Multi-task Learning for Left Atrial Segmentation on GE-MRI

  • Chen ChenEmail author
  • Wenjia Bai
  • Daniel Rueckert
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11395)


Segmentation of the left atrium (LA) is crucial for assessing its anatomy in both pre-operative atrial fibrillation (AF) ablation planning and post-operative follow-up studies. In this paper, we present a fully automated framework for left atrial segmentation in gadolinium-enhanced magnetic resonance images (GE-MRI) based on deep learning. We propose a fully convolutional neural network and explore the benefits of multi-task learning for performing both atrial segmentation and pre/post ablation classification. Our results show that, by sharing features between related tasks, the network can gain additional anatomical information and achieve more accurate atrial segmentation, leading to a mean Dice score of 0.901 on a test set of 20 3D MRI images. Code of our proposed algorithm is available at


Multi-task learning Atrial segmentation Fully convolution neural network 


  1. 1.
    NHS. Atrial fibrillation. Accessed 25 June 2018
  2. 2.
    Calkins, H., Kuck, K.H., Cappato, R., et al.: 2012 HRS/EHRA/ECAS expert consensus statement on catheter and surgical ablation of atrial fibrillation: recommendations for patient selection, procedural techniques, patient management and follow-up, definitions, endpoints, and research trial design: a report of the heart rhythm society (HRS) task force on catheter and surgical ablation of atrial fibrillation. Heart Rhythm 9(4), 632–696 (2012)CrossRefGoogle Scholar
  3. 3.
    Tobon-Gomez, C., Geers, A.J., Peters, J., et al.: Benchmark for algorithms segmenting the left atrium from 3D CT and MRI datasets. IEEE Trans. Med. Imaging 34(7), 1460–1473 (2015)CrossRefGoogle Scholar
  4. 4.
    Depa, M., Sabuncu, M.R., Holmvang, G., Nezafat, R., Schmidt, E.J., Golland, P.: Robust atlas-based segmentation of highly variable anatomy: left atrium segmentation. In: Camara, O., Pop, M., Rhode, K., Sermesant, M., Smith, N., Young, A. (eds.) STACOM 2010. LNCS, vol. 6364, pp. 85–94. Springer, Heidelberg (2010). Scholar
  5. 5.
    Litjens, G., Kooi, T., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)CrossRefGoogle Scholar
  6. 6.
    Malcolme-Lawes, L., et al.: Automated analysis of atrial late gadolinium enhancement imaging that correlates with endocardial voltage and clinical outcomes: a 2-center study. Heart Rhythm: Off. J. Heart Rhythm Soc. 10, 1184–1191 (2013)CrossRefGoogle Scholar
  7. 7.
    He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 346–361. Springer, Cham (2014). Scholar
  8. 8.
    Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. CoRR, abs/1505.04597 (2015)Google Scholar
  9. 9.
    Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. CoRR, abs/1502.03167 (2015)Google Scholar
  10. 10.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Alexnet. Advances in Neural Information Processing Systems, pp. 1–9 (2012)Google Scholar
  11. 11.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. arXiv e-prints, December 2015Google Scholar
  12. 12.
    Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533 (1986)zbMATHCrossRefGoogle Scholar
  14. 14.
    Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 41–48. ACM (2009)Google Scholar
  15. 15.
    Lieman-Sifry, J., Le, M., Lau, F., Sall, S., Golden, D.: FastVentricle: cardiac segmentation with ENet. In: Pop, M., Wright, G.A. (eds.) FIMH 2017. LNCS, vol. 10263, pp. 127–138. Springer, Cham (2017). Scholar
  16. 16.
    Somasundaram, K., Kalavathi, P.: Medical image contrast enhancement based on gamma correction. Int. J. Knowl. Manag. e-Learn. 3, 15–18 (2011)Google Scholar
  17. 17.
    Zuiderveld, K.: Contrast limited adaptive histogram equalization. In: Graphics Gems IV, pp. 474–485. Academic Press Professional Inc., San Diego (1994)CrossRefGoogle Scholar
  18. 18.
    Pizer, S.M., Johnston, R.E., Ericksen, J.P., Yankaskas, B.C., Muller, K.E.: Contrast-limited adaptive histogram equalization: speed and effectiveness. In: Proceedings of the First Conference on Visualization in Biomedical Computing, pp. 337–345. IEEE (1990)Google Scholar
  19. 19.
    Selvy, P.T., Palanisamy, V., Radhai, M.S.: A proficient clustering technique to detect CSF level in MRI brain images using PSO algorithm. WSEAS Trans. Comput. 7, 298–308 (2013)Google Scholar
  20. 20.
    Ghose, S., et al.: A random forest based classification approach to prostate segmentation in MRI. In: MICCAI Grand Challenge: Prostate MR Image Segmentation (2012)Google Scholar
  21. 21.
    Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Biomedical Image Analysis GroupImperial College LondonLondonUK

Personalised recommendations