Skip to main content

FastVentricle: Cardiac Segmentation with ENet

  • Conference paper
  • First Online:
Functional Imaging and Modelling of the Heart (FIMH 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10263))

Abstract

Cardiac Magnetic Resonance (CMR) imaging is commonly used to assess cardiac structure and function. One disadvantage of CMR is that postprocessing of exams is tedious. Without automation, precise assessment of cardiac function via CMR typically requires an annotator to spend tens of minutes per case manually contouring ventricular structures. Automatic contouring can lower the required time per patient by generating contour suggestions that can be lightly modified by the annotator. Fully convolutional networks (FCNs), a variant of convolutional neural networks, have been used to rapidly advance the state-of-the-art in automated segmentation, which makes FCNs a natural choice for ventricular segmentation. However, FCNs are limited by their computational cost, which increases the monetary cost and degrades the user experience of production systems. To combat this shortcoming, we have developed the FastVentricle architecture, an FCN architecture for ventricular segmentation based on the recently developed ENet architecture. FastVentricle is 4\(\times \) faster and runs with 6\(\times \) less memory than the previous state-of-the-art ventricular segmentation architecture while still maintaining excellent clinical accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Using the SciPy 0.17.0 implementation with default parameters https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mannwhitneyu.html.

References

  1. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1, 321–331 (1988)

    Article  MATH  Google Scholar 

  2. Choa, J., Benkeserb, P.J.: Cardiac segmentation by a velocity-aided active contour model. Comput. Med. Imag. Graph. 30, 31–41 (2006)

    Article  Google Scholar 

  3. Zhu, W., et al.: A geodesic-active-contour-based variational model for short-axis cardiac MRI segmentation. Int. J. Comput. Math. 90(1), 124–139 (2013)

    Article  MATH  Google Scholar 

  4. Pluempitiwiriyawej, C., et al.: STACS: new active contour scheme for cardiac MR image segmentation. IEEE Trans. Med. Imag. 24, 593–603 (2005)

    Article  Google Scholar 

  5. Schwarz, T., Heimann, T., Wolf, I., Meinzer, H.: 3d heart segmentation and volumetry using deformable shape models. In: Computers in Cardiology, pp. 741–744. IEEE (2007)

    Google Scholar 

  6. Petitjean, C., Dacher, J.N.: A review of segmentation methods in short axis cardiac MR images. Med. Image Anal. 15(2), 169–184 (2011)

    Article  Google Scholar 

  7. Peng, P., Lekadir, K., Gooya, A., Shao, L., Petersen, S.E., Frangi, A.F.: A review of heart chamber segmentation for structural and functional analysis using cardiac magnetic resonance imaging. Magn. Reson. Mater. Phys. Biol. Med. 29(2), 155–195 (2016)

    Article  Google Scholar 

  8. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE CVPR, pp. 3431–3440 (2015)

    Google Scholar 

  9. Tran, P.V.: A fully convolutional neural network for cardiac segmentation in short-axis MRI. arXiv preprint (2016). arXiv:1604.00494

  10. Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. In: Proceedings of the IEEE ICCV, pp. 1520–1528 (2015)

    Google Scholar 

  11. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). doi:10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  12. Lau, H.K., et al.: DeepVentricle: automated cardiac MRI ventricle segmentation using deep learning. In: Conference on Machine Intelligence in Medical Imaging (2016)

    Google Scholar 

  13. Food and Drug Administration: Arterys cardio dl. http://www.accessdata.fda.gov/cdrh_docs/pdf16/K163253.pdf

  14. Paszke, A., Chaurasia, A., et al.: Enet: a deep neural network architecture for real-time semantic segmentation. arXiv preprint (2016). arXiv:1606.02147

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE CVPR, pp. 770–778 (2016)

    Google Scholar 

  16. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. arXiv preprint (2015). arXiv:1511.07122

  17. Chollet, F.: Keras (2015). https://github.com/fchollet/keras

  18. Abadi, M., et al.: Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint (2016). arXiv:1603.04467

  19. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint (2014). arXiv:1412.6980

  20. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Bland, J.M., Altman, D.: Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 327(8476), 307–310 (1986)

    Article  Google Scholar 

  22. Suinesiaputra, A., et al.: Quantification of LV function and mass by cardiovascular magnetic resonance: multi-center variability and consensus contours. J. Cardiovas. Magn. Reson. 17(1), 63 (2015)

    Article  Google Scholar 

  23. Mordvintsev, A., et al.: Deep Dream (2015). https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html. Accessed 17 Jan 2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesse Lieman-Sifry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Lieman-Sifry, J., Le, M., Lau, F., Sall, S., Golden, D. (2017). FastVentricle: Cardiac Segmentation with ENet. In: Pop, M., Wright, G. (eds) Functional Imaging and Modelling of the Heart. FIMH 2017. Lecture Notes in Computer Science(), vol 10263. Springer, Cham. https://doi.org/10.1007/978-3-319-59448-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59448-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59447-7

  • Online ISBN: 978-3-319-59448-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics