial fibrillation. https://www.nhs.uk/conditions/atrial-fibrillation/. Accessed 25 June 2018

  2. Calkins, H., Kuck, K.H., Cappato, R., et al.: 2012 HRS/EHRA/ECAS expert consensus statement on catheter and surgical ablation of atrial fibrillation: recommendations for patient selection, procedural techniques, patient management and follow-up, definitions, endpoints, and research trial design: a report of the heart rhythm society (HRS) task force on catheter and surgical ablation of atrial fibrillation. Heart Rhythm 9(4), 632–696 (2012)

    Article  Google Scholar 

  3. Tobon-Gomez, C., Geers, A.J., Peters, J., et al.: Benchmark for algorithms segmenting the left atrium from 3D CT and MRI datasets. IEEE Trans. Med. Imaging 34(7), 1460–1473 (2015)

    Article  Google Scholar 

  4. Depa, M., Sabuncu, M.R., Holmvang, G., Nezafat, R., Schmidt, E.J., Golland, P.: Robust atlas-based segmentation of highly variable anatomy: left atrium segmentation. In: Camara, O., Pop, M., Rhode, K., Sermesant, M., Smith, N., Young, A. (eds.) STACOM 2010. LNCS, vol. 6364, pp. 85–94. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15835-3_9

    Chapter  Google Scholar 

  5. Litjens, G., Kooi, T., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  6. Malcolme-Lawes, L., et al.: Automated analysis of atrial late gadolinium enhancement imaging that correlates with endocardial voltage and clinical outcomes: a 2-center study. Heart Rhythm: Off. J. Heart Rhythm Soc. 10, 1184–1191 (2013)

    Article  Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 346–361. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10578-9_23

    Chapter  Google Scholar 

  8. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. CoRR, abs/1505.04597 (2015)

    Google Scholar 

  9. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. CoRR, abs/1502.03167 (2015)

    Google Scholar 

  10. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Alexnet. Advances in Neural Information Processing Systems, pp. 1–9 (2012)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. arXiv e-prints, December 2015

    Google Scholar 

  12. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533 (1986)

    Article  MATH  Google Scholar 

  14. Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 41–48. ACM (2009)

    Google Scholar 

  15. Lieman-Sifry, J., Le, M., Lau, F., Sall, S., Golden, D.: FastVentricle: cardiac segmentation with ENet. In: Pop, M., Wright, G.A. (eds.) FIMH 2017. LNCS, vol. 10263, pp. 127–138. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59448-4_13

    Chapter  Google Scholar 

  16. Somasundaram, K., Kalavathi, P.: Medical image contrast enhancement based on gamma correction. Int. J. Knowl. Manag. e-Learn. 3, 15–18 (2011)

    Google Scholar 

  17. Zuiderveld, K.: Contrast limited adaptive histogram equalization. In: Graphics Gems IV, pp. 474–485. Academic Press Professional Inc., San Diego (1994)

    Chapter  Google Scholar 

  18. Pizer, S.M., Johnston, R.E., Ericksen, J.P., Yankaskas, B.C., Muller, K.E.: Contrast-limited adaptive histogram equalization: speed and effectiveness. In: Proceedings of the First Conference on Visualization in Biomedical Computing, pp. 337–345. IEEE (1990)

    Google Scholar 

  19. Selvy, P.T., Palanisamy, V., Radhai, M.S.: A proficient clustering technique to detect CSF level in MRI brain images using PSO algorithm. WSEAS Trans. Comput. 7, 298–308 (2013)

    Google Scholar 

  20. Ghose, S., et al.: A random forest based classification approach to prostate segmentation in MRI. In: MICCAI Grand Challenge: Prostate MR Image Segmentation (2012)

    Google Scholar 

  21. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, C., Bai, W., Rueckert, D. (2019). Multi-task Learning for Left Atrial Segmentation on GE-MRI. In: Pop, M., et al. Statistical Atlases and Computational Models of the Heart. Atrial Segmentation and LV Quantification Challenges. STACOM 2018. Lecture Notes in Computer Science(), vol 11395. Springer, Cham. https://doi.org/10.1007/978-3-030-12029-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12029-0_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12028-3

  • Online ISBN: 978-3-030-12029-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics