Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 180))

Abstract

Classical transport is based on the Boltzmann transport equation:

$$\frac{{\partial {\text{f}}}}{{\partial {\text{t}}}} + {\text{v}}\cdot{\vec \nabla _{\text{r}}}{\text{f + F}}\cdot{\vec \nabla _{\text{p}}}{\text{f = }}{\left( {\frac{{\partial {\text{f}}}}{{\partial {\text{t}}}}} \right)_{{\text{collision}}}}$$
((1))

where

$${\text{v}} = {\vec \nabla _{\text{p}}}{\text{E}}\left( {\text{p}} \right){\text{; p = }}\hbar {\text{k; F = qE}}$$
((2))

and f=f(r, p, t) is the probability of finding a typical particle within a unit volume around the point r, in momentum state p, at time t, and

$${\left( {\frac{{\partial {\text{f}}}}{{\partial {\text{t}}}}} \right)_{{\text{collision}}}} = \int {dp'{\mkern 1mu} \left[ {{\text{f}}\left( {{\text{p'}}} \right){\text{W}}\left( {{\text{p'}},{\mkern 1mu} {\text{p}}} \right){\mkern 1mu} {\mkern 1mu} - {\mkern 1mu} f\left( p \right){\text{W}}\left( {{\text{p,}}{\mkern 1mu} {\text{p'}}} \right)} \right]} $$
((3))

Here W(p′, p) is the transition rate from p to p′ and depends on the source of scasttering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Kohn and J. Luttinger, Phys. Rev. 108 (590), 1957.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. E. Wigner, Phys Rev. 40 (749), 1932.

    Article  ADS  Google Scholar 

  3. J. Moyal, Prec. Cambridge Phil. Soc. 45 (1173) 1951.

    Google Scholar 

  4. J. Kruger and A Potlyn, Physica 85A (84) 1976.

    ADS  Google Scholar 

  5. K. van Vliet, et al., J. Math Phys. 23 (318) 1982 [and ref. therein].

    Google Scholar 

  6. E. Wigner, “Perspectives in Quantum Theory” (edited by W. Yourgran and A. van derMerwe) Dover Press.

    Google Scholar 

  7. J. Barker, “Physics of Nonlinear Transport in Semiconductors,” (edited by D. Ferry, J. Barker, and C. Jacoboni) P.127-Quantum Transport.

    Google Scholar 

  8. J. Zubarev, “Nonequilibrium Statistical Thermodynamics,” Consultants Bureau, New York.

    Google Scholar 

  9. L. Kadanoff and G. Baym, “Quantum Statistical Mechanics”, Benjamin.

    Google Scholar 

  10. J. Ziman, “Elements of Advanced Quantum Theory,” Cambridge Press.

    Google Scholar 

  11. D. Blokhintsev, “Principles of Quantum Mechanics”, Allyn and Bacon.

    Google Scholar 

  12. A Davydov, “Quantum Mechanics”, Pergamon Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Iafrate, G.J. (1988). Quantum Transport and the Wigner Function. In: Grubin, H.L., Ferry, D.K., Jacoboni, C. (eds) The Physics of Submicron Semiconductor Devices. NATO ASI Series, vol 180. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2382-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2382-0_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2384-4

  • Online ISBN: 978-1-4899-2382-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics